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There is an increasing interest in developing ontologies and controlled vocabularies to improve the efficiency and consist-

ency of manual literature curation, to enable more formal biocuration workflow results and ultimately to improve analysis

of biological data. Two ontologies that have been successfully used for this purpose are the Gene Ontology (GO) for

annotating aspects of gene products and the Molecular Interaction ontology (PSI-MI) used by databases that archive

protein–protein interactions. The examination of protein interactions has proven to be extremely promising for the

understanding of cellular processes. Manual mapping of information from the biomedical literature to bio-ontology

terms is one of the most challenging components in the curation pipeline. It requires that expert curators interpret the

natural language descriptions contained in articles and infer their semantic equivalents in the ontology (controlled

vocabulary). Since manual curation is a time-consuming process, there is strong motivation to implement text-mining

techniques to automatically extract annotations from free text. A range of text mining strategies has been devised to

assist in the automated extraction of biological data. These strategies either recognize technical terms used recurrently in

the literature and propose them as candidates for inclusion in ontologies, or retrieve passages that serve as evidential

support for annotating an ontology term, e.g. from the PSI-MI or GO controlled vocabularies. Here, we provide a general

overview of current text-mining methods to automatically extract annotations of GO and PSI-MI ontology terms in the

context of the BioCreative (Critical Assessment of Information Extraction Systems in Biology) challenge. Special emphasis is

given to protein–protein interaction data and PSI-MI terms referring to interaction detection methods.

.............................................................................................................................................................................................................................................................................................

Introduction

Advances in laboratory technologies and data analysis

methodologies are permitting the exploitation of complex

experimental data sets in ways that were unthinkable just

a few years ago (1–3). However, although the number of

scientific articles containing relevant data is steadily

increasing, the majority of published data is still not

easily accessible for automated text processing systems.

In fact, the information is still buried within the articles

rather than being summarized in computer readable

formats (4). Therefore, it is necessary to perform the

additional step of annotating the experimental data in

formats suitable for systematic consultation or computa-

tion. This task is performed manually by curators of data-

bases specialized in diverse biological domains, ranging

from cellular phenotypes and tissue anatomy to gene func-

tion. The importance and the critical role played by such

themed biocuration efforts are evident by the multitude

of databases reported over the years in the NAR Database

special issue (5) and by the birth of dedicated journals such

as Database.
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Different models have been followed to generate anno-

tations from the literature (6,7). In the museum model, a

relatively small group of specialized curators perform a par-

ticular literature curation effort, while in the jamboree

model a group of experts meet for a short intensive

annotation workshop. When various research groups

scattered at different locations share common research

interests and they jointly organize into a collaborative

decentralized annotation effort (working from their own

laboratories), the so-called cottage industry model is

followed. Devoted expert curators produce quality annota-

tions, but because manual curation is time-consuming and

there is a limited number of curators, it is difficult to keep

current with the literature. Potential alternatives inspired

by successful efforts, such as Wikipedia, are the open com-

munity model (8) and the author-based annotations model

(9,10). The first does not have major restrictions on the

actual annotators, as the whole community can contribute

to generate annotations. In some cases, qualified roles for

the contributors have been proposed to guarantee a cer-

tain level of confidence in the annotations. The idea behind

author-based annotations is that the authors themselves

provide minimal annotations of their own article during

the writing or submission process, going beyond author-

provided keywords for indexing purposes.

Each of the manual literature curation models previously

introduced here still faces the problem of the increasing

volume of literature (11). Therefore, some attempts have

been made to generate annotations automatically using

automated text mining. Databases constructed according

to the automated text-mining model are limited by per-

formance issues but can generate valuable results in case

of lack of manual annotations (12,13). A hybrid approach,

namely text-mining-assisted manual curation, wherein

semi-automated literature mining tools are integrated

into the biocuration workflow, represents a more promis-

ing solution (14,15).

Controlled vocabularies have been fundamental for all

of these diverse annotation types, from the purely manual

ones to totally automatic annotations. Key tools in the

annotation of experimental data are bio-ontologies, a

well-defined set of logic relations and controlled vocabul-

aries that permit an accurate description of the experimen-

tal findings (16).

The BioCreative initiative (Critical Assessment of

Information Extraction systems in Biology) (17,18) is a

community-wide effort for the evaluation of text mining

and information extraction systems applied to the biolo-

gical domain. Its major purpose is to stimulate the develop-

ment of software that can assist the biological databases in

coping with the deluge of data generated by the ‘omics’

era. We provide here a general overview of the BioCreative

experience with biomedical ontologies. For the BioCreative

initiatives, it was of particular importance that annotations

chosen as part of a challenge task had been generated

through a model followed by research groups employing

expert curators using well-established biocuration work-

flows refined over years of manual literature curation.

In particular, we will focus on the attempts that have

been made to automatically extract protein–protein

interaction (PPI) data taking advantage of ontologies, and

to associate ontology terms to the interactions.

Protein interaction biocuration

The opportunity to decipher the mechanisms underlying cel-

lular physiology from the analysis of molecular interaction

networks has prompted the establishment of databases

devoted to the collection of such data, with great attention

to protein and genetic interactions (19–22). Some of the

major protein interaction databases (19–25) are now

federated in the International Molecular Exchange (IMEx)

consortium, whose primary goals are to minimize curation

redundancy and to share the data in a common format. All

active IMEx members share the same data representation

standard, the Human Proteome Organisation Proteomics

Standards Initiative Molecular Interactions (HUPO PSI-MI)

(26). The PSI-MI provides the logic model and the controlled

vocabulary for representation of molecular interactions. Not

surprisingly, the members of the IMEx consortium them-

selves are the main contributors to the development and

maintenance of the PSI-MI ontology.

The PSI-MI was introduced with the intent to facilitate

data integration among databases specifically for the

representation of binary or n-nary interactions. It also

allows in-depth annotation of the experimental set-up

such as the experimental or biological role of the interac-

tors, the experimental method employed for the detection

of the interaction, the binding domain of the interactors,

and the kinetics of the binding reaction, among other

attributes (the PSI-MI ontology can be explored at the EBI

ontology look-up service) (27). The PSI-MI is not restricted

to the representation of physical interactions but permits

the thorough annotation of genetic interactions and even

experimental evidence of co-localization among molecules.

Each attribute of the interaction is described by a rich con-

trolled vocabulary which is organized in a well-defined

hierarchy and continuously updated and maintained by

the PSI-MI workgroup. Regrettably, despite the cooperative

efforts of the IMEx databases, the complete annotation of

interaction data from the biomedical literature, and in par-

ticular, the subset of interactions involving human genes

and their products, remains far from complete. The time-

consuming nature of manual curation severely hampers the

achievement of an exhaustive collection of molecular inter-

actions. The thorough annotation of the experimental data

contained in a single scientific article can take anywhere

from minutes to hours. Hence, any automated support
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that assists the database curators—be it the selection of the

relevant literature or identification and annotation of the

interactions—is more than welcome by the database com-

munity. Figure 1 provides a schematic representation of the

manual literature curation of PSI-MI concepts for protein

interaction annotation.

A number of initiatives have been started in order to

facilitate the automated extraction of information from

the biomedical literature and of PPI data in particular. The

Structured Digital Abstracts developed by FEBS Letters in

collaboration with the MINT database (20), for instance, is

a structured text appended to the classical abstract that can

be easily parsed by text-mining tools. Each biological entity

(proteins) and relationship between these entities is tagged

with appropriate database identifiers, thus permitting an

unambiguous interpretation of the data.

Figure 1. This figure shows schematically how protein interaction data is annotated and/or marked up using ontologies. Systems
such as MyMiner (myminer.armi.monash.edu.au/links.php), have been used for text labeling and highlighting purposes in the
context of the BioCreative competition. The main steps illustrated in this figure have been addressed in the BioCreative
challenges. Finding associations between textual expressions referring to experimental techniques used to characterize protein
interactions and their equivalent concepts in the MI ontology is cumbersome in some cases when deep domain inference is
required. Experienced curators are able to quickly navigate the term hierarchy to find the appropriate terms while novice
annotators often need to search the ontology using method keywords as queries and consult associated descriptive information
for potential candidate terms.
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Natural language processing and
ontologies

In recent years, we have witnessed a flourishing of ontologies

that attempt to accurately represent the complexity of the

biological sciences (28). Hence, we now have ontologies

describing a wide variety of biological concepts, spanning

from clinical symptoms to molecular interactions. They not

only attempt to capture in a more formal way the meaning

(semantics) of a particular domain based on community

consensus (29) but are also a key element for database inter-

operability and querying, as well as knowledge management

and data integration (30).

Some of these ontologies can now be integrated with

other ontologies, broadening their descriptive potential

(31). Furthermore, the Gene Ontology (GO) (32) has grown

considerably over 10 years, counting now almost 35 000

terms, compared to the initial 5000. [for a general introduc-

tion to the GO annotation process refer to Hill et al. (33)].

The increasing number of biological terms and concepts

covered by these ontologies has prompted a growing interest

in their potential for use in the development of methods for

automatic data extraction from the biomedical literature.

However, while biomedical ontologies are indispensable

in the daily practice of database curators, it remains to be

established if text mining can really benefit from well-

established ontologies. In fact, while an analysis of the

lexical properties of the GO indicates that a large percent-

age of GO terms are potentially useful for text mining tools

(34), other evidence suggests that many of the Open

Bbiomedical Ontologies (28) are not suitable for effective

natural language processing applications (35).

This discrepancy is due to the fact that often the infor-

mation is not only present as natural language data, but

often also requires interpretation of information contained

in images or obtained by interpreting the data reported in

the articles. As a consequence, not every piece of informa-

tion is unambiguously linked to a continuous passage of

text hence detectable by parsing machines.

The results of the first BioCreative challenge suggest that

a combination of several factors can influence the perform-

ance of text mining systems in the extraction of GO terms

associated with defined genes, including the specificity of

the terms and their GO branch membership (36).

Ontologies benefitting from an iterative process of

expansion and restructuring based on direct observations

(analysis of scientific literature) made by communities of

active users more likely will successfully result in a resource

for text-mining purpose. Inclusion of such observations in

the ontologies will dramatically increase their potential in

the context of text mining.

Nevertheless, some popular text-mining-based applica-

tions, such as Textpresso (37), NCBO Annotator (38),

Geneways (39), Domeo (40) or PubOnto (41), rely on the

usage of ontologies. These kinds of systems are currently

exploring ontologies mainly as lexical resources of

controlled vocabulary terms for text indexing or markup

purposes. They assist the end users in improving the detec-

tion of annotation-relevant information at a very general

level. Efficiently handling complex terms and annotation

types is thus still a challenge for such approaches, making

the results of the BioCreative tasks particularly interesting

to better understand the comparison between manual and

automated extractions. Adapting some of the methodolo-

gies that participated in BioCreative into such technical

frameworks could potentially capture previously missing

annotation types or concepts.

BioCreative

The BioCreative challenge was established in 2004 with the

purpose of assessing the state-of-the-art of text-mining

technologies applied to biological problems. Although it

is called a challenge, the primary aim of BioCreative is not

to identify a contest winner. Instead the ambition of

BioCreative is manifold: (i) to benchmark the performance

of text mining applications, (ii) to promote communication

between bioinformaticians, text miners, and database cur-

ators, (iii) to define shared training and ‘gold standard’ test

data and (iv) to spur the development of high-performance

suites. To date, four editions of BioCreative have been

organized, each consisting of two or more specific tasks

(Table 1). Each task was designed to test the ability of the

systems to detect biological entities (gene or proteins) and/

or to link them to stable database identifiers, and evaluate

how efficiently facts or functional relations can be asso-

ciated with the biological entities (e.g. protein function

and PPI). Figure 2 shows how these BioCreative challenges

have evolved over time in the context of related commu-

nity efforts, resources and applications.

The first edition of the BioCreative challenge (17) was

geared to the needs of model organism database curators.

It consisted of two main tasks. The first task was further

divided into two subtasks: the recognition of gene men-

tions in the text (42) and the linking of identified proteins

from yeast, fly and mouse in abstracts to model organism

database identifiers (43). The second task challenged the

participants to annotate human gene products, defined

by their UniProtKB/Swiss-Prot accession codes (44), with

the corresponding GO codes by mining full-text articles

(36). In particular, teams were asked to return the textual

evidence for the GO term assigned to a defined set of

proteins. Figure 3 illustrates schematically the idea behind

the associated annotation process where for proteins

described in a given paper, GO annotation evidence had

to be extracted.
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Precision and recall were the basic metrics employed to

evaluate the performance of the systems during this

BioCreative challenge. Precision is the fraction of true posi-

tive (TP) cases, i.e. correct results, divided by the sum of TP

and false positive (FP) cases. Recall can be considered as the

fraction of TP results divided by the sum of TP and false

negative (FN) results, i.e. relevant cases missed by the

system. To account for both of these measures, the F-meas-

ure, i.e. harmonic mean of precision and recall was used.

For the GO task, database curators had to manually

evaluate the automatically extracted evidence passages to

determine if they correctly supported the annotations, as

exemplified in Figure 4 (36).

The first BioCreative competition saw the participation

of 27 teams and some of the text mining algorithms yielded

encouraging results in the identification of the gene names

and in linking them to database identifiers (80% precision/

recall) (43).

The identification of gene mentions in sentences was ad-

dressed using machine-learning and natural language pro-

cessing techniques and benefited from training and test

data in the form of labeled text prepared by biologists.

For linking (normalizing) genes mentioned in abstracts,

there was a considerable variability in performance

depending on the used model organism. In the case of

yeast, an F-score of 0.92 could be reached, while in the

case of fly (F-score of 0.82) and mouse (F-score of 0.79)

the performance was considerable lower due to less con-

sistent naming nomenclature use and high degree of am-

biguity of gene names.

Conversely, the results of the functional annotation task

proved that the interpretation of complex biological data,

and thus linking text to the GO ontology, is extremely chal-

lenging for text mining tools. The obtained results indi-

cated that some categories of GO, in particular, the terms

expressing sub-cellular location provided by the cellular

Table 1. Summary of the BioCreative editions related to the identification of ontology terms in articles

Information BioCreative I, task 1 BioCreative I, task 2 BioCreative II—IMS BioCreative III—IMS

Description Return evidence text frag-

ments for protein–GO–

document triplets

Predict GO annotations

derivable from a given

protein–article pair

Prediction of MI annota-

tions from PPI-relevant

articles

Prediction of MI annotations

from PPI-relevant articles

(ranked with evidence

passages)

Ontologies GO GO MI ontology MI ontology

Curators/

databases

GOA-EBI GOA-EBI MINT and IntAct BioGRID and MINT

Participants 9 6 2 8

Data/format Full-text articles, SGML

format

Full-text articles, SGML

format

Full-text articles, PDF and

HTML format

Full-text articles, PDF format

Training 803 articles 803 articles 740 articles 2003 training articles and 587

development set articles

Test 113 articles 99 articles 358 articles 223 articles

Evaluation Three labels (correct, gen-

eral, wrong), % correct

cases

Three labels (correct, gen-

eral, wrong), % correct

cases

Precision, recall and

F-score; mapping to the

parent terms

Precision, recall, F-score,

ranked predictions (AUC

iP/R)

Methods Term lookup, pattern

matching/template ex-

traction, term tokens

(information content of

GO words, n-gram

models), part-of-speech

of GO words and ma-

chine learning

Term lookup, pattern

matching/template

extraction, term tokens

(information content of

GO words, n-gram

models), part-of-speech

of GO words and ma-

chine learning

Pattern matching, auto-

matically generating

variants of MI terms,

handcrafted patterns

Cross-ontology mapping,

manual and automatic

extension of method names,

statistic of work tokens

building terms (mutual

information, chi square),

machine learning of training

set articles

Result highlights Precisions from 46% to

80%, accuracy of �30%

Precisions from 9% to 35% Precision from 32% to

67%, best F-score of 48

Most between 30% and 80%,

best F-score of 55

Observation Limited recall, effect of GO

term length

Limited recall, difference in

performance depending

on GO categories, cellu-

lar component terms are

easier

Difficulties with very gen-

eral method terms

Difficulties in case of methods

not specific to PPIs, problems

with recall
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component (CC) branch seemed to be more amenable for

text-mining strategies.

Outcomes of the BioCreative
challenge for PPIs

The task of extracting PPI data was introduced in the second

edition of BioCreative (45). Several subtasks were defined:

detecting the literature containing protein interaction data

(Interaction Article Subtask, IAS), identifying the interaction

pairs and linking the interacting partners to UniProtKB/

Swiss-Prot identifiers (Interaction Pair Subtask, IPS), identify-

ing the experimental methods employed to detect the inter-

action (Interaction Method Subtask, IMS) and retrieving the

textual evidence of the interaction (Interaction Sentences

Subtask, ISS). The PPI task was a collaborative effort with

IntAct and MINT, databases whose curators annotated the

training and test sets used in the various tasks (46).

The experimental methods are important to infer how

likely it is that a given protein interaction actually occurs

in vivo, and it is usually the cumulative evidence rather than

a single experiment that defines the reliability of the inter-

action. At a practical level, for curators, it is fundamental to

identify in the article if there are experimental techniques

usually associated with the detection of protein

interactions (e.g. two hybrid, affinity purification technolo-

gies). These facts motivated the introduction of the IMS

(45).

For the IMS subtask, the two participating teams were

asked to identify from the text the list of the experimental

techniques employed for the detection of PPIs, and their

results were compared with a reference list generated by

manual annotation. The experimental interaction detection

techniques allowed for this task consisted of a sub-graph

specified in the PSI-MI ontology. The highest score for exact

match precision was 48%, but if matching to parent terms

in the ontology was allowed, the score raised to an

encouraging 65% (45). This improved performance was

obtained by considering as correct those predicted terms

that, when compared to the manually annotated terms,

were either an exact match or a direct parent concept

based on the PSI-MI ontology graph structure.

This result is due to the fact that some ontology terms are far

too specific to match the vocabulary routinely used in the bio-

medical literature. For instance,while‘ coimmunoprecipitation’

(MI:0019) is widely used in the scientific literature, its child

terms ‘anti bait coimmunoprecipitation’ (MI:0006) and ‘anti

tag coimmunoprecipitation’ (MI:0007) are not. The two child

terms are used for annotation by database curators to further

indicate if the experiment has been conducted with an

Figure 2. Historical view and timeline of the BioCreative challenges in the context of other community efforts, textual resources
(corpora) and applications developed in the area of biomedical text mining. The upper bar shows the number of new records
added to PubMed each year, expressed in thousands (K). The lower bar refers to the corresponding year timeline. Pink squares,
appearance of biomedical text mining methods; green octagons, relevant ontologies, lexical resources and corpora; yellow boxes,
community challenges; blue ovals, biomedical text mining applications.
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antibody recognizing the protein or a tag fused to the target

protein, respectively. The use of these terms is therefore largely

limited tohuman curator interpretation of the literature rather

than explicit text mentions of these terms.

Attempts that might be promising particularly for terms

that are lengthy and representative of complex concepts

could also consider the use of term definitions. With this

respect, GO term definitions had been exploited by Piao

et al. (47) for identifying and analyzing relations between

terms. The definitions of PSI-MI terms have also been used

for linking PSI-MI terms to full-text articles by analyzing

unigrams and character n-grams from the PSI-MI definition

and synonyms (48).

Several studies have been published in the biomedical

domain with the purpose to quantify through metrics

how closely related two terms are in their meanings,

i.e. their semantic similarity (49). This is an important issue

not only for comparing text-mining results to manual

annotations, but also for measuring consistency of

manual annotations themselves in inter-annotator

agreement studies or to determine the functional similarity

between genes annotated with those terms. A simple ap-

proach for measuring semantic similarity can be the calcu-

lation of the distance between two terms in the graph path

underlying the ontology. Semantic similarity calculations

have been promising for resources like WordNet (50,51),

which is essentially a lexical database of English words to-

gether with their semantic relation types with practical

usage for text analysis. This resource differs therefore in

scope from GO or the PSI-MI ontology, whose primary use

is for annotation of gene products. Semantic similarity cal-

culations have shown useful results to quantity functional

similarity between gene products based on their GO anno-

tations (49), but using them for directly quantifying the

similarity between predicted and manually annotated

terms in the context of BioCreative remained problematic.

The IMS task was replicated in the BioCreative III edition

(52–54) and saw increased participation, with eight teams.

The difference from the previous edition was that partici-

pants were asked to provide a list of interaction detection

Figure 3. Schematic overview of the extraction of GO annotations from the literature. The process illustrates the individual steps
of the annotation process, covering the initial selection of relevant documents for GO annotation of proteins, identification of
proteins and their corresponding database identifiers followed by the extraction of associations to GO terms and the retrieval of
evidence sentences/passages. The participating teams had to provide the evidence passages for a given document–protein–GO
term triplet for one subtask, and to actually detect GO–protein associations (together with evidence passages) for the other
subtask.

.............................................................................................................................................................................................................................................................................................

Page 7 of 12

Database, Vol. 2012, Article ID bas017, doi:10.1093/database/bas017 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bas017/433832 by guest on 08 M

ay 2024



Figure 4. Example predictions of the GO task of BioCreative I. (A) Here a correct prediction is shown, containing the information
on the corresponding document, protein and GO term as well as the supporting evidence text passages extracted automatically
from the full-text article. (B) Example prediction (wrong) showing a screen shot of the original evaluation interface developed at
the time for this task (based on Apache/PHP). The original evaluation application is not functional anymore and was
implemented specifically for this task. Proteins and GO terms were defined unambiguously through corresponding standard
identifiers. The database curators manually evaluated both the correctness of the protein as well as the GO terms.
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method identifiers for a set of full-text articles, ordered by

their likelihood of having been used to detect the PPIs

described in each article and providing also a text evidence

passage for the interaction method. Figure 5 shows a set of

example predictions of various degrees of difficulty

corresponding to BioCreative III submissions. The training

and development set were derived from annotations pro-

vided by databases compliant with the PSI-MI annotation

standards, while the BioGRID and MINT database curators

carefully prepared the test set. Participating teams went

beyond simple term look-up and many of them considered

this task as a multi-class classification problem. The best

precision obtained by a submission for this task was of

80.00% at a recall of 41.50% (F-score of 51.508) (53). The

highest F-score was of 55.06 (62.46% precision with 55.17%

recall) (53).

A common approach followed by participating teams

was, in addition to pattern matching techniques, the use

of various kinds of supervised machine learning techniques

that explored a range of different features. Machine-

learning methods tested included Naı̈ve Bayes multiclass

classifiers [team 65, (55)], support vector machines [SVMs;

teams 81 (56) and 90 (48)], logistic regression [LR; team 69,

(53)] and nearest neighbors [team 100, (53)].

Another common practice was based on dictionary

extension approaches using manually added terms based

on the training data inspection, the use of cross-ontology

mapping based on Medical Subject Headings (MeSH) and

Unified Medical Language System (UMLS) terms as well as

rule-based expansion of the original dictionary of method

terms. Most participating teams explored statistical analysis

of words, bigrams and collocations present in the training

and development set articles. Exact and partial word tokens

building the original method term lists were also exploited

too. Finally, pattern-matching techniques together with

rule-based approaches combined with machine-learning

classifier could be successfully adapted for this task.

Team 88 of BioCreative III (53) used a dictionary-based

strategy to recover mentions of interaction method terms.

As finding exact mentions of method terms results

Figure 5. Representative predictions submitted for the MI task of BioCreative III of diverse degrees of difficulty for automated
systems. The examples correspond to submissions from various teams. Participating teams had to return the article identifier, the
concept identifier for the interaction detection method according to the MI ontology, a rank, a confidence score as well as a
supporting text evidence passages extracted from the full-text article. Submissions were plain text files where each field was
separated using a tabulator. This figure provides colored highlights of original predictions to better grasp the output. In red, the
original term from the MI ontology and its synonyms have been added to facilitate the interpretation of the results. As can be
seen some cases are rather straightforward, and could be detected by direct term lookup, while others require generating lexical
variants or even more sophisticated machine learning and statistical word analysis.
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generally in limited recall, team 70 (53) used approximate

string searches for finding method mentions. Another

option to boost recall was followed by team 65 (55),

which considered sub-matches at the level of words and

applied pattern-matching techniques. Such methods are

suitable to handle multi-term words, which comprise an

important fraction of the PSI-MI terms. This team used a

corpus-driven approach to derive conditional probabilities

of terms and the detect (56) complemented pattern match-

ing with a sentence classification method relying on SVMs.

This type of machine learning method together with logis-

tic regression was also tested by team 90 (48), trying out

many features, like type and text of named entities, words

proximity to the entities and information on where in a

document these entities where mentioned. Team 69 (53)

also applied logistic regression for their participating

system. They included features that covered term and lexi-

con membership properties and carried out a global ana-

lysis at the level of the documents as well as at the level if

individual sentences. A software that directly resulted from

participation at the IMT is the OntoNorm framework (57)

from team 89 (58) which integrated dictionary-based

pattern-matching together with a binary machine-learning

classification system and the calculation of mutual informa-

tion and chi-squared scores of unigrams and bigrams

relevant for method terms.

According to an observation of team 100 (53), how

competitive a given strategy was depended heavily on

the actual PSI-MI term. They therefore used a PSI-MI term

specific knowledge-based approach, applying for instance

pattern matching approached for some terms, while others

were detected through a nearest neighbors method.

Conclusions

The availability of text-mining tools can assist scientific

curation in many ways, from the selection of the relevant

literature to greatly facilitate the completion of a database

entry (saving a conspicuous amount of time). Furthermore,

there is a lot of ferment in the area of ontology driven

annotation of biomedical literature as witnessed by the

‘Beyond the PDF’ initiative (59).

The whole BioCreative experience highlighted that in

order to obtain substantial advances in the development

of text-mining methodologies, it is necessary to develop

close collaboration among different communities: text

miners, database curators and ontology developers. In

particular, such vicinity instilled into the text-mining com-

munity a more mature comprehension of crucial biological

questions (e.g. gene species annotation) and the necessity

to make methods and results more easily accessible to

biologist and database annotators (e.g. user-friendly

visualization tools).

What is crucial for text miners in the development of

more efficient predictive algorithms is the availability of a

large corpus of manually annotated training data. Ideally,

such text-bound annotations should cover a variety of

representative text phrases mapped to the same concept.

How feasible it is to generate large enough annotated text

data sets for complex annotation types at various levels of

granularity is still unclear.

This necessity prompted various initiatives to compile

ad hoc curated data sets [e.g. the GENIA corpus (60)].

Unfortunately, such collections are usually created as a

specific resource for natural processing language sciences

but are not suitable for all applications. Furthermore, their

creation is extremely laborious resulting in relatively small

collections. Another effort to provide syntactic and seman-

tic text annotations of biomedical articles using various

ontologies is the CRAFT corpus initiative, which aims to

provide concept annotations from six different ontologies

including GO and the Cell Type Ontology (CL) (61). One of

the merits of BioCreative has been to permit the public

deposition of annotated corpora. BioCreative has also

been very effective in identifying the main areas of appli-

cation, limitations and goals of text mining in the area of

protein/gene function and interactions.

Data sets routinely annotated by databases are ideal

candidates for the compilation of large reference data

sets. Unfortunately, databases do not capture the textual

passages linked to the experimental evidence and this rep-

resents a significant hurdle to the development of text-

mining suites. In addition, it is still very hard to convince

databases and publishers to provide access to text-bound

annotations (manual text labelling), but this has also

difficulties related to technical and organizational aspects.

In this respect, the biological ontologies may represent a

powerful tool to overcome these limitations. The identifi-

cation of the experimental methods (as described by PSI-MI)

linked to protein interactions can be an important resource

facilitating the retrieval of protein interactions, but this

requires an extra effort to increase the aliases of the

dictionary and/or to identify the critical textual passages.

Ideally, an effective strategy to effectively employ

bio-ontologies in text-mining technologies would consist

of an in-depth annotation of text passages associated

with the ontology terms, thus creating an effective diction-

ary. This could serve as valuable data for machine learning

approaches as well as be useful for automatic term extrac-

tion techniques to enrich iteratively the lexical resources

behind the original ontologies. On the other hand, there

is a need to consider more closely the use of text-mining

methods for the actual development and expansion of

controlled vocabularies and ontologies, relying for instance

on corpus-based term acquisition. Such an approach has

shown promising results for the metabolomics (29) and

animal behavior (62) domains where term recognition
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and filtering methods using generic software tools has

been explored. At the current stage, it is possible to say

that the BioCreative effort has successfully promoted the

exploration of a set of sophisticated methods for the

automatic detection of ontology concepts in the literature,

some of which can generate promising results. What is still

missing is to determine more systematically which methods

are more robust or competitive for particular types of con-

cepts or terms as well as to have more granular annotations

at the level of labeling textual term evidences. Ultimately,

the incorporation of concept recognition systems into text-

mining tools will greatly depend on their availability and

flexibility to handle more customized term lists and ontol-

ogy relation types.

Acknowledgements

We would like to thank Lynette Hirschman and Christian

Blaschke for their active feedback in the BioCreative tasks

described in this article.

Funding

This work was supported by the National Center for

Research Resources (NCRR) and the Office of Research

Infrastructure Programs (ORIP) of the National Institutes

of Health (NIH) (1R01RR024031 to M.T.) (R24RR032659 to

M.T.); the Biotechnology and Biological Sciences Research

Council (BB/F010486/1 to M.T.); the Canadian Institutes of

Health Research (FRN 82940 to M.T.); the European

Commission FP7 Program (2007-223411 to M.T.); a Royal

Society Wolfson Research Merit Award (to M.T.); the

Scottish Universities Life Sciences Alliance (to M.T.);

Projects BIO2007 (BIO2007-666855) (to M. K. and A.V.),

CONSOLIDER (CSD2007-00050) (to M. K. and A.V.),

MICROME (Grant Agreement Number 222886-2) (to M. K.

and A.V.). Funding for open access charges: National

Institutes of Health (1R01RR024031).

Conflict of interest. None declared.

References
1. Neumann,B., Walter,T., Heriche,J.K. et al. (2010) Phenotypic profil-

ing of the human genome by time-lapse microscopy reveals cell

division genes. Nature, 464, 721–727.

2. Smogorzewska,A., Desetty,R., Saito,T.T. et al. (2010) A genetic

screen identifies FAN1, a Fanconi anemia-associated nuclease

necessary for DNA interstrand crosslink repair. Mol. Cell, 39, 36–47.

3. Birney,E., Stamatoyannopoulos,J.A., Dutta,A. et al. (2007)

Identification and analysis of functional elements in 1% of the

human genome by the ENCODE pilot project. Nature, 447,

799–816.

4. Seringhaus,M. and Gerstein,M. (2008) Manually structured digital

abstracts: a scaffold for automatic text mining. FEBS Lett., 582,

1170.

5. Galperin,M.Y. and Cochrane,G.R. (2011) The 2011 Nucleic acids

research database issue and the online molecular biology database

collection. Nucleic Acids Res., 39, D1–D6.

6. Stein,L. (2001) Genome annotation: from sequence to biology. Nat.

Rev. Genet., 2, 493–503.

7. Elsik,C.G., Worley,K.C., Zhang,L. et al. (2006) Community annota-

tion: procedures, protocols, and supporting tools. Genome Res.,

16, 1329–1333.

8. Huss,J.W. III, Lindenbaum,P., Martone,M. et al. (2010) The Gene

Wiki: community intelligence applied to human gene annotation.

Nucleic Acids Res., 38, D633–D639.

9. Leitner,F., Chatr-aryamontri,A., Mardis,S.A. et al. (2010) The FEBS

Letters/BioCreative II.5 experiment: making biological information

accessible. Nat. Biotechnol., 28, 897–899.

10. Superti-Furga,G., Wieland,F. and Cesareni,G. (2008) Finally: the

digital, democratic age of scientific abstracts. FEBS Lett., 582, 1169.

11. Baumgartner,W.A. Jr, Cohen,K.B., Fox,L.M. et al. (2007) Manual

curation is not sufficient for annotation of genomic databases.

Bioinformatics, 23, i41–i48.

12. Rebholz-Schuhmann,D., Kirsch,H., Arregui,M. et al. (2006) Protein

annotation by EBIMed. Nat. Biotechnol., 24, 902–903.

13. Couto,F.M., Silva,M.J., Lee,V. et al. (2006) GOAnnotator: linking

protein GO annotations to evidence text. J. Biomed. Discov.

Collab., 1, 19.

14. Dowell,K.G., McAndrews-Hill,M.S., Hill,D.P. et al. (2009) Integrating

text mining into the MGI biocuration workflow. Database, Vol.

2009, Article ID bap019, doi:10.1093/database/bap019.

15. Wiegers,T.C., Davis,A.P., Cohen,K.B. et al. (2009) Text mining and

manual curation of chemical-gene-disease networks for the

comparative toxicogenomics database (CTD). BMC Bioinformatics,

10, 326.

16. Alterovitz,G., Xiang,M., Hill,D.P. et al. (2010) Ontology engineering.

Nat. Biotechnol., 28, 128–130.

17. Hirschman,L., Yeh,A., Blaschke,C. et al. (2005) Overview of

BioCreAtIvE: critical assessment of information extraction for biol-

ogy. BMC Bioinformatics, 6 (Suppl 1), S1.

18. Leitner,F., Mardis,S.A., Krallinger,M. et al. (2010) An Overview of

BioCreative II.5. IEEE/ACM Trans. Comput. Biol. Bioinform., 7,

385–399.

19. Aranda,B., Achuthan,P., Alam-Faruque,Y. et al. (2010) The IntAct

molecular interaction database in 2010. Nucleic Acids Res., 38,

D525–D531.

20. Ceol,A., Chatr-Aryamontri,A., Licata,L. et al. (2010) MINT, the

molecular interaction database: 2009 update. Nucleic Acids Res.,

38, D532–D539.

21. Salwinski,L., Miller,C.S., Smith,A.J. et al. (2004) The database of

interacting proteins: 2004 update. Nucleic Acids Res., 32,

D449–D451.

22. Stark,C., Breitkreutz,B.J., Chatr-Aryamontri,A. et al. (2011) The

BioGRID interaction database: 2011 update. Nucleic Acids Res.,

39, D698–D704.

23. Mewes,H.W., Ruepp,A., Theis,F. et al. (2011) MIPS: curated data-

bases and comprehensive secondary data resources in 2010.

Nucleic Acids Res., 39, D220–D224.

24. Chautard,E., Fatoux-Ardore,M., Ballut,L. et al. (2011) MatrixDB, the

extracellular matrix interaction database. Nucleic Acids Res., 39,

D235–D240.

.............................................................................................................................................................................................................................................................................................

Page 11 of 12

Database, Vol. 2012, Article ID bas017, doi:10.1093/database/bas017 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bas017/433832 by guest on 08 M

ay 2024



25. Goll,J., Rajagopala,S.V., Shiau,S.C. et al. (2008) MPIDB: the

microbial protein interaction database. Bioinformatics, 24,

1743–1744.

26. Kerrien,S., Orchard,S., Montecchi-Palazzi,L. et al. (2007) Broadening

the horizon–level 2.5 of the HUPO-PSI format for molecular inter-

actions. BMC Biol., 5, 44.

27. Cote,R.G., Jones,P., Apweiler,R. et al. (2006) The ontology lookup

service, a lightweight cross-platform tool for controlled vocabulary

queries. BMC Bioinformatics, 7, 97.

28. Smith,B., Ashburner,M., Rosse,C. et al. (2007) The OBO Foundry:

coordinated evolution of ontologies to support biomedical data

integration. Nat. Biotechnol., 25, 1251–1255.

29. Spasic,I., Schober,D., Sansone,S.A. et al. (2008) Facilitating the

development of controlled vocabularies for metabolomics technol-

ogies with text mining. BMC Bioinformatics, 9 (Suppl. 5), S5.

30. Bodenreider,O. (2008) Biomedical ontologies in action: role in

knowledge management, data integration and decision support.

Yearb. Med. Inform., 67–79.

31. Tirmizi,S.H., Aitken,S., Moreira,D.A. et al. (2011) Mapping between

the OBO and OWL ontology languages. J. Biomed. Semantics, 2

(Suppl. 1), S3.

32. Ashburner,M., Ball,C.A., Blake,J.A. et al. (2000) Gene ontology: tool

for the unification of biology. The Gene Ontology Consortium. Nat.

Genet., 25, 25–29.

33. Hill,D.P., Smith,B., McAndrews-Hill,M.S. et al. (2008) Gene ontology

annotations: what they mean and where they come from. BMC

Bioinformatics, 9 (Suppl. 5), S2.

34. McCray,A.T., Browne,A.C. and Bodenreider,O. (2002) The lexical

properties of the gene ontology. Proc. AMIA Symp., 504–508.

35. Beisswanger,E., Poprat,M. and Hahn,U. (2008) Lexical properties of

OBO ontology class names and synonyms. In: Proceedings of the

Third International Symposium on Semantic Mining in Biomedicine.

Turku, Finland, pp. 13–20.

36. Blaschke,C., Leon,E.A., Krallinger,M. et al. (2005) Evaluation of

BioCreAtIvE assessment of task 2. BMC Bioinformatics, 6

(Suppl. 1), S16.

37. Muller,H.M., Kenny,E.E. and Sternberg,P.W. (2004) Textpresso: an

ontology-based information retrieval and extraction system for

biological literature. PLoS Biol, 2, e309.

38. Jonquet,C., Shah,N.H. and Musen,M.A. (2009) The open biomedical

annotator. Summit on Translat Bioinforma, 2009, 56–60.

39. Rzhetsky,A., Iossifov,I., Koike,T. et al. (2004) GeneWays: a system

for extracting, analyzing, visualizing, and integrating molecular

pathway data. J. Biomed. Inform., 37, 43–53.

40. Domeo. http://annotationframework.org/ (14 March 2012, date last

accessed).

41. Xuan,W., Dai,M., Mirel,B. et al. (2009) Open biomedical

ontology-based Medline exploration. BMC Bioinformatics, 10

(Suppl. 5), S6.

42. Yeh,A., Morgan,A., Colosimo,M. et al. (2005) BioCreAtIvE task 1A:

gene mention finding evaluation. BMC Bioinformatics, 6 (Suppl. 1),

S2.

43. Hirschman,L., Colosimo,M., Morgan,A. et al. (2005) Overview of

BioCreAtIvE task 1B: normalized gene lists. BMC Bioinformatics, 6

(Suppl. 1), S11.

44. Magrane,M. and Consortium,U. (2011) UniProt Knowledgebase: a

hub of integrated protein data. Database, Vol. 2011, Article ID

bar009, doi:10.1093/database/bar009.

45. Krallinger,M., Leitner,F., Rodriguez-Penagos,C. et al. (2008)

Overview of the protein-protein interaction annotation extraction

task of BioCreative II. Genome Biol., 9 (Suppl. 2), S4.

46. Chatr-aryamontri,A., Kerrien,S., Khadake,J. et al. (2008) MINT and

IntAct contribute to the Second BioCreative challenge: serving the

text-mining community with high quality molecular interaction

data. Genome Biol., 9 (Suppl. 2), S5.

47. Piao,S., McNaught,J. and Ananiadou,S. (2008) Clustering related

terms with definitions. In: Proceedings of the Sixth International

Conference on Language Resources and Evaluation (LREC 2008).

Marrakech, Morocco, pp. 2013–2019.

48. Wang,X., Rak,R., Restificar,A. et al. (2011) Detecting experimental

techniques and selecting relevant documents for protein-protein

interactions from biomedical literature. BMC Bioinformatics, 12

(Suppl. 8), S11.

49. Pesquita,C., Faria,D., Falcao,A.O. et al. (2009) Semantic similarity in

biomedical ontologies. PLoS Comput. Biol., 5, e1000443.

50. Fellbaum,C., Hahn,U. and Smith,B. (2006) Towards new information

resources for public health–from WordNet to MedicalWordNet.

J. Biomed. Inform., 39, 321–332.

51. Resnik,P. (1995) Using information content to evaluate semantic

similarity in a taxonomy. In: Proceedings of the 14th

International Joint Conference on Artificial Intelligence. Montréal,
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