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The Comparative Toxicogenomics Database (CTD) contains manually curated literature that describes chemical–gene inter-

actions, chemical–disease relationships and gene–disease relationships. Finding articles containing this information is the

first and an important step to assist manual curation efficiency. However, the complex nature of named entities and their

relationships make it challenging to choose relevant articles. In this article, we introduce a machine learning framework for

prioritizing CTD-relevant articles based on our prior system for the protein–protein interaction article classification task in

BioCreative III. To address new challenges in the CTD task, we explore a new entity identification method for genes,

chemicals and diseases. In addition, latent topics are analyzed and used as a feature type to overcome the small size of

the training set. Applied to the BioCreative 2012 Triage dataset, our method achieved 0.8030 mean average precision

(MAP) in the official runs, resulting in the top MAP system among participants. Integrated with PubTator, a Web interface

for annotating biomedical literature, the proposed system also received a positive review from the CTD curation team.

.............................................................................................................................................................................................................................................................................................

Background

The Comparative Toxicogenomics Database (CTD) is a pub-

licly available resource that manually curates a triad of

chemical–gene, chemical–disease and gene–disease rela-

tionships from biomedical literature (1). Although previous

tasks in the BioCreative competition were focused on gene/

protein name tagging and protein–protein interactions

(PPIs) (2,3), this new task addresses the problem of finding

articles that include the triad of three entities: gene, chem-

ical and disease that have important relationships (4). One

can expect that effective approaches to this task will be

beneficial for manual curation in CTD. Compared with

previous BioCreative tasks, the CTD Triage task has the fol-

lowing differences: (i) target chemicals are explicitly given

for training and test sets; (ii) entities to be identified are

chemical, gene and disease names and (iii) the available

training set is quite limited.In the BioCreative PPI article

classification tasks (ACTs), protein names of interest were

not given as parameters of the search. However, the CTD

dataset consists of multiple groups categorized by their

target chemicals, that is, a set of documents includes en-

tity–entity relationship information relevant to a specific

chemical name. Ideally, one can extract an entity–entity re-

lationship directly from text and use this information for

deciding whether an article is of interest, but this is impos-

sible for a system without the relation extraction capability.

The second problem is that chemical and disease men-

tions should be identified along with gene mentions.

Named entity recognition (NER) has been a main research

topic for a long time in the biomedical text-mining commu-

nity. The common strategy for NER is either to apply certain

rules based on dictionaries and natural language process-

ing techniques (5–7) or to apply machine learning

approaches such as support vector machines (SVMs) and

conditional random fields (8–10). However, most NER

systems are class specific, i.e. they are designed to find

only objects of one particular class or set of classes (11).

This is natural because chemical, gene and disease

names have specialized terminologies and complex
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naming conventions. In particular, gene names are difficult

to detect because of synonyms, homonyms, abbreviations

and ambiguities (12,13). Moreover, there are no specific

rules of how to name a gene that are actually followed in

practice (14). Chemicals have systematic naming conven-

tions, but finding chemical names from text is still not

easy because there are various ways to express chemicals

(15,16). For example, they can be mentioned as IUPAC

names, brand names, generic names or even molecular for-

mulas. However, disease names in literature are more stan-

dardized (17) compared with gene and chemical names.

Hence, using terminological resources such as Medical

Subject Headings (MeSH) and Unified Medical Language

System (UMLS) Metathesaurus help boost the identification

performance (17,18). But, a major drawback of identifying

disease names from text is that they often use general

English terms.

The last problem in the Triage task is that the size of the

training set is relatively small. For the Triage task, the num-

bers of positive and negative examples are only 1031 and

694, respectively. This is much smaller than the 20 000 train-

ing documents available for PPI ACTs. The small dataset is

especially critical for data-driven systems utilizing machine

learning methods.

Here, we assume the Triage task is an extension of the

BioCreative III ACT, where PPI information is the only con-

cern for prioritizing PubMed documents. Because both

tasks are data driven and their goals are to find interaction

information among specific entities, we basically follow the

same framework (19,20) developed for ACT. However, new

issues in the Triage task are addressed by changing feature

types and entity recognition approaches. We first assume

that target chemicals can be mined through machine learn-

ing procedures if we seed correct features from PubMed,

for example, MeSH and substance fields in PubMed cit-

ations. This is based on the fact that major topics are

likely to appear in those fields. Second, a Semantic Model

is introduced to identify multiple entities simultaneously.

The Semantic Model obtains semantic relationships from

PubMed and the UMLS semantic categories and other

sources (21). Assuming the evidence describing entity–

entity relationships can be found from multiple sentences,

this new approach provides a simple way to determine rele-

vant sentences. Third, latent topics are analyzed using

Latent Dirichlet Allocation (LDA) (22) and used as a new

feature type. The small number of training examples is

not trivial for machine learning and, in particular, is

harder to handle in a sparse data type such as text docu-

ments. The LDA method provides a semantic view of what

is latent or hidden in text and enriches features for better

separation between positive and negative examples.

In the official runs, our updated method achieved 0.857,

0.824 and 0.728 average precision scores for ‘cyclophospha-

mide’, ‘phenacetin’ and ‘urethane’ test sets, respectively,

which allowed our system to be a top performer (23). This

prioritization scheme was also integrated with a Web inter-

face, PubTator (24,25), for potentially assisting curators and

received a positive review from the CTD curation team (23).

Materials and methods

Figure 1 depicts the overview of our article prioritization

method. For input articles, features are extracted in three

different ways. One is word features including multiwords,

MeSH terms and substance/journal names. The second is

syntactic features based on dependency relationships be-

tween words. The third is topic features obtained from

LDA. After feature extraction procedures, a large margin

classifier with Huber loss function (26) is utilized for learn-

ing and prioritizing articles. The following subsections de-

scribe these feature types.

Word features from PubMed

Multiwords are known as n-grams, where n consecutive

words are considered as features. Here, we use unigrams

and bigrams from titles and abstracts. MeSH is a controlled

vocabulary for indexing and searching biomedical litera-

ture. These terms are included as features because MeSH

terms are used to indicate the topics of an article. In detail,

MeSH terms are also handled as unigrams and bigrams. In

the Triage task, target chemicals are designated for a set of

articles, and journals are treated differently in the CTD

rule-based system (http://www.biocreative.org/tasks/bc

-workshop-2012/Triage). Therefore, substances and journal

names are extracted from PubMed and used as word

features.

Semantic features for identifying entity relationships

This feature identifies interactions or relationships among

entities by syntactically analyzing sentences. By using a

Figure 1. Our article prioritization method for the BioCreative
2012 Triage task. For input articles, features are generated in
three different ways: word features including multiwords,
MeSH terms and substance/journal names; semantic features
utilizing dependency relations and a Semantic Model; topic
features are extracted by LDA topic modeling.
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dependency parser (27), a head word and a dependent

word are determined as a two-word combination.

Because our goal is to find relationships between two enti-

ties, any words indicating relations are likely placed in the

head position, whereas their corresponding entities will be

placed in the dependent position. Thus, we only consider

dependent words as candidate entities. For example, verbs

and conjunctions are removed from this process.

For the NER method, we use a vector space approach to

modeling semantics (28) and compute our vectors as

described in (29) except we ignore the actual mutual infor-

mation and just include a component of 1 if the depend-

ency relation occurs at all for a word, else the component is

set to 0. We constructed our vector space from all single

tokens (a token must have an alphabetic character)

throughout the titles and abstracts of the records in the

whole of the PubMed database based on a snapshot of

the database taken in January 2012. We included only

tokens that occurred in the data sufficient to accumulate

10 or more dependency relations. There were just over 750

000 token types that satisfied this condition and are repre-

sented in the space. We then took all the single tokens and

all head words from multitoken strings in the categories

‘chemical’, ‘disease’ and ‘gene’ from an updated version

of the SemCat database (21) and placed all the other

SemCat categories similarly processed into a category

‘other’. We considered only the tokens in these categories

that also occurred in our semantic vector space and applied

SVM learning to the four resulting disjoint semantic classes

in a one-against-all strategy to learn how to classify into the

different classes.

The Semantic Model is an efficient and general way to

identify words indicating an entity type. Unlike other NER

approaches, this model decides a target class solely based

on a single word. However, evaluating only single tokens

may increase false positives. To overcome this pitfall, we

assume that a relevant document mentions entity–entity

relationships multiple times at the sentence level. Hence,

if two different entity types are found in a sentence, we

assume this sentence includes an entity–entity relationship.

By counting the number of entity–entity relationship sen-

tences, c, discretized numbers are obtained as follows: 1 for

c< 2, 2 for c = 2, 3 for c = 3, 4 for c = 4 and 5 for c> 4. These

numbers are then used as nominal features.

Topic features

Along with semantic features, topic features are newly

added to address the Triage problem. LDA is a generative

probabilistic model in which documents are represented as

random mixtures over latent topics, and each topic is char-

acterized by a distribution over words (22). There is some

evidence that LDA topics can provide features with better

generalization properties when there is little training data

(30). We pooled the whole CTD (http://ctdbase.org) and the

Triage training set. In our application of LDA, we used the

model as put forward in (22) and calculated the model

using Markov Chain Monte Carlo simulation as described

in (31). For LDA topic modeling, we took the parameters

based on the setting used in (31) as follows:

topn ¼ 350,

� ¼ 50=topn,

� ¼ 0:1:

Here, ‘topn’ is the number of topics, � is the Dirichlet

prior on topic distributions, and � is the Dirichlet prior on

word distributions. The small value of � is chosen so that

these topics are well filled. This choice of � and number of

topics seemed to produce topics of the right size to make

useful features for the classification problem we are deal-

ing with. A larger choice of � tended to produce many

sparse topics and a few that contained most of the

terminology.

Huber classifiers

The Huber classifier (32) is a variant of SVM. This

method determines feature weights that minimize the

modified Huber loss function (26), which is a function

that replaces the hinge loss function commonly used in

SVM learning.

Let T denote the size of the training set, the binary fea-

ture vector of the ith pair in the training set be denoted by

Xi, yi = 1 if the pair is annotated as positive and yi =�1

otherwise, w denote a vector of feature weights, of the

same length as Xi, � denote a threshold parameter and �

denote a regularization parameter. Then the cost function

is given by

C ¼
1

2
� wj j2þ

1

T

XT

i¼1

h
�
yi � þw � Xið Þ

�
;

where the function h is the modified Huber loss function.

The values of the parameters, w and � minimizing C are

determined using a gradient descent algorithm. The regu-

larization parameter � is computed from the training set as

follows:

� ¼ �0h xj ji2;

where h xj ji is the average Euclidean norm of the feature

vectors in the training set. The parameter �
0

was tuned to

maximize average precisions for the CTD Triage training

set, and it was set to 0.0001 for official runs.

Entity annotation and user interface

As a requirement for the Triage task, chemical, gene and

disease actors should be annotated for result submission.

Although entity annotation can be combined with an art-

icle prioritization method, our approach does not use fully

annotated names for genes, chemicals and diseases. As

mentioned earlier, the proposed method makes its decision

.............................................................................................................................................................................................................................................................................................

Page 3 of 7

Database, Vol. 2012, Article ID bas042, doi:10.1093/database/bas042 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bas042/438801 by guest on 07 M

ay 2024

http://ctdbase.org


based on the features of single words obtained from de-

pendency parsing. As a result, we currently cannot obtain

gene/chemical/disease actors directly from the proposed

system. However, our experimental setup makes individual

processes independent. Thus, each module can be replaced

with other similar approaches as desired. This applies to our

feature selection, machine learning classifiers and even

entity/actor annotations.

Because official runs should be submitted with actor in-

formation as well as prioritized articles, we used PubTator

(24) for annotating entities and providing a Web interface

for the Triage task. PubTator is a Web-based tool that is

developed for creating, saving and exporting annotations.

PubTator was customized to have a tailored output for

combining the results of article ranking and bioconcept an-

notation. The CTD curation team also rated this Web inter-

face outstanding (23).

Results and discussion

Dataset

The CTD Triage set is categorized by 11 target chemicals,

which contain ‘2-acetylaminofluorene’, ‘amsacrine’, ‘anil-

ine’, ‘aspartame’, ‘doxorubicin’, ‘indomethacin’, ‘quercetin’

and ‘raloxifene’ for training and ‘cyclophosphamide’,

‘phenacetin’ and ‘urethane’ for testing. Even though the

total number of documents is 1725 (1031 positives and

694 negatives), each subset has a different ratio in the

number of positive and negative examples. In this setup,

it is not easy to tune a data-driven system for addressing

both balanced and unbalanced datasets. Thus, we optimize

our system to achieve the best performance on averaged

ranking scores, i.e. for each run, the proposed system is

trained by using seven target chemicals in turn and the

eighth is used for testing. The parameters are tuned to

obtain the best MAP (Mean Average Precision) as an aver-

age for the eight runs. Mean Average Precision (MAP) is the

mean of average precision scores. For a given ranking, the

average precision is the average of all precisions computed

at ranks containing relevant documents. Higher MAP scores

indicate a system places more relevant documents in top

ranks. Table 1 shows the target chemicals and the number

of positive and negative examples in the CTD Triage set.

Note that the three test chemicals shown in the table

were not known during the system development period.

Utilizing semantic and topic features

The proposed method in the Triage task includes new fea-

ture types: semantic and topic features. The semantic fea-

ture utilizes a new NER scheme termed a Semantic Model,

and the topic feature uses LDA for obtaining latent topics.

The Semantic Model classifies single words to ‘gene’,

‘chemical’, ‘disease’ or ‘other’. Table 2 presents the

number of strings in each class and the NER performance

on the four different classes. From a 10-fold cross-valid-

ation, the Semantic Model produces 0.914, 0.868, 0.706

and 0.912 MAP scores for ‘gene’, ‘chemical’, ‘disease’ and

‘other’, respectively. This does not mean the Semantic

Model can produce a good performance in general; how-

ever, it shows that the Semantic Model has a reasonably

good discriminative power on this four-class dataset.

Although this procedure is efficient for identifying multiple

entities in text, it may produce incorrect predictions even

with our assumption that a positive document has multiple

evidences at the sentence level. For this reason, it is import-

ant to include the other features that we consider to obtain

good triage performance.

Tables 3 and 4 show the average precision changes when

semantic and topic features are added to word features.

‘BASE’ means word features without substance and journal

names from PubMed. ‘IXN’ and ‘TOPIC’ mean semantic and

topic features, respectively. All feature combinations in the

tables use the ‘BASE’ feature type, but add ‘IXN’ and

‘TOPIC’ alternatively. The difference between Tables 3

and 4 is whether the full CTD set is used to augment

Table 1. Dataset

Dataset Chemical names Positives Negatives Total

Training 2-Acetylaminofluorene 81 97 178

Amsacrine 37 32 69

Aniline 100 126 226

Aspartame 46 110 156

Doxorubicin 138 61 199

Indomethacin 76 9 85

Quercetin 392 150 542

Raloxifene 161 109 270

Test Cyclophosphamide 107 47 154

Phenacetin 65 21 86

Urethane 106 98 204

The training and test sets include eight and three target chem-

icals, respectively. Because the ratio of positive and negative ex-

amples varies with target chemicals, our system is tuned to

achieve high MAP score on the training chemicals.

Table 2. Semantic classes and the classification performance
for the semantic model

Class name Gene Chemical Disease Other

Number of

strings

70 832 49 800 7589 113 815

Mean average

precision

0.914 0.868 0.706 0.912

The second row contains the number of unique strings in the four

different classes. The last row shows the MAP scores from a

10-fold cross-validation to learn how to distinguish each class

from the union of the other three.
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training. All PubMed IDs were downloaded from the CTD

database and used as positives. Due to some duplicates,

PubMed IDs appeared in both training and testing are

removed from the training set. From the averaged ranking

performance, it is difficult to say which feature type con-

tributes more. Table 3 shows more performance improve-

ment when semantic features are used. In Table 4, adding

topic feature provides better performance improvement.

However, these two feature types are important because

the ranking performance reaches top scores only when

both features are used.

Table 5 shows overall performance changes for different

dataset, feature and classifier combinations. The last

column is the configuration we used for the official run.

Compared with Bayes classifiers (first column), the pro-

posed method improves average precisions up to 5% on

average. Note that test examples were always excluded

from the training set in both ‘Triage’ and ‘CTD’ experi-

ments. ‘All Proposed Features’ in Table 5 includes the sub-

stance/journal name features, and this accounts for the

improvements seen over Table 4 results.

Official performance on the Triage test set

For the official run, we trained the proposed system by

enriching positive examples from the CTD database. Even

though the prediction in this setup favors the positive label

more, it improves ranking performance. Table 6 presents

the performance on the official Triage test data. Our

method obtained 0.857, 0.824 and 0.728 MAP scores for

‘cyclophosphamide’, ‘phenacetin’ and ‘urethane’, respect-

ively. Because our system produces only a ranking result,

the gene, chemical and disease name detection was per-

formed by PubTator. For entity recognition, PubTator also

produced a good result by obtaining 0.426, 0.647 and 0.456

hit rates for gene, chemical and disease names, respectively.

Table 7 shows the MAP scores for top-ranking teams (23).

Team 130 basically uses co-occurrences between entities,

which concept is similar to our semantic features. Team

133 applies a simple strategy utilizing a number of entities

and a number of sentences in a document. From these

Table 3. Average precision changes with Triage (training) +
Triage (testing)

Chemical names BASE IXN TOPIC IXN + TOPIC

2-Acetylaminofluorene 0.6702 0.6742 0.6969 0.6956

Amsacrine 0.6980 0.6956 0.6773 0.6848

Aniline 0.7765 0.7891 0.7887 0.8006

Aspartame 0.4845 0.5096 0.4687 0.4859

Doxorubicin 0.8610 0.8627 0.8690 0.8689

Indomethacin 0.9758 0.9766 0.9748 0.9751

Quercetin 0.9315 0.9313 0.9310 0.9313

Raloxifene 0.8060 0.8107 0.8152 0.8191

Average performance 0.7754 0.7812 0.7777 0.7827

The Triage dataset is used for training and testing in a leave-one

(chemical)-out approach. ‘BASE’ means word features without

substance/journal names. ‘IXN’ and ‘TOPIC’ mean semantic and

topic features, respectively. ‘BASE’ features are used for all the

experiments.

Table 4. Average precision changes with CTD (training) +
Triage (testing)

Chemical names BASE IXN TOPIC IXN + TOPIC

2-Acetylaminofluorene 0.6776 0.6776 0.6814 0.7096

Amsacrine 0.7202 0.7308 0.7468 0.7577

Aniline 0.7625 0.7542 0.7477 0.7677

Aspartame 0.4902 0.4958 0.5269 0.5388

Doxorubicin 0.8767 0.8828 0.8871 0.8937

Indomethacin 0.9608 0.9610 0.9621 0.9604

Quercetin 0.9186 0.9190 0.9162 0.9189

Raloxifene 0.7820 0.7803 0.7737 0.7661

Average performance 0.7736 0.7752 0.7802 0.7891

Again a leave-one-out train and test procedure is followed. The

full dataset was downloaded from the CTD database and used to

augment the training. Any duplicates appearing in both training

and testing sets were removed from the training set. ‘BASE’ uses

word features without substance/journal names. ‘IXN’ and ‘TOPIC’

mean semantic and topic features, respectively. ‘BASE’ features

are used for all the experiments.

Table 5. Overall performance (average precision) changes for
different dataset, feature and classifier combinations

Training set Triage CTD

Feature Multiword

features

All proposed

features

Classifier Bayes Huber Huber Huber

2-Acetylaminofluorene 0.7151 0.6812 0.7055 0.6932

Amsacrine 0.5880 0.6676 0.6850 0.7411

Aniline 0.7589 0.7646 0.8000 0.7708

Aspartame 0.3755 0.4520 0.4890 0.5902

Doxorubicin 0.8434 0.8718 0.8689 0.8895

Indomethacin 0.9599 0.9699 0.9761 0.9626

Quercetin 0.9068 0.9176 0.9321 0.9227

Raloxifene 0.7913 0.7940 0.8175 0.7759

Average performance 0.7424 0.7648 0.7843 0.7933

‘Triage’ means the Triage training set is used for training. ‘CTD’

means the full CTD set is used to augment the positive set

and negatives are from the Triage set. Again a leave-one-out

train and test scenario are used. ‘Bayes’ and ‘Huber’ indicate

Bayes and Huber classifiers, respectively.
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results, it is clear that relation extraction is not necessary to

achieve high MAP scores. The effectiveness of using

co-occurrence between entities, however, needs to be

explored more because not all teams using co-occurrence

obtained high MAP scores in BioCreative 2012. Even though

the top three teams achieved the best score on different

target chemicals, our method produced the best overall

score on test set. The average performances of over all par-

ticipants were 0.7617, 0.8171 and 0.6649 for ‘cyclophospha-

mide’, ‘phenacetin’ and ‘urethane’, respectively.

Conclusions

Here, we present our updated system framework for the

CTD Triage task. The Triage task is a newly introduced

topic, where documents should be prioritized in terms of

chemical–gene interactions, chemical–disease relationships

and gene–disease relationships. This task is especially chal-

lenging because of multiple entities and the small number

of training examples. To tackle these issues, a semantic

model is used to obtain semantic features and LDA is

used to produce latent topics. Applied to the Triage test

set, our official run ranked the first in MAP score. A custo-

mized interface using PubTator also received a positive

review by achieving the second ranking performance

on NER.

Even though the current setup provides good perform-

ance on article prioritization and entity recognition, there

are still some difficulties to be overcome. Our Semantic

Model does not produce fully annotated predictions for

gene, chemical and disease names. As in BioCreative III,

we also found that accurate NER is a critical component

for this Triage task. Therefore, an integrated solution for

finding relevant articles and identifying full entity names is

an important subject for future research. For topic features,

the number of topics is manually chosen considering the

size of the dataset. However, it would be desirable to

have a systematic way to automatically assign the number

of topics.

Funding

Funding for open access charge: The Intramural Research

Program of the National Institutes of Health, National

Library of Medicine.

Conflict of interest. None declared.

References
1. Davis,A.P., King,B.L., Mockus,S. et al. (2011) The Comparative

Toxicogenomics Database: update 2011. Nucleic Acids Res., 39,

D1067–D1072.

2. Krallinger,M., Morgan,A., Smith,L. et al. (2008) Evaluation of

text-mining systems for biology: overview of the Second

BioCreative community challenge. Genome Biol., 9(Suppl. 2), S1.

3. Arighi,C.N., Lu,Z., Krallinger,M. et al. (2011) Overview of the

BioCreative III Workshop. BMC Bioinformatics, 12(Suppl. 8), S1.

4. Wiegers,T.C., Davis,A.P. and Mattingly,C.J. (2012) Collaborative

biocuration-text mining development task for document prioritiza-

tion for curation. Database, 2012, doi:10.1093/database/bas037.

5. Tuason,O., Chen,L., Liu,H. et al. (2004) Biological nomenclatures: a

source of lexical knowledge and ambiguity. Pac. Symp. Biocomput.,

238–249.

6. Ananiadou,S., Sullivan,D., Black,W. et al. (2011) Named entity rec-

ognition for bacterial Type IV secretion systems. PLoS One, 6,

e14780.

7. Nguyen,Q.L., Tikk,D. and Leser,U. (2010) Simple tricks for improving

pattern-based information extraction from the biomedical litera-

ture. J. Biomed. Semantics, 1, 9.

8. Mitsumori,T., Fation,S., Murata,M. et al. (2005) Gene/protein name

recognition based on support vector machine using dictionary as

features. BMC Bioinformatics, 6(Suppl. 1), S8.

9. Yang,Z., Lin,H. and Li,Y. (2008) Exploiting the contextual cues for

bio-entity name recognition in biomedical literature. J. Biomed.

Inform., 41, 580–587.

10. Leaman,R. and Gonzalez,G. (2008) BANNER: an executable survey

of advances in biomedical named entity recognition. Pac. Symp.

Biocomput., 652–663.

Table 6. Official performance on the Triage test set

Chemical names AP Hit rate

Gene Chemical Disease

Cyclophosphamide 0.857 0.339 0.593 0.646

Phenacetin 0.824 0.627 0.667 0.333

Urethane 0.728 0.311 0.681 0.389

Average performance 0.803 0.426 0.647 0.456

AP, average precision. ‘Hit Rate’ is the fraction of extracted terms

that are matched with manually curated entities (precision).

Table 7. Average precision comparison among top MAP scor-
ing teams

Chemical names Teams

Our team Team 130 Team 133

Cyclophosphamide 0.8570 0.7740 0.7220

Phenacetin 0.8240 0.8020 0.8750

Urethane 0.7280 0.7600 0.6660

Mean average precision 0.8030 0.7787 0.7543

Team 130 uses co-occurrences between entities and their network

centralities for document ranking. Team 133 uses document scores

obtained from entity frequencies and the number of sentences for

ranking. The average performance over all participants was

0.7617, 0.8171 and 0.6649 for ‘cyclophosphamide’, ‘phenacetin’

and ‘urethane’, respectively.

.............................................................................................................................................................................................................................................................................................

Page 6 of 7

Original article Database, Vol. 2012, Article ID bas042, doi:10.1093/database/bas042
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bas042/438801 by guest on 07 M

ay 2024



11. Leser,U. and Hakenberg,J. (2005) What makes a gene name?

Named entity recognition in the biomedical literature. Brief.

Bioinform., 6, 357–369.

12. Alako,B.T., Veldhoven,A., van Baal,S. et al. (2005) CoPub Mapper:

mining MEDLINE based on search term co-publication. BMC

Bioinformatics, 6, 51.

13. Frisch,M., Klocke,B., Haltmeier,M. et al. (2009) LitInspector: litera-

ture and signal transduction pathway mining in PubMed abstracts.

Nucleic Acids Res., 37, W135–W140.

14. Hirschman,L., Morgan,A.A. and Yeh,A.S. (2002) Rutabaga by any

other name: extracting biological names. J. Biomed. Inform., 35,

247–259.

15. Rocktaschel,T., Weidlich,M. and Leser,U. (2012) ChemSpot: a hybrid

system for chemical named entity recognition. Bioinformatics, 28,

1633–1640.

16. Klinger,R., Kolarik,C., Fluck,J. et al. (2008) Detection of IUPAC and

IUPAC-like chemical names. Bioinformatics, 24, i268–i276.

17. Jimeno,A., Jimenez-Ruiz,E., Lee,V. et al. (2008) Assessment of dis-

ease named entity recognition on a corpus of annotated sentences.

BMC Bioinformatics, 9(Suppl. 3), S3.

18. Chowdhury,M.F.M. and Lavelli,A. (2010) Disease mention recogni-

tion with specific features. In: Proceedings of the 2010 Workshop

on Biomedical Natural Language Processing. Association for

Computational Linguistics, Uppsala, Sweden, pp. 83–90.

19. Kim,S. and Wilbur,W.J. (2011) Classifying protein-protein inter-

action articles using word and syntactic features. BMC

Bioinformatics, 12(Suppl. 8), S9.

20. Kim,S., Kwon,D., Shin,S.Y. et al. (2012) PIE the search: searching

PubMed literature for protein interaction information. Bioinfor-

matics, 28, 597–598.

21. Tanabe,L., Thom,L.H., Matten,W. et al. (2006) SemCat: semantically

categorized entities for genomics. AMIA Annu. Symp. Proc., 754–758.

22. Blei,D.M., Ng,A.Y. and Jordan,M.I. (2003) Latent Dirichlet alloca-

tion. J. Mach. Learn. Res., 3, 993–1022.

23. Wiegers,T.C., Davis,A.P. and Mattingly,C.J. (2012) Collaborative bio-

curation-text mining development task for document prioritization

for curation. In: 2012 BioCreative Workshop. Washington, DC,

pp. 2–19.

24. Wei,C.-H., Kao,H.-Y. and Lu,Z. (2012) PubTator: A PubMed-like

interactive curation system for document triage and literature

curation. In: 2012 BioCreative Workshop. Washington, DC,

pp. 145–150.

25. Wei,C.-H., Harris,B.R., Li,D. et al. (2012) Accelerating literature cur-

ation with text mining tools: a case study of using PubTator to

curate genes in PubMed abstracts. Database, 2012, doi:10.1093/

database/bas041.

26. Zhang,T. (2004) Solving large scale linear prediction problems using

stochastic gradient descent algorithms. In: Proceedings of the

Twenty-First International Conference on Machine Learning.

ACM, Banff, Alberta, Canada, pp. 919–926.

27. Curran,J.R., Clark,S. and Bos,J. (2007) Linguistically motivated large-

scale NLP with C&C and boxer. In: Proceedings of the 45th Annual

Meeting of the ACL on Interactive Poster and Demonstration

Sessions. Association for Computational Linguistics, Prague, Czech

Republic, pp. 33–36.

28. Turney,P.D. and Pantel,P. (2010) From frequency to meaning:

vector space models of semantics. J. Artif. Intell. Res., 37, 141–188.

29. Pantel,P. and Lin,D. (2002) Discovering word senses from text. In:

Proceedings of the Eighth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. ACM, Edmonton,

Alberta, Canada, pp. 613–619.

30. Halpern,Y., Horng,S., Nathanson,L.A. et al. (2011) Patient surveil-

lance algorithms for the emergency department. In: NIPS 2011

Workshop on from Statistical Genetics to Predictive Models in

Personalized Medicine. Sierra Nevada, Spain.

31. Griffiths,T.L. and Steyvers,M. (2004) Finding scientific topics. Proc.

Natl Acad. Sci. USA, 101, 5228–5235.

32. Smith,L.H. and Wilbur,W.J. (2010) Finding related sentence pairs in

MEDLINE. Inf. Retr., 13, 601–617.

.............................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................

Page 7 of 7

Database, Vol. 2012, Article ID bas042, doi:10.1093/database/bas042 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bas042/438801 by guest on 07 M

ay 2024


