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RegulonDB provides curated information on the transcriptional regulatory network of Escherichia coli and contains both

experimental data and computationally predicted objects. To account for the heterogeneity of these data, we introduced

in version 6.0, a two-tier rating system for the strength of evidence, classifying evidence as either ‘weak’ or ‘strong’

(Gama-Castro,S., Jimenez-Jacinto,V., Peralta-Gil,M. et al. RegulonDB (Version 6.0): gene regulation model of Escherichia

Coli K-12 beyond transcription, active (experimental) annotated promoters and textpresso navigation. Nucleic Acids Res.,

2008;36:D120–D124.). We now add to our classification scheme the classification of high-throughput evidence, including

chromatin immunoprecipitation (ChIP) and RNA-seq technologies. To integrate these data into RegulonDB, we present two

strategies for the evaluation of confidence, statistical validation and independent cross-validation. Statistical validation

involves verification of ChIP data for transcription factor-binding sites, using tools for motif discovery and quality assess-

ment of the discovered matrices. Independent cross-validation combines independent evidence with the intention to

mutually exclude false positives. Both statistical validation and cross-validation allow to upgrade subsets of data that

are supported by weak evidence to a higher confidence level. Likewise, cross-validation of strong confidence data extends

our two-tier rating system to a three-tier system by introducing a third confidence score ‘confirmed’.

Database URL: http://regulondb.ccg.unam.mx/
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Introduction

We have for years gathered pieces of knowledge about

regulation of gene expression in Escherichia coli K12, essen-

tially at the level of transcription initiation (1). Detailed in-

formation from original scientific literature about

transcription factors (TFs), promoters, allosteric regulation

of RNA polymerase (RNAP), transcription units (TUs) and

operon structure, small RNAs, riboswitches and regulatory

interactions, is available in RegulonDB (1), as well as in

EcoCyc (2). Our aim has been to sort out and display this

knowledge in a clear and comprehensive fashion for the

scientific community. Most of the data accumulated in

these databases have been derived from classical molecular

genetics wet-laboratory experiments of the pre-genomic

era and extracted from peer-reviewed papers by manual

curation. Now, with the onset of the genomic era and the

concomitant progress in bioinformatics, results derived

from high-throughput (HT) technologies and computa-

tional predictions, which produce a flood of new data,

have also been added to the databases. The integration

of data of diverse origins raises a big challenge, since the
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level of confidence associated with individual objects varies

considerably depending on the type of evidence and meth-

odology used. Thus, we are currently facing the danger of

contaminating the solid and reliable data obtained by trad-

itionally single-object type of experiments, with a deluge of

potentially low-quality data derived from computational

predictions and HT methods.

A possible solution is the assignment of confidence

scores to individual objects. This allows the user to capture

at a glance the reliability of data and filter out high-quality

data from that with lower confidence scores. For instance,

in NeXtProt, a database of human proteins, a three-tier

confidence score describes the quality of data, termed

gold, silver or bronze, where bronze is not annotated (3).

Similarly, in YeTFaSCo, a database for TF motifs from

Saccharomyces cerevisiae, low, middle or high confidence

scores are assigned to the objects (4). The criteria to gener-

ate such confidence scores vary from database to database;

some evaluate the confidence by manual expert curation,

whereas others use a detailed scoring system. For instance,

MINT and IntAct, two databases for protein–protein inter-

actions, use weighted scoring systems (5,6). MINT integrates

weighted criteria, such as the type of experiment, the

number of independent types of evidence or recognition/

trust of the scientific community, which is a measure of the

number of citations (6). IntAct evaluates the type of experi-

ment as well as the type of detected interaction in a cumu-

lative fashion (5).

In RegulonDB, we have introduced in version 6.0 a

two-tier rating system for the strength of evidence (7), clas-

sifying evidence as either ‘weak’ or ‘strong’. That is, we rate

the reliability of the data as a function of the experiment

supporting the conclusion. For example, in the case of pro-

tein–DNA interactions, strong evidence is assigned to ex-

periments that directly show such interactions, as

footprinting (FP) with purified proteins, while weak evi-

dence is assigned to gel mobility shift assays using cell ex-

tracts, computational predictions or author statements.

Strong evidence requires solid physical and or genetic evi-

dence, while weak evidence results from more ambiguous

conclusions when alternative explanations or potential

false positives are prevalent. In our current rating of clas-

sical experiments (see Supplementary Table S1), the evi-

dence score is derived from a single experiment, and the

strengths of evidence pointing to the same assertion are

not added up, that is, several types of weak evidence do

not become a strong one. Our classification is continuously

updated and found at http://regulondb.ccg.unam.mx/

evidenceClassification.jsp.

In this report, the confidence of HT methods is evaluated

in two stages: In the first stage, individual HT methods are

classified into weak or strong evidence in a similar way as

the classical wet-laboratory experiments and computa-

tional methods are currently classified in RegulonDB.

Due to the inherent noise and potential experimental arte-

facts, the majority of HT protocols are classified as weak

evidence, with few exceptions (Table 1). In a second

stage, we extend the evidence classification and move to-

wards a classification of confidence. To this end, we present

an approach to actively evaluate the confidence for HT evi-

dence, which is achieved either by a statistical validation of

datasets, or, alternatively, by independent cross-validation.

Cross-validation integrates multiple evidence by combining

independent types of evidence, with the intention to con-

firm individual objects and mutually exclude false positives.

Both statistical validation and cross-validation allow to up-

grade subsets of data that are supported by weak evidence

to a higher confidence level. Moreover, cross-validation of

strong confidence data extends our two-tier rating system

to a three-tier system by introducing a third confidence

score, ‘confirmed’.

Classification of HT-protocols—
transcription start sites

RNA-seq protocols

RNA-seq is a powerful application used to quantitatively

analyse transcriptomes. Examples are the comparative ana-

lyses of complete sets of RNA transcribed in different

growth conditions, the identification of regulons, transcrip-

tion start sites (TSSs), and TUs (8–18). The basic principle of

RNA-seq is the analysis of cDNA libraries by next-generation

sequencing technologies, which are obtained by reverse

transcription of RNA pools (19–24). This is achieved by a

series of consecutive steps: RNA extraction and depletion,

reverse transcription into DNA, introduction of adaptor se-

quences at the 50- and 30-ends of the cDNA, PCR amplifica-

tion of the cDNA library (optional), followed by next-

generation sequencing and mapping of the sequence

reads into the reference genome. For each step, different

protocols have been published, which can be assembled in

a modular fashion. As a consequence, RNA-seq protocols

exhibit great variability. For instance, protocols differ in

the enrichment of RNA, in the construction of the cDNA

libraries, and also dependent on whether the analyses

aim at the comparative quantification of transcripts, the

identification of TSSs or at the analysis of TUs. For quanti-

tative expression analyses, the isolated RNA is fragmented

to get an even distribution of reads along the length of the

transcripts. In contrast, for the identification of TSSs, that is

the identification of primary 50-ends of transcripts, this step

must be omitted.

RNA degradation is a major source of false positives
in RNA-seq

The purification and analysis of bacterial mRNA is more

challenging than eukaryotic mRNA.
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For instance, bacterial mRNA is polycistronic and fre-

quently contains internal initiation and termination sites,

resulting in a complex transcriptional profile with overlap-

ping TUs (25). Moreover, isolation of mRNA using oligo-dT

selection is not possible since the majority of bacterial RNA

lacks poly(A) tails. To remove the abundant ribosomal RNA

and increase the rate of mRNA reads, different rRNA deple-

tion methods are required, such as the removal of rRNA by

hybridization to rRNA-specific probes (26).

The greatest challenge, however, is the instability of pro-

karyotic mRNA, which exhibits an average half-life of

�3–8 min (27,28), ranging from less than a minute to half

an hour, resulting in a large fraction of processed RNA mol-

ecules. Therefore, the unambiguous identification of TSSs

requires an efficient measure to distinguish the 50-ends of

such processed or degraded mRNA ends from those of

genuine transcripts.

The enrichment for 5’-triphosphate ends reduces
detection of RNA-degradation products

Degradation intermediates and processed RNA products

can be distinguished from primary transcripts by means of

the chemical nature of their 50-ends, since the latter tran-

scripts carry 50-triphosphate ends (50-PPP) (11,12), while pro-

cessed and degraded RNA carries a 50-monophosphate

(50-P). This can be exploited to specifically enrich for primary

transcripts. A strategy utilizes 50-dependent terminator exo-

nuclease (TEX) that degrades RNA carrying a 50-P end, while

RNA carrying 50-PPP ends are not substrates of this enzyme

and therefore are not degraded. In dRNA-seq (differential

RNA-seq), reads derived from a TEX-treated library are com-

pared with an untreated library to discriminate between

primary and processed 50-ends (11,12). Comparison of

TEX-treated RNA libraries with untreated libraries has

demonstrated that a large proportion of RNA libraries is

degraded or processed RNA (12). As a consequence, read

coverages obtained by dRNA-seq are shifted towards the

50-end, with peak profiles raising at the position of the TSSs

(11). However, the presence of the pyrophosphohydrolase

activity in bacterial genomes, coded by the rppH gene in

E. coli, which converts 50-PPP ends into 50-P ends, masks

genuine TSSs. Therefore, the direct subtraction of the 50-P

ends is not an option.

The usefulness of the dRNA-seq protocol has been shown

in a recent analysis of the Synechocystis transcriptome. Of

the 64 TSS that had previously been identified by classical

transcription initiation mapping, 44 were detected in this

study and confirmed by the published results (16). In add-

ition to the use of TEX, other protocols can be used for the

enrichment of 50-PPP ends. For instance, the ligation of bio-

tinylated adapters to processed RNAs carrying a 50-P end

allows their removal using magnetic streptavidin (1).

Another method is 50-tagRACE that involves the differential

tagging of 50-P and 50-PPP ends (29).

Due to the inherent noisy nature of the transcriptome,

the random errors of the experiments due to bias in library

construction, amplification and sequencing efficiency

(30–33), and the fact that it is not straightforward to dis-

criminate between primary from processed transcripts, high

reproducibility needs to be fulfilled in order to be confident

Table 1. Evidence classification of HT methods

Evidence code in RegulonDB

1. TSSs

Strong evidence Identification of TSSs using at least two different strategies of

enrichment for primary transcripts, consistent biological replicates

RS-EPT-CBR

Identification of TSSs of ncRNA, using at least two different

strategies of enrichment for primary transcripts, consistent biolo-

gical replicates, and evidence for a non-coding gene

RS-EPT-ENCG-CBR

Weak evidence All other RNA-seq protocols RS

2. Regulatory interactions

Strong evidence ChIP analysis and statistical validation of TF-binding sites CHIP-SV

Weak evidence ChIP analysis; example: ChIP-chip and ChIP-seq CHIP

Gene expression analysis using RNA-seq or microarray analysis GEA

Genomic SELEX (systematic evolution of ligands by exponential

enrichment)

GSELEX

ROMA (run-off transcription microarray analysis) ROMA

3. TUs

Strong evidence Mapping of signal intensities by RNA-seq and evidence for a single

gene, consistent biological replicates

MSI-ESG-CBR

PET (paired end di-tagging) PET

Weak evidence Mapping of signal intensities by microarray analysis or RNA-seq MSI
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of the TSSs assignment. Therefore, classification as strong

evidence requires that the data are validated by multiple

biological and technical replicates, which may be analysed

either within the same study or even better, independent

studies. In addition, data have to be supported by at least

two different enrichment methodologies, for instance a

combination of dRNA-seq and the differential ligation of

adaptors to processed transcripts (Table 1).

An even more critical case is the identification of TSSs of

non-coding RNAs (ncRNAs). Such RNAs lack an apparent

open reading frame. Therefore, their corresponding TUs

escape detection by conventional sequence analysis.

Identification of ncRNAs by RNA-seq is particularly prone

to false-positive results, that may occur due to the spurious

synthesis of second strand cDNA, or residual genomic DNA

contaminating the RNA pool (9,34), as well as ‘false

priming’ (35,36), caused by priming of the reverse transcrip-

tion reaction in hairpin structures in the RNA or other, par-

tially complementary RNA molecules. In addition, it has

been reported that a substantial fraction of the detected

transcripts could be the result of spurious transcription

initiation events at promoter-like sequences (37,38).

Therefore, the identification of TSSs of ncRNA by the

above combination of different enrichment strategies re-

quires verification and is only classified as strong evidence,

if the ncRNA is validated by additional experimental evi-

dence, such as northern blots or quantitative PCR (39,40)

(Table 1).

RNA-seq protocols without enrichment for 5’-PPP ends
are classified as weak evidence

In addition to the enrichment for primary transcripts, other

measures to minimize false TSSs have been employed.

These include the use of cutoff values for sequence

counts (41,42) or restricting the location of potential TSSs

to certain windows within 50-untranslated regions. Cutoff

values are claimed to be efficient measures to reduce the

background noise of read starts.

However, these are not suited to reduce the number of

false positives derived from non-random RNA degradation

(43), stochastic transcriptional events (10) and PCR biases

that arise during library construction. Non-random RNA

degradation is in part due to sequence preferences for

AU-rich regions, as shown for RNAse E, as well as hotspots

for RNAses due to secondary structure elements of the RNA

(43–45). Similarly, restricting the location of TSSs to certain

windows within the 50-untranslated region of a gene (41)

does enrich for bona fide TSSs, but does not efficiently ex-

clude RNA degradation products. In addition, this strategy

overlooks genuine TSSs located within genes and in anti-

sense orientation. A recently described transcriptome

sequencing approach is flow cell reverse transcription

sequencing (FRT-seq) (46), in which RNA is reverse tran-

scribed on the flow cell without further amplification of

the cDNA. FRT-seq avoids biases that are introduced at

the amplification step, but like RNA-seq, it does not discrim-

inate sufficiently between primary and processed or

degraded transcripts. Accordingly, we rate these protocols

as weak evidence (Table 1).

Classification of HT protocols—TUs

Identification of TUs by RNA-seq and microarrays

HT technologies assign TUs if the expression levels of neigh-

boring genes correlate. Using microarrays (47–50) or

RNA-seq analyses (11,41,42), TUs can be inferred by map-

ping the hybridization intensities or peak values onto the

bacterial genome. Operons are assigned if the continuous

coverage extends into one or more co-directional neigh-

bouring genes, including the intergenic regions.

Evaluation of expression levels is frequently combined

with computational approaches for the prediction of op-

erons, which integrate, for instance, intergenic distances

or the location of promoter and TF-binding sites (TFBSs)

(51). However, the assignment of TUs on the basis of ex-

pression correlation has several limitations. For instance,

signal intensities might not correlate with a particular

TU if additional transcripts, driven by internal promoters,

overlap the TU. Furthermore, differentiation between

co-transcription and co-regulation of neighbouring genes

that are expressed under similar growth conditions is

ambiguous.

Another limitation is that the sequence coverage fre-

quently varies considerably over the length of a transcript.

Such non-uniform read distributions occur during the

random hexamer priming and PCR amplification step, due

to positional nucleotide biases, GC content (31,52), and

transcript length biases (53,54). Depending on the frag-

mentation method employed, read coverages are differ-

ently biased towards the transcript ends (23,55). Coverage

is more uniform within the transcript if the RNA is frag-

mented prior to reverse transcription, but relatively

depleted for both 50- and 30-ends, while fragmentation of

the cDNA creates biases towards the 30-end (23).

Like RNA-seq, microarray analyses suffer from limita-

tions, such as measurement noise, biases due to system-

atic variations between experimental conditions or

sample handling, labelling biases and preferential amplifi-

cation due to the variable hybridization strength of

the probe–target pairs (56–58). Microarray analyses also

suffer from signal saturation errors and exhibit a much

more narrow dynamic range when compared with

RNA-seq (59).

Therefore, the identification of TUs on the basis of uni-

form levels of signal intensities, using either RNA-seq or

microarray analysis, is ambiguous and classified as weak

evidence with two exceptions. One exception is the
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identification of a monocistronic TU that is flanked by

neighbouring genes transcribed in the opposite direc-

tion, which is classified as strong evidence (Table 1).

The other exception is the detection of cotranscribed

genes in the same mRNA molecule using paired-end

RNA-seq with different insert sizes (1,60). This method

provides strong evidence that both RNA ends are derived

from the same transcript. As is the case for other

methods that are classified as strong evidence, this requires

in addition validation by consistent biological replicates

(Table 1).

Classification of HT protocols—
regulatory interactions

Evidence for regulatory interactions derived from
gene expression analysis

Transcriptome analysis by RNA-seq or microarrays may also

provide evidence for regulatory binding sites (61–64), based

on a comparative analysis of the expression of potential

target genes, and dependent on changes in the activity of

the TF. For instance, in classical experimentation, a com-

monly used technique is the analysis of a promoter-lacZ

fusion in response to the deletion, over-expression or mu-

tation of the TF. HT transcriptional profiling monitors the

entire cascade of changes in gene expression, as a response

to the deletion or overexpression of a regulatory protein.

However, these responses include indirect effects, such as

the regulation by additional TFs, sRNAs, as well as effects

due to metabolic changes induced by the altered gene ex-

pression. Therefore, as is the case for classical gene expres-

sion analyses, the identification of regulatory binding sites

by global transcriptome analyses is classified as weak evi-

dence (Table 1).

An alternative method used for the characterization of

regulatory networks of TFs and sigma factors is run-off

transcription-microarray analysis (ROMA) (65–67). ROMA

resembles a HT in vitro transcription assay, using purified

RNAP, regulatory proteins and a genomic DNA pool as the

template. The resulting mRNA pool is subsequently reverse

transcribed into cDNA and analysed on microarrays, relative

to the transcripts generated in the absence of the regula-

tory protein. In contrast to in vivo transcriptional profiling,

ROMA avoids false positives stemming from indirect regu-

lation and offers an advantage in the detection of

short-lived mRNA transcripts. However, ROMA includes

other sources of false positives, most importantly

read-through transcripts into adjacent genes due to ineffi-

cient transcription termination in vitro, as well as ambigu-

ities derived from impure protein preparation or the

microarray analysis as such (65). Therefore, ROMA is classi-

fied as weak evidence (Table 1).

Use of chromatin immunoprecipitation technology for
the identification of TFBSs

The chromatin immunoprecipitation (ChIP) technology

allows probing protein–DNA interactions inside living cells

and has been widely used to characterize regulatory tran-

scriptional networks under various physiological conditions

(68–71). Briefly, proteins that interact with DNA are cova-

lently crosslinked in vivo to their target sites with formal-

dehyde. Cells are subsequently lysed and the chromatin

is fragmented by sonication or enzymatic treatment.

Next, DNA fragments carrying crosslinked protein are

co-immunoprecipitated using a highly specific antibody dir-

ected against the protein of interest. After reversal of the

crosslinking, the enriched DNA fragments are analysed

either by hybridization to microarrays, designed as low-

or high-density tiling arrays (ChIP-on-chip or ChIP-chip), or

by HT sequencing (ChIP-seq), followed by a computational

analysis of the sequence data, which involves a statistical

analysis for quality control and normalization of the data,

the identification of significantly enriched regions and the

identification of binding motifs.

Resolution in the initial mapping of the binding regions

is much higher for ChIP-seq when compared with ChIP-chip.

In ChIP-chip, resolution depends on several factors, such as

the size of the fragments generated by shearing, or the

density of the tiling arrays, and usually is within a range

of 300–500 bp (72), while resolution in ChIP-seq is up to a

single base pair with reduced noise and a broader dynamic

range (73). For these reasons and due to the rapid devel-

opment of next-generation sequencing techniques,

ChIP-seq is rapidly replacing the analysis by microarrays.

The DNA library obtained by co-immunoprecipitation is

enriched in DNA fragments carrying the desired binding

regions, but it is not pure. The challenge in ChIP technology

is to identify the DNA fragments carrying the bona fide

binding sites in a large background, a source of systematic

and stochastic noise. False positives can occur at all three

basic steps in ChIP technology: (i) the preparation of the

DNA pool carrying the potential binding sites, (ii) the char-

acterization of the DNA fragments by hybridization to the

microarrays or HT sequencing and (iii) the computational

analysis including mapping of the potential binding re-

gions to the genome, peak detection and sequence motif

analysis. For instance, false positives derived from the prep-

aration of the DNA pool can be due to non-specific inter-

actions of the protein of interest with DNA or other

DNA-binding proteins, or due to cross-reactivity of the anti-

body. In addition, systematic variations between experi-

mental conditions, such as sample handling, or biases

introduced during labelling or amplification steps, such as

a GC bias, give rise to false positives at the peak-calling step

(31,68,73,74). High background noise has been reported to

result from complementary sequences or non-unique gene
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loci on the chromosome as well as insufficient RNase treat-

ment (75). In addition, it has been reported that false posi-

tives can be caused by large protein–DNA complexes, which

preferentially form at highly transcribed regions. Such com-

plexes can survive washing and elution steps due to the

incomplete reversion of crosslinking and retention of the

complexes in spin columns. These complexes are eluted at a

later step under denaturing conditions, resulting in a con-

tamination of the DNA pool (75).

Since as mentioned before the lengths of the enriched

sequences vary between 300 to 500 bp, this partial result

still requires the computational precise identification of the

binding sites. Some of the sequences might be false posi-

tives with no TFBSs, whereas other sequences may have

binding sites for other cofactors. In order to control these

issues, and for homogeneity in the evaluation of experi-

ments performed in different laboratories, ideally, the

best alternative would be the use of a common computa-

tional strategy with well-established programs universally

available to the community.

In conclusion, even though ChIP technology is a powerful

method, it carries several potential pitfalls and is classified

as weak evidence (Table 1). However, confidence scores for

individual binding sites can be assessed by a standardized

statistical analysis to allow a higher classification of

strength of evidence for a subset of the data. This is dis-

cussed in more detail in sections below.

Use of genomic systematic evolution of ligands by
exponential enrichment for the identification of TFBSs

Genomic systematic evolution of ligands by exponential en-

richment (SELEX) is a variant of the classic SELEX protocol.

Like ChIP technology, it is a powerful technique to identify

DNA-binding sites for a TF. Its basic principle is to enrich

fragmented genomic DNA (whereas classic SELEX starts

with random DNA) in several iterative cycles consisting of

the binding reaction, affinity purification of the complexes

formed between DNA and the protein of interest, and

amplification of the potential target regions (76–79). One

major difference between the ChIP and the SELEX technol-

ogy is that ChIP is directed towards the identification of

sites that are bound in vivo under specific growth condi-

tions, while SELEX identifies binding sites which are bound

in an in vitro reaction. In SELEX, false positives can originate

from aggregates or unspecific interactions with the affinity

matrix. The selection for such nonspecific-bound DNA frag-

ments depends strongly on the number of the iterative

cycles (78). In addition, the binding conditions, for instance

ionic strength or pH, as well as the high local concentration

of protein–DNA complexes upon enrichment on the affinity

matrix, might not reflect physiological conditions.

Therefore, genomic SELEX as such is classified as weak evi-

dence (Table 1). Classification as strong evidence requires

additional, independent evidence, that the identified sites

function in vivo (see section for cross-validation).

Statistical validation of ChIP data
and consistency with position
weight matrices generated from
classic experimental evidence

Regulatory binding sites exhibit characteristic sequence

patterns, which are commonly represented as sequence

logos or position weight matrices (PWMs) and describe

the specificity of a DNA-binding protein (80,81). Such

PWMs represent a weighted average of aligned sequences

and provide the basis for the genome-wide computational

predictions of TFBSs (82,83). The sequence motif analysis

serves to pinpoint the exact location of binding sites in po-

tential target regions obtained by ChIP. This can be

achieved either by scanning for a known sequence motif

or by performing a de novo motif analysis (84,85).

Moreover, binding sites identified by such a sequence

motif analysis come with a statistical confidence score

and/or P-value. This offers the possibility to rate the confi-

dence levels of the identified objects according to these

values and, using a stringent threshold value, validates sub-

sets of the identified binding sites as strong evidence.

For consistency, such an approach requires the use of

defined algorithms and criteria. Here, we present an

approach to evaluate the confidence levels of TFBSs using

the tools, ‘matrix-quality’ (86,87), ‘peak-motifs’ (88),

‘footprint-discovery’ (89) and ‘matrix-scan’ (90), that

belong to the software suite regulatory sequence analysis

tools (90). These tools are publicly available at http://rsat.

ulb.ac.be/, with the adequate documentation for their

utilization.

To identify sites with high confidence, we first obtain a

PWM using peak-motifs or footprint discovery. Peak-motifs

facilitates the discovery of binding motifs using a combin-

ation of several algorithms at a time, and it detects not only

the strongest motif but also secondary ones, providing

valuable information concerning cofactors, and mechanism

of function for TFs (88). The major difference between

using this or other previously proposed algorithms lays in

its efficiency. The program is significantly faster than other

comparable algorithms and allows motif discovery in

full-size ChIP datasets (88). Thus, peak-motifs allow to

build PWMs from a set of known binding sites, or to per-

form a de novo motif analysis using the raw ChIP data as an

input. The discovered motif is compared with the anno-

tated matrices in RegulonDB, to detect whether they cor-

respond to the annotated one for the TF of the ChIP

experiment. Alternatively, a multi-genome approach is

useful in cases where only a few binding sites are known

for a given TF and there is none annotated matrix. Using
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the program ‘footprint-discovery’, conserved motifs in pro-

moter regions of orthologous target genes (phylogenetic

footprints) can be detected at different taxonomical

levels of E. coli (86,89).

Next, the quality of the discovered PWMs, that is the

discriminative power of the matrices, can be evaluated by

using the program matrix-quality. This program analyses

matrices by comparing the theoretical and empirical

weight score distributions for each PWM in a group of se-

quences (86). It can also be used to evaluate the quality of

raw datasets derived from ChIP experiments, that is, to

evaluate the level of enrichment for putative TFBSs in dif-

ferent collections of sequences, for a given PWM (86). The

program uses one matrix representing the TF-binding motif

and the peak sequences as input. The output will show a

graph displaying one curve for the expected enrichment by

chance and the observed enrichment in the peaks. These

two curves should show a clear difference of enrichment of

binding sites with high scores (86). If there is no enrich-

ment, it can be due to two possibilities: several false posi-

tives dilute the collected regions, or the TFBS in that

collection is considerably different than the previously re-

ported ones used to build the matrix.

Using the PWM with the best enrichment TFBSs that score

above a threshold P-value are identified and localized using

matrix-scan. In contrast to aiming at the genome-wide com-

putational prediction of binding sites, our approach for stat-

istical validation requires that the positive predictive value is

strongly favoured at the expense of sensitivity. This is import-

ant to prevent spurious sites accepted with strong evidence

or confidence. We use a P-value of 1e�5 or lower as a strin-

gent cutoff. Binding sites that score above this threshold will

be classified as strong evidence, and binding sites, which

score below, as weak evidence (Table 1). It is important to

note that this approach for evaluating sites produced by

ChIP-seq is consistent with the evaluation of the quality of

PWMs coming from manual curation (86). That is to say, we

are being congruent in assessing evidence for knowledge,

irrespective of the methods used to generate it. For a full

pipeline application for an experiment of ChIP-chip of PurR

sites, see the new RegulonDB paper and Supplementary

Material (87).

Classification of multiple evidence
and introduction of the new
confidence score ‘confirmed’

In the past, we have judged and classified the strength of

evidence for single types of evidence. As a consequence,

the strength of evidence for a given object or assertion

was derived from one experiment, which is the experiment

with the highest score. However, in scientific experimental

research, an assertion and its degree of confidence are

usually derived from a combination of different

approaches. Such additional experiments are conducted

with two intentions, to confirm or reproduce the assertion

on the one hand, and to exclude alternative explanations

on the other hand. Reproducibility is a prerequisite, to ac-

count for it in HT experiments, we demand the use of bio-

logical replicates as well as the use of at least two

independent enrichment strategies for the assignment of

strong evidence to RNA-seq methods. We now present a

strategy to account for the second intention, the exclusion

of alternative explanations or false positives, termed ‘inde-

pendent cross-validation’.

A decrease in the number of false positives is achieved, if

false positives can be mutually excluded by evaluating the

results of two methods or strategies together, compared

with each experiment alone (Figure 1). This requires that

the following conditions are met. (i) The two methodolo-

gies have to be independent, that is, they should not use

common raw materials or common experimental steps. (ii)

Both methods have to point to the same object or asser-

tion. Both approaches might, however, analyse different

aspects or properties of the assertion. For instance, a pro-

moter can be located by the identification of a TSS or an

RNAP-binding site. Cross-validation of TFBSs and promoters

requires that the exact location of the object is specified for

each individual evidence. For instance, gel mobility shift

assays provide evidence for the interaction with a binding

region, but the exact location is not determined, and there-

fore cannot be combined with other evidence for

cross-validation of TFBSs. (iii) There must be little overlap

in potential false positives or alternative explanations for

both independent methodologies. For instance, genuine

TSSs mapped by transcription initiation mapping are

diluted by false positives derived from RNA processing or

degradation. However, these TSSs can be validated by

RNAP FP since false positives derived from RNA degrad-

ation or processing are excluded by the second experiment.

Therefore, if combined, the intersection of both methods

should contain TSSs with a higher confidence level than the

individual experiments alone. In contrast, the combined

evaluation of the following two methodologies does not

result in a higher confidence level: To confirm that an acti-

vator binds to the 50-upstream region of a target gene and

regulates its expression, it is either possible to analyse

in vivo expression of a promoter–reporter gene fusion in

a wild-type and mutant background, or to perform

gel-mobility-shift assays using cell extracts of wild-type

and mutant strains. Here, the alternative explanation for

a positive result, which is the indirect regulation of the

target gene, is not excluded when evaluating the results

of both methods together since it is common to both. (iv)

Finally, as a fourth requirement, the sample population

needs to be large enough to ensure a low probability for

the coincidental identification of a false positive by the two
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independent methodologies. (v) Cross-validation of HT ex-

periments requires consistent biological replicates.

Using these criteria, we can now define combinations of

HT experiments or classical evidence, to allow an upgrade

from weak to strong evidence (Table 2). Moreover, it is

also possible to cross-validate data, which have been classi-

fied as strong evidence. To this end, a third confi-

dence score, designated ‘confirmed’, is introduced. The

possible combinations of experiments that allow an up-

grade to confirmed confidence are shown in Table 2. By

using this approach, we are now able to create a new

class of objects or assertions that are annotated with a

very high reliability to RegulonDB in a step towards build-

ing gold standard sets.

To exemplify this approach, we have cross-validated the

evidence for TFBSs of PurR. Shown in Table 3 are the strong

types of single evidence from classical experiments, that are

supporting the individual binding sites for PurR, FP and evi-

dence derived from a mutational analysis of the TFBSs (SM).

In addition, most of these sites are supported by strong

evidence derived from the statistical validation of an HT

ChIP-chip analysis (87). All three types of evidence, FP, site

mutation (SM) analysis and statistical validated ChIP-chip

data (CHIP-SV), can be combined for independent

cross-validation (Table 2). As a result, 14 out of 23 TFBSs

are cross-validated to confirmed evidence, while 9 TFBSs

are supported by a single strong evidence and not

cross-validated (Table 3).

With the exception of glyA, all of the confirmed binding

sites belong to genes involved in the central pathways for

the de novo synthesis of purines and pyrimidines (Figure 2),

which is in agreement with the role of PurR as the master

regulator of these pathways. TFBSs that are supported by

strong evidence and not upgraded to confirmed evidence

either belong to these pathways, to genes involved in nu-

cleoside or nucleobase uptake (codBA, tsx, and xanP), or

nitrogen metabolism (glnB and speA). This demonstrates

that independent cross-validation is well suited to identify

data that resemble the well-established knowledge of the

scientific literature, representing the ‘textbook knowledge’

in RegulonDB.

Discussion

The data collected in RegulonDB are diverse in two re-

spects. On the one hand, the different types of evidence

exhibit a very broad variability in confidence and on the

other hand, the objects itself, e.g. TUs, TFBSs or promoters,

have different characteristics and are supported by differ-

ent types of evidence. As a consequence, we need a strat-

egy for confidence assessment that is generally applicable

for all kinds of different objects, and such that the

strengths of confidence are comparable between the dif-

ferent types of objects.

The criteria presented here follow the same principles of

science as applied by wet-laboratory scientists, where data

Figure 1. Schematic overview of evaluation of confidence in RegulonDB. Confidence is evaluated in two stages. In the first stage,
individual methods are classified into weak or strong strength of evidence. In the second stage, subsets of data are validated by
integrating multiple evidence using two strategies, statistical validation and independent cross-validation. Statistical validation is
applied for ChIP datasets. It involves the evaluation of both the quality of the dataset and the quality of the discovered PWMs.
The analysis validates binding sites, which score above a stringent threshold value. Cross-validation integrates multiple evidence
and requires that the types of evidence, that are combined with each other, are independent and mutually exclude false
positives. Weak evidence is cross-validated to strong evidence, whereas strong evidence is validated to confirmed evidence.
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are confirmed by repetitions on the one hand, and by add-

itional experimental strategies to exclude alternative ex-

planations on the other.

The rating of the single evidence is the primary criterion

for reliability and provides the foundation of our classifica-

tion scheme. Validation of the data to upgrade from weak

to strong or strong to confirmed evidence requires in add-

ition high congruence, that is confirmation of the data by

truly independent methods that reduce alternative explan-

ations for the findings. This approach is superior to a strat-

egy, in which confidence is solely rated according to the

number of experiments supporting the assertion, irrespect-

ive of the type of evidence. Such a rating system could

introduce a bias, due to the weighting of spurious alterna-

tive explanations.

It should be pointed out that evidence or confidence

scores are always an estimate, not a precise rating. When

rating an evidence, we rate the protocol as such, but it is

difficult to judge whether for a given experiment the

protocol has been properly implemented. This ambiguity

pertains also to classical wet-laboratory experiments. For

instance, in RegulonDB, a gel mobility shift assay using pur-

ified proteins is rated as strong evidence for TFBSs.

However, the reliability for such an experiment strongly

depends on the conditions, such as salt concentration, pH

or protein concentration. Using too high a protein concen-

tration increases the risk for nonspecific interactions or

even binding of a different contaminating protein present

in the preparation. The judgement, whether such an ex-

periment has been conducted properly or not, is at least

in part also the task of the peer-reviewing process for the

publication of results.

To judge the confidence level of single types of evidence,

the ideal solution would be to precisely assess the success

rate of each evidence type, that is, to determine how often

an assertion that is derived from a certain evidence is con-

firmed or disproved by subsequent experiments. However,

in scientific publications, an assertion is usually supported

by several different experiments which are conducted in

parallel to confirm the statement or disprove alternative

models. Therefore, each published single evidence is vali-

dated to varying extents by the accompanying pieces of

evidence and an assessment of the success rate of an indi-

vidual evidence would actually measure the averaged over-

all confidence of the published datasets, as well as the

additional cited evidence used to support the assertion.

For instance, a common method to study the regulation

of a target gene by a TF is gene expression analysis, by

Table 2. Independent cross-validation of weak and strong evidence

Cross-validation of weak evidence

Regulatory interactions

Genomic SELEX, ROMA (run-off transcription-microarray analysis)

In vivo gene expression analysis

Cross-validation of strong evidence

Promoter

FP with purified RNA-polymerase

In vitro transcription assay using purified proteins

Transcription initiation mapping; Examples: 50-RACE; primer extension; nuclease S1 mapping; RNA-seq data, classified as strong

evidence

Evidence inferred from SM; Example: Expression analysis when putative promoter element is mutated

TFBSs

FP using purified protein

Evidence inferred from SM; Example: Expression analysis when putative TFBSs are mutated

ChIP data, classified as strong evidence; Example: ChIP data, statistical validated

Genomic SELEX data, classified as strong evidence; Example: Genomic SELEX, cross-validated by in vivo gene expression analysis

TUs

Polar mutations which affect transcription of a downstream gene

Northern blotting; RNA-seq data classified as strong evidence

For each object, the types of evidence are given, which can be combined with each other to allow an upgrade to confirmed confidence.

Any two methods from different rows can be combined. Types of evidence in the same row cannot be combined with each other. For

instance, different protocols for transcription initiation mapping cannot be combined for cross-validation, since these methods use mRNA

as the starting material and therefore share a common source of false positives, which is RNA processing or degradation. Similarly, TUs

identified by northern blotting cannot be cross-validated by RNA-seq. Cross-validation of TFBSs and promoters requires that the exact

location of the object is specified for each individual evidence.
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Table 3. Independent cross-validation of single types of evidence for PurR-binding sites

Gene Evidence scores of

single types of

evidencea

Reference Cross-validation

FP (S)–SM (S)b

Cross-validation

FP (S)–SV (S)b

Cross-validation

SM (S)–SVb

Final

confidence

score

carAB FP (S) Devroede et al. (92) C C C C

SM (S) Devroede et al. (92)

CHIP-SV (S) Cho et al. (61)

codBA CHIP-SV (S) Cho et al. (61) S

cvpA-purF-ubiX FP (S) Devroede et al. (92) C C C C

SM (S) Rolfes and Zalkin (93)

CHIP-SV (S) Cho et al. (61)

glnB FP (S) He et al. (94) S

glyA FP (S) Steiert et al. (95) and

Lorenz and Stauffer (96)

C C C C

SM (S) Steiert et al. (97)

CHIP-SV (S) Cho et al. (61)

guaBA CHIP-SV (S) Cho et al. (61) S

prsA FP (S) He et al. (94) S

purA (site 1) FP (S) He and Zalkin (98) C C

SM (S) He and Zalkin (98)

purA (site 2) FP (S) He and Zalkin (98) C C

SM (S) He and Zalkin (98)

purB (hflD) FP (S) He et al. (99) C C C C

SM (S) He and Zalkin (100)

CHIP-SV (S) Cho et al. (61)

purC FP (S) He et al. (101) C C

CHIP-SV (S) Cho et al. (61)

purEK FP (S) He et al. (101) C C

CHIP-SV (S) Cho et al. (61)

purHD FP (S) He et al. (101) S

purL FP (S) He et al. (101) C C

CHIP-SV (S) Cho et al. (61)

purMN FP (S) He et al. (101) C C C C

SM (S) Liu et al. (101)

CHIP-SV (S) Cho et al. (61)

purR (site 1) FP (S) Meng et al. (103) and

Rolfes and Zalkin (104)

C C C C

SM (S) Rolfes and Zalkin (104)

CHIP-SV (S) Cho et al. (61)

purR (site 2) FP (S) Meng et al. (103) and

Rolfes and Zalkin (104)

C C C C

SM (S) Rolfes and Zalkin (104)

CHIP-SV (S) Cho et al. (61)

purT CHIP-SV (S) Cho et al. (61) S

pyrC FP (S) Choi and Zalkin (105) C C

SM (S) Choi and Zalkin (105) and

Wilson and Turnbough

(106)

pyrD SM (S) Vial et al. (107) C C

CHIP-SV (S) Cho et al. (61)

speAB FP (S) He et al. (94) S

Tsx CHIP-SV (S) Cho et al. (61) S

xanP CHIP-SV (S) Cho et al. (61) S

aFor each gene or operon, the evidence types that are annotated as strong evidence in RegulonDB are given, as well as the strong

evidence derived from the statistical validation of an ChIP-chip analysis of PurR-binding sites (61, 87). bFor independent cross-validation,

the three evidence types FP, SM analysis and ChIP-chip data that have been rated as strong evidence by statistical validation (CHIP-SV)

(87) are combined pairwise to confirmed evidence.
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measuring expression of a fusion between the target pro-

moter and a reporter gene. In RegulonDB, this is classified

as weak evidence due to the potential of indirect regula-

tory mechanisms. In classical experimentation, gene expres-

sion analysis is frequently validated by in vitro DNA-binding

experiments, which are classified as strong evidence. In fact,

all 17 PurR-binding sites that are supported by FP (Table 3)

are in addition supported by gene expression analysis, in

most cases within the same study. Thus, in an evaluation of

the success rate of classical gene expression analysis, this

evidence would inherit an apparently strong evidence

from the FP experiments. In contrast to these classical ex-

periments, the HT gene expression analysis by Cho et al.

(61) finds that the expression of 56 genes or operons is

directly or indirectly affected in response to PurR and ad-

enine. This difference in the number of targets detected by

classical and HT gene expression analysis demonstrates the

potential of detecting indirect regulation, as well as the

extent to which classical experiments are verified by add-

itional experiments within each individual study. Therefore,

to achieve an adequate rating of single types of evidence,

we have to build on our knowledge and expert judgement

of direct versus indirect effects and alternative regulatory

mechanisms. This will provide the foundation for the over-

all classification of strength of confidence in RegulonDB.

Our three-tier rating system allows the user to recognize

the confidence level of individual data at a glance. To this

end, the display of the different types of degrees of confi-

dence has to be clearly visualized. Currently, weak versus

strong evidence is visually distinguishable both in

RegulonDB and in EcoCyc. For instance, promoters with

strong evidence are displayed with a solid line arrow,

whereas those with weak evidence are displayed with a

dashed-line arrow. This system can be easily extended, by

using thick solid lines for confirmed objects.

Figure 2. De novo pathways of purine and pyrimidine synthe-
sis in E. coli. PurR is the master regulator for purine (left) and
pyrimidine (right) de novo biosynthesis. Genes that carry bind-
ing sites that have been cross-validated to confirmed evidence

are shown in bold. With the exception of glyA (not shown), all
genes that carry binding sites supported by confirmed evidence
belong to these two central pathways of nucleotide biosynthe-
sis. Abbreviations: PRPP, 5-phosphoribosyl-1-diphosphate; PRA,
5-phosphoribosylamine; GAR, 50-phosphoribosyl-1-glycinamide;
FGAR, 50-phosphoribosyl-N-formylglycinamide; FGAM, 50-phos
phoribosyl-N-formylglycinamidine; AIR, 50-phosphoribosyl-5-ami-
noimidazole; N5-CAIR, 50-phosphoribosyl-5-aminoimidazole-N-5-
carboxylate; CAIR, 50-phosphoribosyl-5-aminoimidazole-4-car-
boxylate; SAICAR, 50-phosphoribosyl-4-(N-succinocarboxamide)-
5-aminoimidazole; AICAR, 50-phosphoribosyl-4-carboxamide-5-
aminoimidazole; FAICAR, 50-phosphoribosyl-4-carboxamide-5-
formamidoimidazole; IMP, inosine 50-monophosphate; AMP, ad-
enosine 50-monophosphate; GMP, guanosine 50-monopho-
sphate; Gln, glutamine; CP, carbamoyl phosphate; CA,
carbamoyl aspartate; DHO, dihydroorotate; OA, orotate; OMP,
orotidine 50-monophosphate; UMP, uridine 5(-monophosphate;
CTP, cytidine 5(-triphosphate.
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Another closely related question is, how the different

data types, the computational predictions, HT data and clas-

sical wet-laboratory experiments, are going to be displayed

and made available for users. At present, we filter

HT-generated data and only add, for instance ChIP sites

that have an identified binding site which occurs within

the expected upstream regions close to promoters. In add-

ition, computationally predicted promoters are included

within upstream regions only if there is no experimentally

determined promoter within the region. These two cases

illustrate our role that we can describe as ‘strict guardians’

of the classic paradigm of transcriptional regulation. The

advantage of this policy is that the number of less reliable

data is kept at a minimum. However, the drawback is that

we might be losing valuable information. In fact, we have

had situations, where a predicted promoter has been with-

drawn due to the experimental identification of a second

promoter in the same region, but had to be annotated

again later due to the confirmation by additional experi-

ments. Since computational predictions as well as HT data

are very valuable data for the scientific community, we def-

initely need an annotation policy for the display of data of

diverse origins (classical experiments, computational and HT

data) in an integrated fashion.

Given the criteria here proposed, we consider a better

and more useful strategy for the community to expand our

‘downloadable datasets’ that have for years been available

in RegulonDB and to offer now a variety of complete data-

sets including HT-generated datasets in a separate genome

browser, with a menu for the user to select which ones to

display, such that the data can be toggled in and out on

demand, using either the data type or the confidence score

as a filter. The HT-generated datasets will previously be

marked with our confidence score following the criteria

here discussed. The information for any laboratory to

submit a dataset is available in RegulonDB.

We are aware that the proposed three-tier system is a

logical and consistent expansion of the previous strong

and weak assignments we have had for years. This confi-

dence assignment will facilitate the comparison and best

integration of the different sources of knowledge of the

regulatory network of E. coli. It also facilitates future bench-

marking studies for predictive methods as well as for HT

studies. These criteria are not unique to a single bacterium,

given the common genome organization of regulatory

elements and the common experimental challenges, these

should be equally applicable to the biocuration and organ-

ization of any bacterial regulatory network.

Supplementary data

Supplementary data are available at Database online.
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