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The vast collection of biomedical literature and its continued expansion has presented a number of challenges to research-

ers who require structured findings to stay abreast of and analyze molecular mechanisms relevant to their domain of

interest. By structuring literature content into topic-specific machine-readable databases, the aggregate data from multiple

articles can be used to infer trends that can be compared and contrasted with similar findings from topic-independent

resources. Our study presents a generalized procedure for semi-automatically creating a custom topic-specific molecular

interaction database through the use of text mining to assist manual curation. We apply the procedure to capture mo-

lecular events that underlie ‘pain’, a complex phenomenon with a large societal burden and unmet medical need. We

describe how existing text mining solutions are used to build a pain-specific corpus, extract molecular events from it, add

context to the extracted events and assess their relevance. The pain-specific corpus contains 765 692 documents from

Medline and PubMed Central, from which we extracted 356 499 unique normalized molecular events, with 261 438

single protein events and 93 271 molecular interactions supplied by BioContext. Event chains are annotated with negation,

speculation, anatomy, Gene Ontology terms, mutations, pain and disease relevance, which collectively provide detailed

insight into how that event chain is associated with pain. The extracted relations are visualized in a wiki platform (wiki-

pain.org) that enables efficient manual curation and exploration of the molecular mechanisms that underlie pain. Curation

of 1500 grouped event chains ranked by pain relevance revealed 613 accurately extracted unique molecular interactions

that in the future can be used to study the underlying mechanisms involved in pain. Our approach demonstrates that

combining existing text mining tools with domain-specific terms and wiki-based visualization can facilitate rapid curation

of molecular interactions to create a custom database.
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Introduction

One of the largest and most widely used resources of online

biomedical literature is the National Library of Medicine’s

PubMed (1). PubMed now searches >23 million biomedical

records and with other biomedical literature search engines

(e.g. Google Scholar, Web of Science and Scopus) is a typical

starting point in biomedical knowledge acquisition and

information retrieval (IR) (2, 3). For example, a researcher

searching for ‘pain’ on PubMed will retrieve 521 141 cita-

tions (6 March 2013). This highlights the key problem

that arises when the number of relevant unstructured

documents from a topical search exceeds the limits of a
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researcher’s ability to read all (or many) of them. An alter-

native is to use manually curated resources. Topic-specific

curated databases often arise because of unmet needs from

existing resources, leading to curation of data not captured

by more general sources. They often contain added context

that aids the intended users (4–7). Extracting, normalizing

and cataloging relevant concepts and facts from free text

by dedicated curators make it possible to deal with other-

wise unwieldy amounts of information. Accordingly, topic-

specific databases that house these findings are rapidly

accumulating at an increasing rate (8). Creation of topic-

specific databases is well documented (9–11), and there are

recurrent themes in the processes used to build high-quality

resources. Document triage can be as simple as keyword

searches (12–14), but many of these sources have matured

enough to shift to sophisticated document classification

algorithms (13, 15).

In parallel, there is increasing focus on building tools to

help defray the high cost of manual curation (7). There are

few databases that are up-to-date with all available rele-

vant information; funding for manual curation is the limit-

ing factor, rather than finding articles to curate. Assisted

curation, e.g. through the process of applying text-mining

(TM) tools to highlight curatable events, has been repeat-

edly shown to increase efficiency and reduce curatorial

errors (16).

In addition to using TM tools to highlight facts within an

article, they can also be used to highlight common facts

across articles. We recently reported the recreation of a

database of human–HIV-1 protein interactions (17) wherein

we proposed a method to group identical interactions men-

tioned in multiple articles. To increase coverage of unique

interactions, it is then only a matter of manually curating

selected examples from each group of potentially equiva-

lent interaction mentions. In this system, only one instance

of a grouped text mined interaction is required to confirm

it as a true positive, enabling rapid validation of molecular

interactions derived from TM. Such an approach would ac-

knowledge unique interactions as the primary target of

knowledge capture rather than individual mentions, as

these are often a valuable feature used by researchers in

inferring trends from the overall interactome [e.g. in (18)].

In this study, we explore whether TM tools can be used

to create a full-scale disease-specific molecular interaction

database from start to finish. Chronic neuropathic pain is

an important public health problem, which �5–8% of the

European population suffers with (19). Current treatment

regimens are not universally adequate with only 30–50% of

patients reporting an appreciable reduction in pain and

improvement in their quality of life using the currently

available analgesic drugs such as the gabapentinoids, opi-

oids and selective serotonin reuptake inhibitors such as

Carbamazepine (20). In addition, the use of these drugs is

often limited by unwanted side effects. There is therefore a

significant need for new therapeutics, which requires a

better understanding of the mechanisms that mediate

chronic pain so that new therapeutic mechanisms might

be uncovered. However, there are no existing extensively

curated pain-specific molecular interaction databases to

facilitate this.

To build a comprehensive pain-related molecular inter-

action database, we created a pain-specific corpus of bio-

medical documents using all of the freely accessible

literature. From this pain-relevant corpus, we extracted all

molecular interactions using the existing BioContext data-

base (http://biocontext.org) constructed from the state-of-

the-art in TM. We used existing contexts from this database

and added further contexts, such as pain and disease rele-

vancy to interactions, to increase their value to researchers.

Finally, we made available the interaction data retrieved to

allow manual curation of the grouped results, with the ul-

timate aim of creating a highly accurate pain-relevant mo-

lecular interaction database.

Methods

Building a topic-specific corpus

Dictionary generation and document
retrieval. The first step in generating a full-scale biomed-

ical corpus of documents relevant to pain was to create a

pain terms dictionary that could be used to match pain-

associated biomedical text. As a basis for the pain terms

dictionary, we added terms from an online glossary (21),

various pain review articles (22–24) and an in-house term

set. Case-sensitive synonyms used in the literature supple-

mented long forms of pain terms. Ambiguous terms were

excluded, as these have been shown to increase false-posi-

tive results in IR (25, 26).

Dictionary development was iterative, with two rounds

of dictionary term review, document retrieval, manual as-

sessment of retrieved documents for absent or ambiguous

terms and dictionary modification. After an initial review of

retrieved pain documents, we enhanced the pain terms dic-

tionary to improve this procedure. Firstly, we added terms

to the dictionary that we flagged as false negatives from

the initial corpus evaluation. Secondly, we developed a

support tool able to rank strings of tokens based on the

proportion of stop words they contained and their size

(in number of words). Using this tool, we took the text

from the top-ranked 10 000 pain articles to create a list of

potential phrases that might be associated with pain. We

then manually went through the top terms in this list,

adding 33 extra terms to our dictionary. The final dictionary

contained 583 terms and 3144 synonyms.

Each term in the dictionary was assigned one of 12 pain-

related categories (e.g. pain type, disorder, pain drug,

anatomy, condition; see supplementary file 1 for details)

to provide more contextual data later in our analysis.
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Furthermore, a specificity assignment was given to each

term to reflect whether the term is specifically relevant to

the biomedical research field of pain or if it is a more gen-

eral term that could apply to other research areas but still

has a prominent relevance to pain research. For example,

the term ‘neuropathic pain’ was categorized as a pain type

and classified as ‘pain specific’. On the other hand, the

brain region locus caeruleus is not a term synonymous

with pain, but it is relevant to pain as an anatomical

region involved in the sensation; these are called ‘pain rele-

vant’. In general, terms were classified as pain specific (and

assigned a weight of 2) if they were a type of pain disorder,

a drug or surgical procedure used to treat pain, a gene with

genetic association to pain or a target of a pain drug. Pain-

relevant terms (weight of 1) tended to be anatomically or

physiologically relevant concepts. The terms and synonyms,

including their categorization and pain specificity scores,

were inspected by a biologist (RS) with pain expertise.

To match pain-specific terms from our dictionary to

biomedical text we used LINNAEUS (27), a named entity rec-

ognition tool able to match terms from a predefined dic-

tionary to text. We note that only pain-specific terms were

used for document retrieval. We implemented LINNAEUS’s

in-built post-processing feature to resolve ambiguity in the

results and allow the capture of abbreviations associated

with terms in the dictionary. We applied this to all abstracts,

titles and MeSH terms in Medline (May 2012 release) and to

full text in open access PubMed Central (PMC) (2011 release)

that were classified as review or research articles. From

herein we refer to our final pain corpus as P1.

Document relevance scoring. To quantify the rele-

vance of each retrieved document in the corpus, a document

relevance scoring scheme was developed that makes use of

both pain-specific and pain-relevant terms, as well as the

position of each term’s mention in the document (i.e. title,

abstract, MeSH or body). Each pain term matched in a docu-

ment in P1 was given an individual score based on its textual

position (2 if appearing in the title; 1 if appearing in the

abstract and in associated MeSH description of the docu-

ment; 0.25 otherwise) and the pain specificity of the term

(2 if pain specific, 1 if pain relevant). These individual scores

are then used to determine an overall document relevancy

score to pain by summing up the score of all pain terms:

document pain relevance ¼
Xn

i¼1

tipi

where ti is a term’s pain specificity weight, pi is a term’s

position weight and n is the number of pain terms in the

document. We can similarly calculate pain category rele-

vancy scores (by summing up the score of all pain terms

mentioned for each category) and individual pain term

relevancy scores (by using all mentions of a given pain

term) in each document.
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Figure 1. Diagrammatic representation of methodology. Our methodology is divided into three main parts: (i) building a topic-
specific corpus and evaluation of document scoring, (ii) data extraction (extracting molecular interactions and adding contexts)
and their associated evaluations, (iii) visualization and availability for manual curation of results. Each of these is described in
detail within the Methods section.
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Evaluations. To evaluate the effectiveness of our docu-

ment-scoring scheme, we selected all documents from P1

containing the MeSH term ‘Pain’ and then compared the

distribution of document scores for those that had ‘Pain’

as a major MeSH term and those that had ‘Pain’ as a minor

MeSH term. We also evaluated individual pain terms

matched within 50 documents that had been retrieved

in P1. To ensure that we evaluated documents across our

pain document scoring range, we randomly selected 10

that scored between 1 and 3 in pain relevancy, 10 between

3 and 10, 10 between 10 and 25, 10 between 25 and 50, and

10 with a score of �50.

Data extraction

Extracting molecular interactions. To retrieve the

molecular interactions from P1, we used the BioContext

database (28). The BioContext database was created from

a pipeline of state-of-the-art biomedical TM tools (29, 30)

applied to the whole of Medline (May 2011 release) and OA

PMC (May 2011 release). Each record in the BioContext

database is organized into an event chain originating

from a single sentence. Every event chain has a minimum

of one and a maximum of three events that were extracted

by a union of the two event extraction tools.

Events are categorized into nine types as defined by

the GENIA ontology (31, 32), covering protein metabolism

(protein catabolism, gene expression and transcription),

phosphorylation, localization, binding and regulatory

events (positive regulation, negative regulation and regu-

lation). Metabolic events, phosphorylation and localization

have a single gene, protein or RNA molecule(s) as their

theme (subject), whereas binding events have one or

more gene(s), protein(s) or RNA molecule(s) as their

theme. Regulatory events are special in that their theme

may be a gene, protein, RNA molecule or another event.

They are also unique in that they may have a gene, protein,

RNA molecule or another event as their cause. Event chains

can thus be formed involving multiple molecules and

events. For example, ‘CCK-induced expression of fos’

would create an event chain of ‘CCK Positive Regulation

(induced) of Gene Expression of Fos’. A summary of the

events and examples of the event chains that can be

formed is provided in supplementary file 2.

The genes, transcripts and proteins that form the themes

and causes of each event were extracted using GNAT (33–

35) and GeneTUKit (36). Where possible, each mention is

then normalized to a species using LINNAEUS (27) and fur-

ther normalized to an Entrez Gene ID (37) and finally a

homologene ID (38).

We took all event chains from BioContext that were

extracted from documents present in P1. We then grouped

event chains together that contained the same sequence

of proteins and events. For example, mentions of the

event chain ‘Ros1 Positive Regulation of NFKB1’ extracted

from multiple sentences and documents were grouped

into a single record. Entrez Gene IDs were used to group

proteins instead of gene symbols to prevent erroneous

grouping caused by naming ambiguity.

To group event chains involving a binding event with

two molecules we had to resolve instances where the

order of the proteins varied across analogous event

chains. For example, one event chain may be directed as,

‘Binding of CD44 and MMP9’, whereas another may vary as

such, ‘Binding of MMP9 and CD44’. Because the order of

proteins in binding events does not infer any functional

characteristic of the data (binding of CD44 and MMP9 is

the same), classing these as separate unique event chains

when grouping would be erroneous. Thus, we rearranged

binding proteins numerically using Entrez Gene IDs when

proteins were normalized or alphabetically otherwise.

During the grouping of each event chain, we recorded

the total frequency of that event chain and the number of

documents that each event chain was reported in. We also

stored the number of molecules involved in each event

chain. This enabled us to define molecular interactions as

those event chains containing two proteins, genes or RNA

molecules. Those containing only a single molecule are

referred to as single events. TM confidence scores provided

by BioContext for each grouped event chain were deter-

mined by taking the highest confidence score from the

associated event chains used in the grouping.

Molecular interaction extraction evaluation. The

individual tools used in BioContext to create the event

chains used in this study have already been extensively eval-

uated (28). We used the results from the final manual cur-

ation step (see below) for direct evaluation of grouped

molecular interactions.

Pain-relevant interactions extracted for this study should

be enriched for proteins previously linked to pain.

Therefore, we also undertook an enrichment analysis, com-

paring event chains retrieved from P1 with a set of inter-

actions derived from a random set of documents for the

presence of known pain-associated proteins. The genes/

proteins used as a gold standard pain set were taken

from the Pain Genes DB (39). This set contained 297 unique

manually curated genes. We measured how many unique

and total mentions of genes were present in our event

chains (both single events and molecular interactions).

The generic set of event chains was formed from the

same number of randomly selected Medline and PMC docu-

ments as P1, but which were not present in P1. Event chains

from this random document set (referred to as R1) were

then extracted from the BioContext database and grouped

using the same procedure as used in constructing the event

chains from P1. Unique and total mentions of pain genes

present in R1 event chains were then determined. Fisher’s

.............................................................................................................................................................................................................................................................................................
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exact test was used to statistically evaluate whether P1 was

enriched for pain genes in event chains in contrast to R1.

Adding context to molecular interactions. As well

as the species context for proteins, BioContext also contains

anatomy, negation and speculation context for each event

chain. Anatomical mentions in the text (such as ‘peripheral

nerve’ or ‘spinal cord’) and cell-line mentions used as

proxies for anatomical locations were extracted using

GETM (40). These anatomy mentions were, where possible,

mapped to events to provide details on the anatomical

location of an event.

Negation and speculation detection was provided for

each event in BioContext using a modified version of

Negmole (41). Instances of negation (e.g. ‘Lep did not

bind to Obsty1’) and speculation (e.g. ‘Lep maybe binds

to Obsty1’) are extracted and annotated on the resulting

event chain (i.e. ‘[Negative] Binding of Lep and Obsty1’ or

‘[Speculative] Binding of Lep and Obsty1’).

We additionally provide four other contextual features:

associated gene ontology (GO) terms and mutations, and

pain and disease relevance scores.

GO terms (42) and their overarching GO Slim terms (43,

44) were added to normalized proteins where feasible to

provide more functional information on proteins involved

in each event chain. This was achieved using the publicly

available Gene2Go mapping of Entrez Gene IDs to GO IDs

available on the National Center for Biotechnology

Information FTP service (45).

Point mutation context was added to proteins in event

chains by using MutationFinder to match and normalize mu-

tation instances in the text (46). MutationFinder was run only

on sentences that were the source of each event chain in our

pain set. However, because MutationFinder is unable to link

mutations to any associated protein mentions in the text, we

designed and implemented our own system to do this. We

formulated a number of priority-ranked regular expressions

to match commonly occurring textual patterns, e.g. ‘<pro-

tein> - <mutation>’ or ‘<mutation> for the <protein>’’.

Our system also allowed individual proteins to match mul-

tiple mutations, e.g. ‘mutations <mutation A>, <mutation

B> and <mutation C> for <protein>’. The regular expres-

sions used are provided at wiki-pain.org/downloads.

We designed a novel method to calculate the relevance

of each pain term to an event chain in a document (note

that this is distinct from the document relevance method

described above). The score ranges from 5 to 100 and

reflects the likelihood that a pain term is relevant to a

given event chain. The algorithm uses the document

sections in which the pain term and the event chain are

mentioned (i.e. title, abstract, MeSH and body), whether

they co-occur in a sentence, and where appropriate the

distance between the two and the order that each is pre-

sented. For example, a pain term mentioned in the same

sentence as an event chain receives a score of 75–100. Pain

terms matched in different sections to a given event chain

are given lower relevancy scores. We were then able to

produce an overall relevancy score to pain for an event

chain using individual relevance scores of each pain term

>50 to that event chain and weighting by pain term speci-

ficity. A more detailed description of the scoring calculation

with examples is provided in supplementary file 3.

The final context added to our event chains is disease

relevancy. Pain, although often considered a disease in

itself, is commonly related to symptoms of a whole host

of other diseases. To allow researchers to explore these

trends in relation to interactions, we matched disease

terms from an in-house disease lexicon (containing 4861

terms with 205 373 case-sensitive synonyms) to P1 using

LINNAEUS (27). We then adopted the same method used

in the pain relevancy scoring to calculate the relevancy of

each event chain to each disease term match and from

these the overall disease relevancy of each grouped event

chain (without the term weighting).

Context evaluations. We did not repeat the existing

evaluations performed in BioContext (28) for anatomy,

negation and speculation contexts. Similarly, mutation

detection and normalization had also been previously eval-

uated for MutationFinder (46). However, to evaluate

the mutation to protein linking method, we selected

100 event chains that matched at least one mutation in

the original sentence used to extract the data. As well as

noting true positives, false positives and false negatives we

marked true negatives defined as those mutation mentions

correctly left unlinked to a protein in an event chain.

To assess the event chain relevancy scoring system to in-

dividual pain terms, we randomly selected 100 linked event

chains and pain terms that scored >50 and another 100

that scored <50. A true positive was given if the term

bared some notable relevance to the event chain in ques-

tion, whether a direct or indirect association.

Our disease relevancy evaluation first assessed the dis-

ease term matching performed by LINNAEUS in 50 ran-

domly selected documents that had matched at least one

disease term. As above for the pain relevancy evaluation,

we selected 100 linked event chains and disease terms that

scored >50 and another 100 that scored <50 for disease

term to event chain relevance evaluation.

Availability and visualization for manual curation

To visualize and make our data available to researchers, the

MediaWiki (version 1.19) framework was used, as this plat-

form has been successfully used in other database represen-

tations (47). The primary use of this system (available at

wiki-pain.org) is to support curation of pain-related mo-

lecular interactions by providing an infrastructure for as-

sessing data proposed by TM as described above. We built
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wiki-pain.org using the MediaWiki API to automatically

upload pages constructed from our databases (48).

As a pilot, we performed manual curation on the top

1500 grouped molecular interactions (ordered by overall

pain relevancy scores) involving human, mouse or rat pro-

teins and excluding self-interactions, marking each as

either a true positive or false positive. The task was

spread across three curators, 500 assigned to D.J., 500 to

B.S. and a further 500 to three biologists (VA, LR and MK).

Traditional evaluations of events and their protein con-

stituents have focused on selecting a set of articles and

scanning the text for requisitioned data and comparing

this against the data retrieved (49). As grouped interactions

can be formed from a number of different documents, to

fully evaluate even a small number of these using a trad-

itional evaluation would require masses of documents to be

assessed. Thus, we chose to evaluate grouped event chains

by selecting individual mentions of an event chain ordered

by TM confidence and their associated sentences (and docu-

ments if needed for further verification) and used these to

determine whether an overall grouped event chain was a

true positive or a false positive. We required only one cor-

rect individual event chain of a group to determine it as an

overall true positive. While this form of evaluation requires

much less time spent reading each full article, we recognize

that as a result we do not measure the frequency of false-

negative instances.

We evaluated each individual event chain using the strin-

gent form of evaluation as described previously (17). This

evaluation requires the full event chain including all of its

participants to have been extracted and normalized accur-

ately to their correct species and Entrez Gene ID to be

classed as a true positive.

To assess the quality of our manual curation, we deter-

mined the inter- and intra-annotator agreement by one

curator blindly recurating 50 randomly selected molecular

interactions previously curated by that curator (intra) and

50 randomly selected molecular interactions previously

curated by other curators (inter). Furthermore, to assess

how many individual mentions a curator needed to

curate to determine a grouped molecular interaction as a

true positive, we sampled 100 random true-positive

grouped interactions that contained at least five mentions

of that interaction from our curated data. We then assessed

the proportion of individual mentions that were correct in

each grouped molecular interaction.

Results and Discussion

Building a topic-specific corpus

Pain terms dictionary. Figure 2 displays the final counts

of pain-specific and pain-relevant terms and synonyms for

the 12 categories of pain terms. In total there were 583

terms (235 pain specific and 348 pain relevant) and 3144

case-sensitive synonyms (1506 pain specific and 1638 pain

relevant). We note that there are high proportions of pain-

specific ‘disorder’ and ‘pain type’ pain terms. We note

that while in this study the pain terms dictionary created

was sufficient for building an accurate corpus of pain docu-

ments, future implementations of our approach in other

biomedical fields may be better suited to using existing

ontologies and controlled vocabularies for example,

SNOWMED CT (50).

Document retrieval. The total number of matches in dif-

ferent document sections of pain-specific and pain-relevant

terms for each pain term category is shown in Figure 3. There

were matches of pain-specific and pain-relevant terms in all

of the 12 categories with a large proportion coming from

disorder terms. Altogether there were 4 645 861 pain term

matches, 2 548 287 pain specific and 2 097 574 pain relevant.

Matches of pain-specific and pain-relevant terms were made

across each type of document section in P1 with a large pro-

portion being made in the abstracts. However, while this

distribution of terms across different textual sections is rep-

resentative of our corpus, we would expect that the propor-

tion of terms found in the body of a document would be far

greater had we had access to full text not available in our

Medline data set. For instance, if we exclude Medline docu-

ments from our sectional analysis, 91% of matches are found

in the body of the article.

Table 1 displays the top 10 reported pain terms in P1,

ordered by the number of documents that they were re-

ported in. Nine out of ten terms were pain specific and they

accounted for roughly 25% of all matches. From our pain-

specific matches, there were 765 692 documents (732 826

Medline and 32 866 PMC) that matched at least one term.

Of the 32 866 PMC open access documents that were part

of P1, these composed roughly 17% of the entire PMC open

access corpus in comparison with 7% of Medline from

732 826 documents. It is likely that this disparity was

caused by a greater availability of text accessible for match-

ing terms from our pain dictionary in full text documents.

This perhaps indicates that many documents that are pain

relevant in Medline have been missed, as we have not had

access to terms located in associated full text.

The overall pain document relevancy scores are summar-

ized in Figure 4. The analysis of this scoring scheme showed

that documents with the MeSH term ‘Pain’ as a major term

scored significantly higher than those that had ‘Pain’ as a

minor MeSH term when using a Wilcoxon/Krustai–Wallis

test (Z =�49.326 and P< 0.001). Further information is pro-

vided in supplementary file 4. This initial evaluation shows

that as well as being able to retrieve pain documents,

we can also differentiate between these in terms of their

overall relevance to pain using our scoring system. As well

as this overall pain relevancy score, the pain category and

individual pain term scores allow for exploration of specific
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aspects of pain. Indeed, our evaluation of the pain terms

present in 50 reported pain documents showed 100% pre-

cision and 89.6% recall (Table 7), highlighting that we have

been able to extract individual pain concepts with high

accuracy.

However, we note from Figure 4 that documents where

full text was used scored higher than articles with only ab-

stracts and titles available, highlighting a potential issue in

our scoring method when using documents of varying text-

ual lengths. At present, our method partially addresses this

by scoring terms matched in the body of an article with

0.25, in comparison to terms scored with 1 in the abstract

and 2 in the title. However, in future corpus generation, the

section weights could be adjusted to produce a score that

does not bias full text articles into being scored higher.

Data extraction

Event chains. In total there were 1 578 654 event chains

from the BioContext database present in P1. After group-

ing these event chains, there were 356 499 unique event

chains, with 261 438 single events, 93 271 containing two

participants (i.e. molecular interactions) and 1790 involving

more than two participants. Table 2 shows the frequencies

of single events, molecular interactions and interactions

with more than two participants involving proteins normal-

ized to humans, mice, rats and other species. Human,

mouse and rat proteins incorporated 44% of unique

single events and 37% of unique molecular interactions

with the other proteins in event chains being normalized

to 1230 different species. As humans, mice and rats are the

model animal species studied in pain molecular research,

these results show that there are large amounts of useful

data available for curating a pain-relevant molecular inter-

action database.

Table 3 shows the number of grouped event chains invol-

ving events of protein metabolism, binding, localization,

phosphorylation and regulation. We found large numbers

of regulatory and binding events involved in all types of

event chains and high numbers of gene expression events

in single events.

In total there were 37 628 grouped event chains that

were reported negatively at least once. Of these, 24 142

Anatomy Condition Disorder Drug Drug class Family Molecule Other Pain type Process Response Treatment

Anatomy Condition Disorder Drug Drug class Family Molecule Other Pain type Process Response Treatment
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Figure 2. Pain dictionary summary statistics. (A) Represents the numbers of pain-specific and pain-relevant terms in the pain
dictionary for each category of pain term. (B) Represents the numbers of pain-specific and pain-relevant synonyms in the
dictionary for each category of pain term.
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potentially represented contradictions with some mentions

of a grouped event chain being reported negatively and

others positively. Of those event chains that were reported

more than once, there were only 25% (369/1457) that were

reported entirely negatively (Figure 5). A total of 31 275

(26 268 single events and 4909 molecular interactions)

grouped event chains were reported speculatively at least

once. Of those event chains that had been reported more

A

B

Figure 3. Pain term matches. Pain term matches from Medline (A) and open access PMC documents (B) in each type of document
section across the 12 pain term categories are displayed. The overall percentage of pain-specific and pain-relevant terms from
Medline and open access PMC documents are shown for each type of document section. ‘Body’ represents full text excluding
abstracts and titles. MeSH refers to textual document tags used by PubMed articles in indexing.

Table 1. Top reported pain terms in P1

Pain Term Category Pain Specific Frequency Documents

Pain Disorder Yes 627 644 247 312

Anaesthesia Pain type Yes 190 376 115 614

Analgesic Drug class Yes 112 703 61 223

Headache Disorder Yes 118 956 50 249

Brain haemorrhage Disorder No 85 702 45 214

Opioid Drug class Yes 77 921 33 486

Morphine Drug Yes 119 985 33 337

Analgesia Pain type Yes 64 777 31 982

Palliative Treatment Yes 51 401 27 536

Abdominal pains Pain type Yes 33 916 25 062

‘Pain term’ refers to the individual pain term and all its synonyms. Pain terms are pain specific (yes) or pain relevant (no). Pain term

‘categories’ are defined in supplementary file 1. ‘Frequency’ refers to the total number of times that that term was mentioned.

‘Documents’ refers to the number of documents that that term was mentioned in.
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than once, 277/1207 molecular interactions and 382/20 931

single events were reported entirely speculatively.

From the 356 499 grouped events chain, 172 294 were

mapped to at least one anatomical region. Table 4 exhibits

the top 10 anatomical regions (of 2774 total) associated

with event chains retrieved from P1; these made up

�27% of all anatomical mentions in our pain data set.

We note high numbers of immune anatomical structures,

which is not unexpected with pain-related data (22).

From sentences used to extract event chains in P1,

we were able to map 2997 mutations to proteins involved

in single events and 721 mutations to proteins involved in

molecular interactions.

Table 3. Event types involved in event chains

Event type Single events Molecular interactions More than two participants

Binding 33 358 37 291 (37 315) 897 (919)

Gene expression 78 255 12 223 (12482) 95

Transcription 12 158 1238 10

Localization 27 329 5355 (5368) 50

Phosphorylation 7360 1782 (1784) 37

Protein catabolism 5296 467 6

Positive regulation 69 846 (75 064) 32 222 (35 740) 1174 (1650)

Negative regulation 52 754 (54 729) 13 698 (14 870) 541 (624)

Regulation 41 137 (42 422) 19 271 (19 783) 468 (551)

Non-redundant frequencies of single events, molecular interactions (i.e. those containing two participants) and event chains containing

more than two participants are displayed for each of the nine categories of events used by the event extractors. The numbers in brackets

represent the total number of occurrences of that event type where some events have duplicate (redundant) event types, e.g. ‘positive

regulation of positive regulation of protein A’.

0 5000 10000 15000 20000 25000 30000 35000

Mixed

All Negated

All Data

>1 Mention

>5 Mentions

0 1000 2000 3000 4000 5000 6000 7000 8000

All Data

>1 Mention

>5 Mentions

 Molecular Interactions

Single EventsA

B

Figure 5. Number of negated event chains. ‘Mixed’ refers to
event chains that have been mentioned both negatively and
positively. ‘All negated’ refers to the number of event chains
that are only mentioned negatively. Proportions of mixed and
negated data are shown for all molecular interactions and
single events that have been mentioned more than once or
more than five times.

Table 2. Event chains from P1

Involving only Single

events

Molecular

interactions

More

than two

participants

Total

Human proteins 45 731 14 568 262 60 561

Mice proteins 41 671 12 956 230 54 857

Rat proteins 26 736 7369 132 34 237

Other proteins 147 300 58 378 1166 206 844

Total 261 438 93 271 1790 356 499

Event chains are shown for those involving only human, mice, rat

and other proteins as their cause and/or theme. Event chains are

divided into single events, molecular interactions (i.e. those con-

taining two participants) and event chains with more than two

participants. Total numbers of events chains by number of partici-

pants and by proteins involved are displayed.

>50

>25<=50

>10<=25

>3<=10

>0<=3

PMCMedline

Figure 4. Document pain relevancy scores. Pie charts represent
the overall pain scores for Medline (abstracts and titles).
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Table 5 provides an overview of the overall pain relevancy

scores calculated for each unique event chain in our data

set involving human, mouse or rat proteins (the most com-

monly studied animal models in pain research) and exclud-

ing self-interactions (e.g. ‘Binding of Tprv1 and Tprv1’). The

mean overall pain relevancy score for these was 0.33, with

a median of 0.15 and standard deviation of 0.64. There

were 25 593 medium pain ranked (between 0 and 1 in over-

all pain relevancy) and 2646 highly relevant (>1 in overall

pain relevancy) unique pain molecular interactions.

In total we matched 6 792 990 disease terms in 618 487

documents from P1, allowing 3 041 109 disease terms to be

mapped to 1 402 560 event chains. Table 6 displays the top

diseases associated with P1 documents containing event

chains. While generic classes of disease terms, such as ‘dis-

ease’, ‘injury’ and ‘inflammation’, featured in the top 10,

there were also high numbers of ‘diabetes-’, ‘pain-’, ‘de-

pression-’, ‘cancer-’ and ‘HIV-’associated event chains. We

note that these have a large neuropathic pain component.

Data extraction evaluations. Table 7 displays the

results for all of the new evaluations of methods used in

this study.

Our mutation-to-protein linker (of co-occurring men-

tions in sentences) extension for MutationFinder showed

precision of 97.3% and recall of 72% to give an F score of

82.7%. The mutation-to-protein linker also showed a

99.1% true-negative rate to give an accuracy of 90.6%.

Improvements to recall can be facilitated by extending

our library of regular expressions. At present our tool is

only able to normalize proteins to mutations that are

both denoted in the same sentence; however, in our ana-

lysis we noted a large number of proteins associated with

mutations that were defined outside of the sentence. This

limitation, as well as the accuracy involved in extracting

the original event chain and the mutation mention itself,

is important to consider when using such data.

In the evaluation of pain terms relevant to event chains

with scores >50, we judged 78/100 as relevant. These

results are lower than the predicted 92/100 taken from

the average relevancy score across the 100 event chains

evaluated. We noted that ‘molecule’ and ‘family’ category

pain terms were more likely to be irrelevant to an event

chain when mentioned outside of the sentence the event

chain was denoted in. By contrast, the evaluation of pain

terms relevant to event chains with scores <50 showed that

39/100 relevant pain term–event chain pairs, whereas the

expected value was 20/100. The higher than expected

number was mainly caused by ‘disorder’ pain terms that,

although mentioned in distant sentences to the event

chain, were still perceivably relevant.

Judging from 25 documents, our disease term matching

showed a precision, recall and F score of 96%. Our

Table 6. Top diseases associated with documents
containing event data

Disease name Disease term mentions

Disease 135 367

Pain 122 233

Cancer 117 041

Inflammation 101 059

Injury 59 237

Infection 57 481

Diabetes mellitus 50 705

Stress 41 056

Depression 39 762

AIDS or HIV infection 30 872

Total 3 041 109

Here we report the total number of disease term

mentions in documents that contain at least one

event chain.

Table 4. Top 10 anatomical regions asso-
ciated with event chains

Name Frequency

Neurons 37 666

Plasma 36 969

Brain 31 775

Blood 19 291

T cells 16 092

Liver 15 650

Spinal Cord 14 453

Macrophage 13 409

Neuronal 12 368

Nerve 11 355

Total 761 990

Anatomy terms are extracted using GETM.

Table 5. Overview of overall pain relevancy scores for unique
event chains involving human, mouse or rat proteins and
excluding self-interactions

Pain relevancy

score

single

events

Molecular

interactions

More

than two

participants

Total

Low (0) 22 623 9240 191 32 054

Medium (>0,�1) 62 640 25 593 520 88 753

High (>1) 28 875 2646 42 31 563

We show the frequency of unique single events, molecular inter-

actions (i.e. two participants) and event chains with more than

two participants with a low (0), medium (>0, �1) or high (>1)

overall pain relevancy score.
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evaluation of the linking of these terms to event chains in

which relevancy scores were >50 showed 84/100 relevant

disease term–event chain pairs. The average predicated

relevance score across each linked disease term–event

chain pair was 88, indicating that our high relevance pre-

dictions were fairly accurate. However, in the evaluation of

relevancy of disease terms–event chain pairs with scores

<50, we found 30/100 disease terms to be relevant com-

pared with the 13/100 predicted. As with our low pain rele-

vancy evaluation findings, we found that disease terms

could still be relevant to an event chain even if they were

mentioned in paragraphs and sentences at some distance

from the event chain in the text. These issues for both pain

and disease relevancy can be resolved by adjusting each

approach to more closely reflect the likelihood of actual

disease or pain relevancy.

Because we are using event chains directly from

BioContext, we expect that event extraction precision and

recall will be consistent with previously reported ones (17,

28). Indeed, benchmarking against a small manually

curated gold standard of five full text documents reported

similar precision, recall and F score of 35%, 58% and 44%,

respectively. A detailed analysis is available in supplemen-

tary file 5. A comparison of TM data against existing gen-

eric manually curated databases is difficult as there are no

extensive pain-focused resources that can be used directly.

Instead, we have explored the intersection between our TM

results and iRefIndex, a large generic molecular interaction

database containing interactions from numerous species

sourced from various individual manually curated data-

bases (51). As expected, the overlap is not significant

(only 21 interactions) given the difference in the criteria

used to extract and represent the data between data sets.

We have provided this analysis in supplementary file 6.

To determine whether genes known to be related to

pain were enriched in the P1 extracted events, an enrich-

ment analysis was performed (Table 8). In total 280/297
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Table 8. Pain genes enrichment analysis

Corpus Event chains

mentioning

a pain

gene

Event

chains not

mentioning

a pain gene

Total

event

chains

% of event

chains with

a pain gene

P1 71 685 1 506 969 1 578 654 4.54

R1 47 998 2 196 618 2 244 616 2.14

P1 represents the pain corpus and R1 represents the randomly

generated generic corpus. We show frequencies of event chains

mentioning a gene from the Pain Gene DB for each corpus and

event chains not mentioning a gene from the Pain Gene DB. We

also display total event chains for each corpus and the percentage

of event chains that contain genes from the Pain Gene DB.

Fisher’s exact test showed significant enrichment of pain genes

within P1, having an odds ratio of 2.177008 with a P-value

<2.2e-16.
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genes in the Pain Genes DB were mentioned in at least one

of our event chains. These genes were mentioned in 4.54%

of event chains in P1, which was more than double the

2.14% found in R1. Fisher’s exact test confirmed P1 to be

enriched for these genes with an odds ratio of 2.18 and a

highly significant P value (<2.2e-16), suggesting that the

overall data set of molecular events recovered from our

corpus are relevant to pain.

Of the 17 genes from the Pain Genes DB that were not

mentioned in event chains from P1, 15 were mentioned in

BioContext event chains extracted from Medline and PMC

documents there were not in P1. To determine why these

genes were found outside of P1, we selected five random

articles that mentioned one of these genes in an event

chain for each of the 15 genes (75 articles in total). Of

the 75 articles, they were all pain irrelevant, with a small

number mentioning pain-relevant terms (e.g. GABA). Four

of the genes did not have a correctly reported mention in

the articles sampled, with the majority of the errors coming

from erroneous gene name normalization.

Availability and visualization for manual curation

Data availability. We uploaded the data retrieved from

our investigation onto wiki-pain.org. At the core of the

wiki are the ‘INT’ pages (Figure 6) used to display each

grouped event chain relevant to pain. Within each page

Figure 6. Example of a typical molecular interaction in wiki-pain.org. We have removed the page borders that are typical of a
Mediawiki interface and annotated each region of the page that we have designed and is novel. All ‘INT’ pages on wiki-pain.org
follow the same framework including single events and event chains containing more than two participants. The specific page
shown can be viewed by searching ‘INT106559’ on wiki-pain.org.
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summary, contextual data are displayed at the top, provid-

ing a visualisation of that event chain’s relevance to pain.

Beneath the summary information are the sentences where

the data was extracted from highlighting entities extracted

using a color-coded key. Each sentence then has its own

summary, providing links back to its original source

among other useful contexts that can be used for further

investigation.

The INT pages are named using INT IDs to enable linking

across the site. Most INT links stem from summary tables

created to help guide users to the most relevant informa-

tion. For example, the entry page on the wiki contains sum-

mary tables of all interactions and single events in the

database ordered by their overall relevance to pain.

Other summary tables can be found on gene pages, journal

pages, event-type pages, disease-term pages, etc., linking

interactions specific to page type, e.g. on the G:60628

(CXCR4) page, only event chains mentioning this gene are

displayed.

Manually curated data. The manual curation of the

top 1500 grouped molecular interactions showed 613 true

positives and 887 false positives. This means that grouped

molecular interactions have a precision of 40.87% before

they have been curated. However, if we set a cutoff of 50%

for the TM confidence (coming from BioContext), our pre-

cision more than doubled to 84.17% (117 true positives and

22 false positives). We also found that unique interactions

mentioned in more than one document were more likely to

be a true positive, with precision of 59.71% (252 true posi-

tives and 170 false positives) in comparison with 33.48%

(361 true positives and 717 false positives) mentioned in

only one document. Therefore, for supporting curation, it

makes sense to prioritize using high-confidence inter-

actions only.

Overall, the 613 true positives included 487 different

genes, with 161 human proteins, 170 mouse proteins and

156 rat proteins. These genes could be grouped into 351

homologues (by using their homologene IDs), indicating a

variety of proteins in the curated data and not simply those

proteins synonymous between species. Table 9 shows the

top 10 homologues ordered by frequency of unique mo-

lecular interactions that each is involved in. We also

found 90/276 homologues and 61/297 of the previously

identified pain-relevant genes from the Pain Genes DB in

our manually curated data set. These results indicate that

we have identified 261 additional homologous sets of

genes that could potentially be associated with pain,

including 426 specific genes.

Of the false positives, we noted commonly occurring

causes such as incorrect protein normalization to Entrez

Gene IDs and event mismatches. We also noted a large

number of false positives caused by abbreviations tagged

as proteins that were in fact other types of entities (e.g.

‘long-term potentiation (LTP)’ that was erroneously nor-

malized to the ‘LTP gene’). This problem can be resolved

by better integration of biomedical entity-tagging tools

to filter out instances of data by pre- or post-processing

that which had been previously defined as another entity

type.

To determine how many of the true-positive molecular

interactions were present in existing manually curated

databases, we checked protein pairs from our data against

MiMi (52), a large online database incorporating multiple

data sources [BIND (53), HPRD (54), IntAct (55), etc.],

through the MiMi API. In total we retrieved 59 protein

pairs in MiMi from 505 present in our data set, indicating

that the majority of our true positive (curated) data has yet

to have been incorporated into the existing curated

databases.

In the assessment of the proportion of individual men-

tions of a grouped event chain that were correct, we

removed 12 grouped interactions from the analysis that

had previously been reported as true positives and after

review were determined to be false positives. From the re-

maining 88 grouped interactions, we found 335 correctly

identified individual mentions against 105 incorrectly iden-

tified mentions, highlighting on average three true posi-

tives in the top five mentions of a grouped interaction.

These results show that for grouped interactions a high

proportion of the top five individual mentions are correct

and therefore curators do not need to spend added time

curating each and every individual mention when the over-

all grouped molecular interaction is a true positive.

Having manually curated 4% of all extracted inter-

actions, we sought to infer what proportion of the uncu-

rated interactions were likely to be true positives.

Table 9. Top 10 homologues appearing in our manually
curated data

Homologue ID Symbol Frequency

1876 NGF 53

37368 OPRM1 50

723 POMC 45

12920 TRPV1 44

88337 CALCB 40

4528 PENK 39

502 IL6 27

599 CRH 22

496 TNF 19

4537 PNOC 16

These have been ranked by frequency of unique molecular inter-

actions that each homologue is involved in, in our manually

curated data. Homologue ID refers to the ID used by NCBI homo-

logene database (http://www.ncbi.nlm.nih.gov/homologene).
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The TM confidence score for each interaction (deduced by

BioContext) separates the true from false positives rela-

tively well. The true- and false-positive interactions have a

mean confidence score of 0.3 and 0.1, respectively, and are

significantly different (P< 0.0001). We therefore fit a gen-

eralized linear model following a binomial distribution

with a logit link function to the confidence scores from

the curated data, so that we can assign a probability of

being correct to the remaining 36 732 grouped interactions.

We found that interactions with a TM confidence score

>28% were likely to be true positives. Using this measure,

we can predict that 5816 of the remaining interactions are

more likely to be true positives than false positives (see

supplementary file 7 for further details on these calcula-

tions). For this study, it took on average one working day

for a curator to curate 250 molecular interactions.

Therefore, we can assume that it would take one curator

a further 23 days to review the remaining predicted true-

positive data (those with a TM score >28%).

Manual curation quality. Table 10 shows the review

of our manual curation quality. The intra-agreement rate

was 0.84, while the inter-agreement rate was 0.9 to give

an overall agreement rate of 0.87. Cohen’s Kappa coeffi-

cient (56) showed a moderate intra-agreement rate of 0.43,

a substantial inter-annotator agreement rate of 0.80 and

a substantial overall agreement rate of 0.73. On review of

the curation results that were in disagreement, 7 of the 8

new curation results in the intra analysis were correct. Four

were caused by incorrect normalization to protein IDs and

one by incorrect protein tagging and it is likely that these

were identified in the second attempt owing to increased

experience in curating pain-related proteins. A further two

were attributed to event mismatches. In the inter analysis,

5/5 of the new curation results were correct and the ori-

ginal curation errors were again due to erroneous protein

normalization and also more complex interactions that

were perhaps more difficult to curate correctly. While this

assessment of our manual curation quality showed that our

curated results were of a high standard, they also show that

it is likely that some of the curated data that have not been

reviewed are likely to be incorrect. Therefore, to be sure

that the final curated results used in subsequent analyses

are entirely accurate, it is important to perform multiple

curations.

Conclusions

In this study we have demonstrated that a pain-specific

contextual molecular interaction database can be created

using TM to rapidly generate content and support manual

curation to confirm its accuracy. The whole process of build-

ing the pain-relevant corpus, extracting and contextualiz-

ing the interactions and curating the data took just

2 months, which is in contrast to a typical fully manual pro-

cedure that may take years. We have used the existing

state-of-the-art in TM methods to generate the core

data used in our curation (e.g. corpus generation using

LINNAEUS and event chains and context taken from

BioContext). Therefore, the approach used in this study

is not limited to the pain domain and would potentially

suit many other biomedical fields that consider molecular

interactions a focal point of the research. For example, the

approach could be repeated for another topic by applying

a relevant dictionary to generate a corpus in the same way

as for pain and using this as a basis for data extraction

and curation. To facilitate such instantiations of our

approach in other fields, we have therefore provided a

full list of methods used in this study on wiki-pain.org/

downloads.

As well as the existing TM methods and data used in this

study we have also proposed a (i) new method for scoring

documents for their relevance to pain and any individual

concepts; (ii) new methods for determining the relevance

of an event chain to pain or disease terms and (iii) a novel

sentence-based mutation-protein linking extension

to MutationFinder. Furthermore, wiki-pain.org is the first

extensive pain-specific molecular interaction database that

researchers can use to explore context specific pain data

extracted from the literature.

Table 10. Manual curation evaluation

Analysis TPs before TPs after FPs before FPs after Agreed Disagreed P(A) P(E) K

Intra 18 12 32 38 42 8 0.84 57.3 0.427

Inter 27 22 23 28 45 5 0.9 49.5 0.802

Overall 45 34 55 66 87 13 0.87 51.6 0.731

We evaluate the quality of our manual curation using an intra analysis (data quality is evaluated by the same curator), an inter analysis

(data quality originally curated by a different curator is evaluated) and these two are combined to show an overall evaluation of our

manual curation. We present the number of true positives (TPs) and false positives (FPs) in the original curation (before) and the new

curation results (after). Results that were the same were marked as ‘Agreed’ and those that were different, ‘Disagreed’. The absolute

agreement, P(A), was calculated from the proportion of agreement (agreed/disagreed). Cohen’s Kappa coefficient (K) was calculated

from the proportion of agreement, corrected for expected agreement by chance [P(E)], such that K = {[P(A) – P(E)]/[1-P(E)]}.
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In the future, we wish to continue curating the grouped

molecular interactions for pain and to expand this curation

process to each individual context to ensure that all of our

data is accurate. We then plan to investigate more closely

the biological implications of the data. For example, it

would be interesting to compare and contrast the most

connected and frequently occurring proteins between dif-

ferent pain-related disorders and anatomical regions.

Furthermore, our procedure has been carefully designed

so that additional context can be built into our database

and adding aspects such as chemical interactions will be

considered.

Supplementary Data

Supplementary data are available at Database Online.
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