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Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health

impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is on-

going research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links

with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become

available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present

metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic

diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from

a range of experiments and model organisms alongside tools for exploring them. The current version brings together

information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-

wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from

mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a

corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface

contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis

tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces

and automatic code generation in several languages are supported, and many of the features of the web interface are

available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query

system makes metabolicMine a valuable research resource. The web interface makes it accessible to first-time users,

whereas the Application Programming Interface (API) and web services provide convenient data access and tools for

bioinformaticians. metabolicMine is freely available online at http://www.metabolicmine.org

Database URL: http://www.metabolicmine.org
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Introduction

Metabolic disorders, thought to result from the interaction

of genetic factors with the environment (1), are seen as a

global health concern (2). Diabetes alone is reported to

affect in excess of 285 million people and constitutes one

of the leading and growing causes of mortality worldwide

(3). Novel genome-wide approaches to the study of disease

susceptibility have yielded some interesting results, leading

to the discovery of a number of genes implicated in

common metabolic diseases (1, 4, 5), including an interna-

tional effort to find loci associated with type 2 diabetes (6).
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The challenge from here is to take this research further by

identifying a more complete set of susceptibility genes, as

well as using existing knowledge to provide insight into the

molecular mechanisms underlying metabolic diseases.

Genomics and proteomics methods are perfectly suited

to this task in terms of providing a system-wide view neces-

sary for understanding complex diseases, but they come

with their own set of interpretation challenges. Although

integration of different kinds of data has the potential to

add considerable power and robustness to data analysis (7),

asking questions across domains of biological knowledge

also requires significant effort and expertise (8). The

range of, sometimes very large, data sets in a wide variety

of formats and locations presents researchers with a signifi-

cant task of assembling data into a common format to

enable integrative analysis. Additionally, having to select

from the vast array of available analysis packages and

tools adds further layers of complexity. A consultation

with our research collaborators revealed a need for an inte-

grated genomics and proteomics resource to address some

of these issues, such as providing easier data integration

and identifier resolution, as well as data collation and

analysis. metabolicMine was developed with these needs

in mind.

A number of databases relevant to metabolic disease

research already exist. These range from genetic databases

such as OMIM (9) and T2D-Db (10), rare metabolic disease

databases based on individual case reports such as

RAMEDIS (11), to general metabolic and endocrine data-

bases such as the Human Metabolome Database (12) and

Hmrbase (13). In addition to the aforementioned custom

databases, there are a number of data integration plat-

forms available, including BioMart (14), BioWarehouse

(15) and InterMine (16). metabolicMine has been built

with the InterMine platform because it provides a useful

combination of features including fast keyword searches,

a flexible querying system, list analysis, visualization

tools and a space for researchers to save their own lists

and queries.

metabolicMine contains a range of human data sets

and also related rat and mouse data, allowing researchers to

draw on a wide range of biomedical studies. Comprehensive

genetics, genomics and proteomics data sets, such as the

ones from Ensembl, NCBI and Uniprot, include all records

for the specific taxons and are included in full for human,

rat and mouse data. These datasets are integrated alongside

complementary full-data collections containing metabolic

disease-relevant subsets, e.g. metabolic pathways from

KEGG and Reactome, the Genome-Wide Association

Studies (GWAS) Catalogue (containing various type II dia-

betes, metabolism and obesity studies) and gene expression

data from studies profiling metabolic disease-relevant tis-

sues and subjects. The collection of diverse integrated data

sets, along with facilities for more in-depth data mining,

makes metabolicMine a potentially valuable resource to

the metabolic disease research community.

Features

metabolicMine allows researchers to perform data analysis

drawing on a wide range of data sets relevant to metabolic

diseases. It provides a number of tools for this. In brief, the

web interface provides researchers with a way to browse

through the data, input their own lists, construct and run

queries, as well as visualize, save and export the results.

Alongside the keyword search and query capabilities, a

region search tool is also included. To save the analysis

results, a private ‘MyMine’ workspace exists for storage of

lists and queries. The outputs of queries can be used as the

basis for further queries and list analysis, thus allowing it-

erative analysis. The results can be exported in a variety of

formats, and can also be exported directly to Galaxy (17).

Here, we present a more detailed overview of the main

metabolicMine features, using a range of examples to illus-

trate the tools available and their utility.

Data browsing

The QuickSearch tool provides full-text searching across all

fields of the database. It supports the use of identifiers (e.g.

gene symbols, accession codes, PubMed identifiers), key-

words (e.g. diabetes) and authors (e.g. Sanger F), and ac-

cepts wildcards (*) and the Boolean operators AND, OR and

NOT. This enables exploratory data browsing, as well as

quick access to specific information. For example, a broad

search for ‘diabetes’ gives >8000 results, ranging from

genes and publications to pathways, disease descriptions

and GWAS results. Faceted filtering options then enable

further refinement by category or by organism (Figure 1).

Thus, filtering the ‘diabetes’ search to only include the

‘Gene’ category gives 1407 genes—around 800 human,

400 mouse and 100 rat—for which there is evidence (e.g.

from UniProt curated comments and GWAS studies) for

association with diabetes. From here, there are links to

the report pages for individual diabetes-related genes.

Alternatively, researchers interested in a particular gene

can find the information about it quickly—a search for

the diabetes-associated gene HNF1A leads to information

about the human, mouse and rat homologues, as well as

links to a range of associated publications.

Report pages

Each data object in metabolicMine has a report page, which

typically contains information collated from a range of dif-

ferent data sets. Tables, interactive graphical displays and

links enable researchers to explore each kind of data, for

instance giving them a broad view of the many different

functions an important gene, or other data object, may

have. In addition, as all data are interlinked and have
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their own report pages, the report pages serve as a starting

point for further data exploration. Support for synonymous

names is included as part of identifier resolution. Here, we

illustrate the utility of report page features by using them

to explore information about the human diabetes gene

PPARG.

Using QuickSearch, the first search result for PPARG leads

to the gene report page (Figure 2). Here, one can discover

that this gene is a nuclear receptor involved in adipocyte

differentiation, and that PPARG defects are associated with

conditions including diabetes and hypertension and may be

connected to obesity susceptibility. Staining data from

ProteinAtlas (18) indicate that the presence of PPARG

is strongest in the digestive tract (Figure 2B). The disease

gene expression data for ArrayExpress (19) show the gene

is strongly upregulated in a number of cancers

including bladder, prostate, esophageal and colorectal

cancer, as well as in conditions such as irritable bowel

syndrome and polycystic ovary syndrome (Figure 2C). This

fits with a suggested link between the upregulation

of PPARG, a collection of risk factors sometimes termed

‘metabolic syndrome’, and susceptibility to certain types

of cancer (20).

Links to �1400 publications featuring this gene

are included, and at a glance implicate it in a range of

conditions ranging from colitis and fatty liver to osteopor-

osis. Like all results tables, the publications data can be

exported and potentially used for text mining. Pathway

information is also available, and indicates reported roles

in five pathways, including the PPAR signalling pathway, as

well as thyroid cancer and Huntington’s disease. The path-

way names are linked to the lists of genes present in the

pathway in question, which can then be exported, or

explored further using list analysis pages.

Another feature of particular interest to experimental

scientists is the incorporation of key data from model or-

ganisms. This means that the researcher can immediately

see that there is a PPARG mouse homologue, and that the

alleles have a high prevalence of insulin resistance pheno-

types, among others (Figure 2D). Exploration of the mouse

allele data can identify mouse strains useful for further

studies, as well as additional genes sharing the same

phenotype. This facilitates serendipitous biological discov-

ery, as well as helping researchers explore a range of rele-

vant resources.

List analysis

Genomics and proteomics experiments often generate

large lists of genes, proteins or sequence variants. A

common goal for the researcher is to prioritize these into

Figure 1. Keyword search and faceted results filtering in metabolicMine. A researcher conducts a broad keyword search with the
word ‘Diabetes’. The search engine operates across all data fields, and a category filter shows the different data types matching
the search terms (e.g. Gene, Protein, GO Term or GWAS). The Lucene indexing library generates a score from 0 to 1 for the
keyword search, based on how closely the search term matched what is in the search index. The results can then be refined by
Category (by selecting, for example, ‘Gene’ or Publication) or by Organism (human, rat or mouse).
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Figure 2. Detailed view of a metabolicMine gene report page, focusing on the gene PPARG. Report pages collate information
from a range of data sets and include visualization tools and further links. (A) Previews provide summary counts for key data
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sets of candidates for further study [see (21) and references

therein]. This becomes particularly challenging when

analysing the output of high-throughput experiments,

where thousands of genes might be flagged in the same

experiment, making the identification of candidate genes

through manual curation extremely time-consuming.

To help address the aforementioned challenges,

metabolicMine allows researchers to both upload lists of

items from external sources and create lists from search

results. Identifier resolution takes place automatically,

meaning that users can upload old identifiers, and these

can be converted to current identifiers through their syno-

nyms [for more information on the technical aspects of

identifier resolution, see Smith et al. (16)]. Each time a list

is created (or if an existing list is visited from the Lists tab),

the researcher is presented with a list analysis page that

combines collated data and summary statistics. This enables

sets with similar properties (e.g. functional annotations

or pathway membership) to be quickly identified, making

it particularly well suited to the task of data filtering

and exploration. The ‘list analysis’ pages include graphical

and statistical tools (‘widgets’), which summarize and

highlight properties of the list, and also provide further

opportunities to filter large lists to a smaller set of interest-

ing candidates.

To illustrate the features of the list analysis tools, we

randomly selected a list of 450 human genes and seeded

it with 50 human genes annotated with the gene

ontology (GO) term ‘insulin receptor signaling pathway’

[GO:0008286], producing a sample of 500 genes (included

as a Supplementary Data). Uploading the gene list to

metabolicMine automatically generates summary statistics

for a range of data sets, including GO enrichment and path-

way enrichment (Figure 3A). The GO enrichment widget

identifies 52 insulin receptor signalling genes, including

all of the seeded 50. Likewise, the pathway enrichment

widget identifies the insulin signalling pathway from

KEGG as the top result, and the enriched publications de-

scribe members of the insulin signalling cascade, such as PI3

kinase and mTOR.

The utility of these enrichment statistics tools rests on

the fact that they calculate which properties are

Figure 3. List analysis tools. List analysis pages contain a number of graphical and statistical analysis tools (‘widgets’). Here, we
show examples of the tools available, using 450 randomly selected genes with 50 insulin receptor signalling pathway genes
spiked in. (A) The GO enrichment analysis correctly identifies the 50 genes involved in the insulin receptor signalling pathway,
along with 3 others that happened to be in the random gene list. (B) The publication enrichment widget identifies a number of
articles describing members of the insulin signalling cascade, such as PI3 kinase and mTOR. (C) The pathway enrichment widget
identifies the insulin signalling pathway from KEGG as the top result. This highlights how list analysis can be used to identify
relevant target genes from a larger original gene set, for instance, one derived from a gene expression study.

Figure 2. Continued
sets, helping the user identify relevant information. (B) Heatmaps are used to indicate PPARG protein levels in different tissues
based on staining results in Protein Atlas. (C) Disease expression data from ArrayExpress is visualized, enabling exploration of
links with different diseases. (D) The phenotype Tag Cloud is associated with the available alleles of the mouse PPARG homo-
logue, enabling researchers to find interesting mouse strains for further experiments. Phenotypes with more alleles are displayed
more prominently. (E) Human disease associations are summarized in tabular form and hyperlinked to the relevant report pages.
(F) An interactive graphical tool enables exploration of PPARG’s interactions with other genes, generated using data from IntAct
and BioGRID.
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significantly over-represented in the list, and rank the prop-

erties according to the probability of them being present in

a randomly selected set of the same size, with a choice of

methods to compensate for multiple testing. The P-values

are calculated using a hyper-geometric distribution, with the

background population being all the genes in the organism

in question, with the Holm–Bonferroni correction applied to

the P-values unless the user specifies otherwise. The docu-

mentation can be found online at http://intermine.readthe-

docs.org/en/latest/embedding/list-widgets/enrichment-wid-

gets/. This allows the user to find and focus only on the terms

most relevant to the list in question, highlighting any surpris-

ing enrichments. These are then displayed alongside other

data, such as known interactions with other genes loaded

from IntAct (22) and BioGRID (23), and links to homologues

in the yeast, fly and rat InterMine databases [(24–26), re-

spectively]. Further information about the data is also

included in metabolicMine, such as the interaction evidence

codes from IntAct (22) and BioGRID (23). In addition, results

from a set of commonly used ‘template’ searches are auto-

matically displayed on the page, with the effect of collating

information about the list members, such as single nucleo-

tide polymorphism (SNPs) or GWAS associated with the

genes.

Data querying

Although report pages and list analysis pages provide

two powerful ways of viewing and analysing both single

entities and sets of data, metabolicMine also provides

tools for performing sophisticated searches across all

of the integrated data. There is a library of predefined

‘template’ searches, created and modifiable using the

QueryBuilder. These consist of simple forms with drop-

down lists and text boxes with auto-completion, where

users can specify filters (Figure 4). Some of them are

simple searches, such as ‘Search for proteins containing a

particular protein domain’ or ‘Find the predicted mouse

orthologues for a particular gene’. Others include more

complex searches, sometimes querying a number of data

sets: for example, for the candidate gene(s) identified in a

GWAS, show which genes they interact with. Importantly,

researchers can constrain their searches to lists of items that

they have previously saved, enabling analysis of sets of

genes in one step.

When a template search is executed, the results are re-

turned in table format. As searching large data sets often

produces many lines of output, results tables support a

range of spreadsheet functionality to aid navigation,

including column operations (sort, add-remove-hide col-

umns, re-order columns) and in-place filtering. Data sum-

maries are available for each column: for instance, for

numeric data, simple summary statistics are provided,

whereas for text data, the frequency at which terms are

used is listed and additionally, these summaries provide

options to filter results. Results tables also support list

operations (including the creation of new lists or addition

of items to an existing list) and allow flexible export

of results in a range of different formats such as tab-

separated (TAB) comma-separated (CSV), XML, gene fea-

ture format (GFF) and UCSC browser extensible data (BED)

format. New lists can be derived from all or selected mem-

bers of appropriate columns, facilitating iterative analysis.

Figure 4. An example template search. MetabolicMine includes a library of template search forms—predefined searches
designed to perform a particular task. Each one contains a description and a form, with default values, to fill in. In this example,
the template compares two lists of genes and shows which genes from the two lists are members of the same pathway(s).
Users can also modify templates and create their own using the QueryBuilder.
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Advanced users can modify templates to create new

types of search, or directly create their own queries using

the QueryBuilder tool. The QueryBuilder is a tool, which

allows users to navigate through the integrated data

model and build a query by (i) applying filters to the rele-

vant data and (ii) selecting data fields that they wish to

see in their results. The advantage of the QueryBuilder

is that it allows users to combine data in any way they

wish and produce a results table with exactly the columns

of data that they require. Importantly, each template

search can be edited using the QueryBuilder, for instance,

filters can be removed or further ones added, or the

choice of output columns can be changed. Thus, templates

can be used as a starting point in the generation of

related searches. The modified templates can then

be saved for further use in the workspace of the user’s

‘MyMine’ account. The QueryBuilder is a powerful tool,

allowing users to construct precise data mining queries

according to their own specifications and aiding

exploratory data analysis by allowing data to be combined

in novel ways.

Template and/or QueryBuilder searches provide a con-

venient tool for answering specific questions and linking

parts of analysis together (Figure 5). Templates can be

combined with the different aspects of the metabolic

Mine interface. For instance, a researcher investigating

diabetes susceptibility views the human PPARG gene

report page and identifies mouse alleles with phenotypes

related to insulin resistance. The researcher is interested in

other genes that give the same phenotype. Entering the

phenotype term ‘insulin resistance’ into the ‘Phenotype to

Alleles’ template search form identifies 133 mouse genes

sharing this phenotype. Creating a list from the results

table, the researcher reaches the list analysis page, which

automatically runs a number of enrichment algorithms on

the data. As might be expected, the GO enrichment

widget indicates that 28 of these genes are involved in

‘response to insulin stimulus’ [GO:0032868] (P< 4.7E-28).

Figure 5. Using metabolicMine to uncover additional candidate genes. A researcher viewing the human PPARG gene report page
finds mouse alleles with an insulin resistance phenotype. Conducting a template search (Phenotype ! Alleles) using this pheno-
type term identifies 133 mouse genes sharing this phenotype, which can be saved as a list. The list is presented on a list analysis
page that automatically runs a number of enrichment algorithms on the data. The GO enrichment widget identifies a subset
of 26 genes involved in fatty acid metabolic process [GO:0006631] (P< 1.3E-15) that can be saved as a new list. Converting this
list to their human orthologues shows enrichment for the adipocytokine signalling pathway. In addition, the top hit from the
publications enrichment widget describes human genes associated with high-density lipoprotein cholesterol (HDL-C). Together,
these provide the researcher with additional candidate targets for exploring interventions for insulin resistance and
dyslipidaemia.
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Additionally, 26 genes are involved in fatty acid metabolic

processes [GO:0006631] (P< 1.3E-15). Accessed through

the hyperlinked number, the researcher may view these

fatty acid metabolism genes as a new results table and

convert it to a new gene list for further analysis.

An important step in translational genomics is

taking data from model organisms and extracting meaning

from it to further human disease research. metabolicMine

makes finding orthologues straightforward. In the

aforementioned example, following the ‘H. sapiens’

orthologues link automatically creates a new list of

25 human genes orthologous to the 26 mouse genes in

question using data from Ensembl Compara. Again, the

GO enrichment widget on the list analysis page shows

enrichment for lipid processes but, interestingly, the

top hit from the publications enrichment widget de-

scribes human genes associated with high-density lipo-

protein cholesterol (HDL-C), perhaps providing the

researcher with additional candidates, e.g. dyslipidaemia

interventions.

Region search

For many of the loci implicated in metabolic disease, such

as the ones flagged in GWAS, it is not always clear which

underlying variant or gene is involved (27, 28). Some loci

contain multiple ‘plausible’ candidate genes, whereas

other loci harbour no protein-coding genes at all, with

many of the proposed disease-associated variations iden-

tified in GWAS occurring within gene deserts or other

types of non-coding DNA (29, 30). This is problematic, as

the correct identification of reliable localized markers,

such as susceptibility SNPs, is crucial both to furthering

our understanding of the diseases in question and to

offering more precise diagnostics.

With this in mind, metabolicMine supports analysis of

genomic intervals for either human or mouse through its

regions search interface. This tool allows researchers to

upload a set of chromosome coordinates and retrieve a

list of genomic features such as genes, SNPs or non-

coding RNAs contained within the region. A ‘liftover’ (31)

service enables update of coordinates built on older

genome assemblies, and uploaded intervals may be ex-

panded bidirectionally by up to 10 Mb. In Figure 6, we pre-

sent an example generated from genomic interval

coordinates in the region of the genes PPARG, UBASH3A

and TSPAN6. The interactive genome browser shows the

UBASH3A area on chromosome 2, along with SNPs located

in this region. Results are presented in order along each

chromosome and are linked to the relevant report pages

allowing further exploration of individual features found,

such as genes, mRNA and SNPs. As with all of metabolic

Mine’s results pages, there are options to create lists from

the genomic features, or export features in a range of

useful formats.

Future developments of the regions search will expand

the range of genomic features to include regulatory mar-

kers such as sites of transcription factor binding and histone

modification [e.g. from the ENCODE project (32)] and

also allow analysis of intervals in the context of haploblock

linkage disequilibrium information.

Figure 6. Regions Search. Analysis of genomic intervals using metabolicMine’s regions search, showing gene feature results from
an uploaded list of genomic regions. (A) The embedded interactive genome browser allows a visual exploration of the results.
(B) The results can be exported in a range of formats, including TAB, CSV, GFF, BED and FASTA. (C) The table displays results
hyperlinked to individual report pages.
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Construction and content

System architecture

A detailed description of the InterMine system has already

been published elsewhere (16). Briefly, the core of it is

based around an object/relational mapping system written

in Java, which accepts object queries from a web applica-

tion, and executes them in a PostgreSQL (33) relational

database. To optimize the speed of the queries, InterMine

makes use of a custom-built query optimizer that rewrites

SQL queries to make use of pre-computed tables. The

underlying data model is described through a simple XML

file and the database schema, and corresponding Java

classes and web application are automatically generated

from this, reducing system maintenance time. InterMine

contains an easily extensible data model specifically written

for handling common types of biological data. In the

20 June 2013 Beta release, the metabolicMine database

contains 318 million objects, and took 60 hours to build

using a dedicated 16 core, 96 GB RAM build machine. Pre-

processing of data forms a large part of the build time;

some data are loaded from flat files, whereas others are

loaded from database dumps. For example, the 54 million

SNPs integrated in this build were retrieved from a local

copy of a MySQL database through a number of queries

covering multiple data tables. This builds a large pre-

computed table that can be loaded into metabolicMine,

taking between 10 and 14 h to integrate depending on the

load on the build machine. The size of the database without

pre-computed tables is 625 GB, whereas with them the size

is �2.4 TB. With this many objects, database indexing can

account for a significant portion of build time (typically

30–40% or 19 h of processing). The main bottlenecks in the

build process are related either to data quality or to machine

tolerance and load. For example, errors in data sources are

caught by the in-build test that halts the build until the error

can be identified and fixed. Also, the intensive flow of com-

munications between and within databases can, occasion-

ally, cause time-outs, which interrupt the build. In-build

and post-build testing typically takes 1–2 days—usually

split equally between a database developer (in-build tests)

and a biologist (post-build tests). During the testing phase, a

number of scripts perform data quality checks, which look at

consistency and technically accurate data integration—e.g.

highlighting and resolving missing, duplicate or inconsistent

fields. Approximately half of the database releases complete

without error and, of the builds that fail, most problems are

resolved easily (e.g. database communication errors).

However, �20% of errors require additional rebuild time

and effort from both developer and biologist (e.g. a

source data format change, which requires modification of

the parsing scripts). More information on establishing your

own InterMine instance can be found in Smith et al. (16),

with tutorials available at http://www.intermine.org.

However, although establishing an InterMine instance is

relatively straightforward, building a resource as large as

metabolicMine requires a lot of further work in terms of

data loading and integration, as well as testing and main-

tenance. The InterMine APIs provide the opportunity to use

metabolicMine integrated data and resources as a starting

point for building other applications without needing to

replicate the effort of building and maintaining

metabolicMine itself.

Web services

For bioinformaticians, metabolicMine can also be accessed

programmatically via RESTful web services. InterMine’s

client libraries are available in a number of popular pro-

gramming languages including Python, Perl, Ruby, Java

and JavaScript. These client libraries give researchers

access to all core functionality, as well as to metadata and

specialized resources. This provides methods for powerful

automation of analysis workflows, easy access to bulk

customized data sets, as well as enabling complex interro-

gation of the data. Further to this, new resources can be

developed using the web services. A recent example of this

is the YeastGenome iPhone application developed by the

Saccharomyces Genome Database (34) from their InterMine

database, YeastMine (24).

Links to general documentation about InterMine are

available at http://www.intermine.org, and information

specific to web services including sample code is available

at http://intermine.readthedocs.org/en/latest/web-services/.

To further ease the web services learning curve, automated

code generation is available for all queries within the

InterMine web application—when a template or a query

is selected, links to the automatically generated code for

running the query via an API in Perl, Python, Ruby and Java

are provided at the bottom of each query page.

Data quality checking

Automated and manual data validity checks are used to

ensure the quality of the integrated data. For instance,

data download scripts automatically check for new versions

of data and perform basic validation including formatting,

content and file integrity. Data parsers then load data

into metabolicMine, and during this process many data

validation and integration checks are carried out. For

example, this includes an identifier resolution system,

which performs and checks the reconciliation of identifiers

across data sets from different data sources and genome

versions. This system allows older data sets to be integrated

successfully alongside new ones into a current InterMine

database.

A number of automated tests are run after each data-

base build to assess successful integration. These include

consistency checks for the number of database objects

.............................................................................................................................................................................................................................................................................................
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created, the presence of duplicate objects, missing or empty

fields or incorrect data types. Further scripts execute a cata-

logue of both simple and complex queries that, to execute

successfully, require different data sources to be present

and integrated correctly. Comparing the results of these

queries between database releases is a powerful way

to identify any problems that have occurred during the

database build. We are in the process of exposing our

test results at http://ci.intermine.org/

Data sources

metabolicMine integrates a wide variety of metabolic dis-

ease data, ranging from the known functions of genes and

proteins [e.g. from RefSeq (35), UniProt (36)] to data sets,

which may allow further inference of function, regulation

and possible disease associations. GO (37) annotations pre-

sent functional information, whereas gene expression, pro-

tein–protein and genetic interactions can reveal regulatory

principles. Further to this, disease data are included, such as

GWAS (38), OMIM (39) and mouse phenotypic alleles (40).

A list of data sources integrated in the current release of

metabolicMine is given under the ‘Data’ tab on the website

front page, and is listed in Table 1.

Conclusions

metabolicMine is an integrated information resource facil-

itating genetic and genomic analysis of metabolic diseases,

from finding relevant data sets and examining them, to

providing an infrastructure that facilitates in-depth ana-

lysis. metabolicMine is unusual in the degree to which it

gives access to relevant heterogeneous data sources.

metabolicMine is designed to help address some of the

difficulties specific to performing integrative analysis. The

data are presented in a standard format, bypassing, from

the point of view of the user, the usual difficulties of dealing

with data from heterogeneous sources. Furthermore, the

data origin and metadata are preserved, enabling the re-

searcher to make judgement calls about the use of particular

data sets, and trace them from their original sources.

The summary information on particular genes is useful

in terms of collating information in one place and facilitat-

ing the retrieval of data sets, saving researchers’ time

and potentially introducing them to new and useful data.

Further to that, the list analysis capacities help to distil

the meaning from high-throughput experiments and

large gene lists, making it easier for the researcher to

glean biological meaning. This facilitates serendipitous re-

search finding, by presenting an overview of results from

standard tools that the researcher may not have otherwise

had time to use. Finally, the advanced query capabilities

of metabolicMine mean that users can answer specific

and sophisticated biological questions while drawing on a

large number of data sources without the high level of T
a
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bioinformatics expertise that these types of analysis would

typically require.

Following the successful implementation of

metabolicMine as a pilot for integrating diverse human

data and interoperating with model organism data, it is

envisaged that the role of metabolicMine will be expanded

to cover other disease areas, as part of the HumanMine

project, starting in July 2013. One of the specific improve-

ments we are planning as part of this is the inclusion

of metabolomics data. Metabolomics has the potential

to bridge the gap between genotype and phenotype,

particularly in the study of common metabolic disorders.

A number of public metabolomics reference databases

and repositories have already been created, including

HGMD (12), KEGG (41), HumanCyc (42), BiGG (43),

LipidMaps (44), PubChem (45), ChEBI (46) and

MetaboLights (47). Although currently we do not include

metabolite data as part of metabolicMine, we eagerly

await the wider adoption of metabolomics standards and

intend to continue expanding and updating the metabolic

disease data sets available, as part of a broader focus on

the genomics of human health. There are also a large

number of further data sets that can be added, including,

for example drugs and their related diseases and targets.

Along with providing a broader base for human genomics,

we will also focus on strengthening the facilities available for

translational genomics, and thus enabling researchers to

draw on a wealth of model organism experimental data

alongside the human studies. This is being undertaken as a

collaboration between InterMine (16) and five major model

organism databases (MODs), including budding yeast (SGD,

34), rat (RGD, 48), zebrafish (ZFIN, 49), nematode worm

(WormBase, 50) and mouse (MGI, 51), known as the

InterMOD consortium (52). All of the MODs have built or

are in the process of building their own InterMine in-

stances—the first time these widely used resources have con-

verged on a common software platform. Shared standards

are being implemented, and further comparative tools are

being developed to enable users to draw on a wide range

of data to complement their research. This will provide

researchers with not only a platform for interoperation

with the MODs but also a greater depth of biomedical data

to support research into the underlying processes that

produce complex human disease. As such, HumanMine/

metabolicMine data will be central to the interpretation of

model organism data in a biomedical context.

In conclusion, metabolicMine presents a powerful

framework for an integrative analysis of metabolic data,

and one that will continue being updated and improved

long-term. Given the importance of the data and the

research surrounding it, combined with the data integra-

tion and powerful query capacities, we hope that this

resource should be invaluable in the field of metabolic

disease research.

Supplementary Data

Supplementary data are available at Database Online.
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