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Improving the prediction of chemical toxicity is a goal common to both environmental health research and pharmaceutical

drug development. To improve safety detection assays, it is critical to have a reference set of molecules with well-defined

toxicity annotations for training and validation purposes. Here, we describe a collaboration between safety researchers at

Pfizer and the research team at the Comparative Toxicogenomics Database (CTD) to text mine and manually review a

collection of 88 629 articles relating over 1 200 pharmaceutical drugs to their potential involvement in cardiovascular,

neurological, renal and hepatic toxicity. In 1 year, CTD biocurators curated 2 54 173 toxicogenomic interactions (1 52 173

chemical–disease, 58 572 chemical–gene, 5 345 gene–disease and 38 083 phenotype interactions). All chemical–gene–dis-

ease interactions are fully integrated with public CTD, and phenotype interactions can be downloaded. We describe Pfizer’s

text-mining process to collate the articles, and CTD’s curation strategy, performance metrics, enhanced data content and

new module to curate phenotype information. As well, we show how data integration can connect phenotypes to diseases.

This curation can be leveraged for information about toxic endpoints important to drug safety and help develop testable

hypotheses for drug–disease events. The availability of these detailed, contextualized, high-quality annotations curated

from seven decades’ worth of the scientific literature should help facilitate new mechanistic screening assays for pharma-

ceutical compound survival. This unique partnership demonstrates the importance of resource sharing and collaboration

between public and private entities and underscores the complementary needs of the environmental health science and

pharmaceutical communities.
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Introduction

Manual curation of the scientific literature is a specialized

endeavor that transforms authors’ free-text information

into annotated knowledge, via the use of controlled voca-

bularies and ontologies, by professional biocurators (1–2).

This process helps standardize, harmonize and organize dis-

parate data from scientific publications into a structured

format, making it more manageable and computable for

analysis.

Safety researchers from Pfizer Inc., the world’s largest

research-based drug company (3), set out to leverage dec-

ades’ worth of toxicity data from the published literature to

help build a comprehensive database of drug–event rela-

tionships. A critical feature of drug development is pharma-

ceutical compound survival, wherein new molecular entities

are allowed to continue through clinical development by

demonstrating positive efficacy as well as safety (4).

Advanced screening methods can improve early detection

of safety issues during compound development; however, a

comprehensive reference set of molecules with well-

defined toxicities is vital for training and validation pur-

poses, as this defines the confidence in being able to

apply new assays or technologies to safety assessment. In

addition, the availability of high quality and extensive ad-

verse drug event annotations is critical for generating novel

hypotheses that can facilitate new mechanistic screening

assays. Unfortunately, public resources of drugs and their

side effects amenable to computational methods are limit-

ed. DrugBank, a comprehensive database for therapeutic

drug information (5), provides side effects only as brief

free-text without references. The Food and Drug

Administration hosts the Adverse Event Reporting System

(FAERS), where drug makers, prescribers and consumers can

submit reports of drug-induced side effects, but sophisti-

cated data mining algorithms are required to detect

safety signals before they are reported in the literature

(6–7). SIDER mines drug labels to create a database of

drugs, side effects and side effect frequency (8). However,

neither of these last two sources takes advantage of the

scientific literature, in which drug-induced phenomena

are documented in a variety of settings, such as in vitro

and in vivo methods, across species, for approved indica-

tions, off-label uses and for drugs in development.

To aid Pfizer safety researchers in the development of a

comprehensive database for literature-based drug-induced

events, a collaboration was initiated with the staff at the

Comparative Toxicogenomics Database (CTD), a public

database that promotes understanding about how the mo-

lecular interactions between environmental chemicals and

genes affect human health (9–11). CTD biocurators have

extensive expertise in reviewing the peer-reviewed

scientific literature and manually curating a triad of chem-

ical–gene, chemical–disease and gene–disease interactions

(12–14). CTD software engineers integrate these data with

each other and with external datasets to generate novel

inferences between chemicals, genes, diseases, Gene

Ontology (GO) annotations and pathways; predict molecu-

lar pathways affected by chemical exposures; and identify

similar chemicals and diseases based on shared toxicological

profiles (15–17).

CTD has historically focused on a broad range of environ-

mental chemicals, including arsenic (12), tetrachlorodiben-

zodioxin (13), bisphenol A (15) and heavy metals (18). In

order to direct curation to pharmaceutically relevant art-

icles, Pfizer scientists designed text-mining strategies to gen-

erate a set of over 88 000 research articles enriched for drugs

of therapeutic interest and their effects on cardiovascular,

neurological, renal and hepatic systems. In 1 year, CTD bio-

curators used existing strategies and tools to manually

curate chemical–gene, chemical–disease, gene–disease,

chemical–phenotype and gene–phenotype interactions.

The collaboration generated over 2 50 000 manually

curated interactions for chemical-induced events. CTD has

integrated this information with its public website (http://

ctdbase.org/), while Pfizer has combined these data with

internal databases to help test and evaluate compound

safety. The collaboration has greatly enhanced and supple-

mented CTD public content by the addition of this drug-

related information. Further expansion and integration of

the phenotype data with CTD is a future goal.

Methods

Nota bene

1. Pfizer studies and develops ‘drugs’, while CTD curates

‘chemicals’ using a controlled vocabulary that is a modified

subset of the ‘Drugs and Chemicals [D]’ branch from

Medical Subject Headings (MeSH); this CTD vocabulary in-

cludes environmental chemicals as well as pharmaceuticals

(12). For all intents and purposes, the words ‘drug’ and

‘chemical’ should be considered interchangeable in this

report.

2. CTD distinguishes between ‘diseases’ and ‘phenotypes’

wherein phenotype refers to a non-disease-term biological

event. For example, ‘abnormal cell proliferation’ is a pheno-

type while ‘lung cancer’ is a disease, ‘increased

adipogenesis’ is a phenotype while ‘obesity’ is a disease

and ‘decreased blood pressure’ is a phenotype, while ‘idio-

pathic orthostatic hypotension’ is a disease. For disease

terms, CTD used the MEDIC vocabulary (19), and for pheno-

types used 143 terms from the ‘Phenomena and Process [G]’

branch of MeSH (preselected by Pfizer).

Pfizer text-mining strategy

Previously, an in-house effort at Pfizer to develop a drug

safety database provided an initial gold standard of 3 017
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relevant articles representing 5 species and 650 unique drugs

of importance to Pfizer. Pfizer scientists annotated these

articles to a hand-selected set of safety findings. Pfizer ana-

lysed the collection with two aims: develop queries to auto-

matically extract drug–adverse event relationships and

incorporate publicly available controlled vocabularies to fa-

cilitate integration with other data sources. To automate

extraction of drug-adverse event relationships, the articles

were analysed for frequently occurring semantic patterns

relating drugs to adverse event terms. As well, MeSH and

their qualifiers (which are used to index safety findings by

the National Library of Medicine) were also analysed for

possible utility. A mix of high-precision and high-recall pat-

terns was selected and implemented for querying (Table 1)

using Linguamatics I2E software (Linguamatics, Cambridge,

UK). Safety terms were also derived from the MeSH ‘Diseases

[C]’ branch, focusing on the sub-branches of cardiovascular,

neurological, hepatic and renal diseases. Applying the text-

mining strategy to abstracts in Medline identified 78 263

articles, henceforth referred to as the drug–disease corpus.

Queries Q1, Q2 and Q3 retrieved 57, 33 and 10% of the text-

mined statements for this corpus, respectively (Table 1).

To identify phenotype (non-disease) concepts of interest,

Medline records from the 3 017 articles were queried using

Pfizer’s own disease dictionary. Articles with no disease

matches were further analysed by reviewing their asso-

ciated MeSH terms and the semantic patterns that related

drugs to drug-induced phenomena. Frequently occurring

MeSH terms from the ‘Phenomena and Processes [G]’

branch were selected for drug–phenotype event retrieval.

After trying various combinations of drug and MeSH term

patterns, the best precision/recall balance was achieved

with the semantic pattern: ‘[DRUG] regulatory verb

phrase [MeSH]’ in an ordered phrase with no more than

two words between the bracketed concepts (query Q4,

Table 1). The MeSH ‘Anatomy [A]’ branch was included as

an optional query element to assist CTD biocurators with

capturing tissues when available. A set of query terms rep-

resenting five species of interest (human, mouse, rat, non-

human primate and dog) were an additional required fea-

ture that could appear anywhere in the Medline record.

This text-mining strategy applied to abstracts collated

10366 articles, henceforth called the drug–phenotype cor-

pus. Query Q4 retrieved 100% of the text-mined state-

ments for this corpus (Table 1).

In total, Pfizer provided CTD with 88 629 text-mined art-

icles (based upon abstracts). These articles were derived

from 4 729 journals published over 66 years (from 1945 to

2011), evincing a broad and robust coverage of the

literature.

CTD curation strategy

CTD agreed to complete the curation in 1 year. To accom-

plish that goal, we first tested a sample of articles provided

by Pfizer to estimate time duration and biocurator needs.

This test set (85 articles) was 55% curatable, but had a much

faster review rate (4.2 min per article) than typical CTD col-

lections (�20 min per article). This increased rate was attrib-

uted to the articles’ content, which consisted

predominantly of chemical–disease information, rather

than chemical–gene information. Based on this pilot experi-

ment, it was estimated that 5 full-time biocurators could

process 70–100 articles per day per biocurator to reach a

projected goal of �100 000 articles in 12 months. In October

2010, a specialized pharma-edition of CTD’s Curation

Manual was written and five professional biocurators

were hired and underwent intensive and detailed on-site

training at CTD. Although each biocurator worked re-

motely subsequent to the training, mechanisms were in

place to facilitate communication, answer questions and

resolve policy issues. As well, CTD launched a web-based

Curation Tool designed to expedite work, centralize and

consolidate biocuration activities, eliminate the use of

Excel spreadsheets and facilitate quality control (20).

To ensure goals were met during the project timeline,

CTD biocurators submitted biweekly invoices that recorded

the number of hours worked and the number of articles

completed. These invoices were used to calculate review

rate metrics to help monitor the progress of the project

by dividing the total billing time by the total number of

articles reviewed during the billing period. Review rates

calculated from such reports were ‘macro’ rates and repre-

sented an upper-bound estimate that reflected the true

cost of curation with overhead, since the amount of total

time billed incorporated time for other daily tasks besides

just curation (such as exchanging emails, reviewing work,

participating in monthly phone conferences, etc.).

Curation pipeline

The drug–disease corpus (78 263 articles) was parceled into 4

files according to the system-of-interest text mined by Pfizer:

22 651 articles (cardiovascular), 42 311 articles (neuro-

logical), 13 131 articles (renal) and 6 277 articles (hepatic),

with many articles overlapping for more than 1 disease cat-

egory. These 4 files were equally distributed to 5 CTD bio-

curators who were provided with the PubMed identification

number (PMID), the Pfizer-triaged drug term(s) and the

Pfizer-triaged disease term(s) for each article. These articles

were curated only for chemical–disease, gene–disease and

chemical–gene interactions; they were not curated for

phenotype data (except for an incidental 401 articles

during the transition phase to the drug–phenotype corpus).

The drug–phenotype corpus (10 366 articles) contained the

article PMID, and Pfizer-triaged terms for drug, phenotype,

species and anatomy. This collection was also evenly divided

among the CTD biocurators and curated for relevant pheno-

type data, as well as any chemical–disease, gene–disease and

chemical–gene interactions described.
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Biocurators followed CTD’s well-documented curation

process (9–12, 20). Briefly, biocurators performed six tasks:

recorded whether the article should be curated; curated art-

icles following CTD’s policies (which included curating every

mentioned chemical, gene or disease, not just the terms for

which an article was triaged); captured organism’s taxon for

each interaction; indicated whether interactions were gar-

nered from the abstract or full text; recorded whether inter-

actions were studied in vitro or in vivo; and indicated

whether an interaction was derived from a high-throughput

assay. Biocurators curated from just the abstract whenever

possible, but examined the full text if necessary to resolve

any relevant issues mentioned in the abstract.

Chemical–gene interactions were composed by biocura-

tors selecting from over 50 action codes that could be multi-

plexed to describe detailed events. Disease curation, on the

other hand, had a more streamlined process, in that only a

binary relationship was established between a chemical/

gene and a disease using two available codes: ‘M’ to de-

scribe a mechanistic or marker relationship to a disease or

‘T’ to describe a known or potential therapeutic relation-

ship to a disease. All data were publicly released to CTD

users on 9 January 2012.

Constructing –Tox and –Treat dataset profiles

CTD’s Batch Query tool (http://ctdbase.org/tools/batchQuery.

go) was used to retrieve datasets on 17 July 2013 (CTD ver-

sion 13 268) of all curated chemicals associated with all

curated diseases representing cardiovascular toxicity

(CardioTox), neurological toxicity (NeuroTox), renal toxicity

(RenalTox) and hepatic toxicity (HepatoTox). Our hierarchical

disease vocabulary MEDIC allows annotated data from child

pages to be subsumed to parent pages (19). Thus, CTD’s

Cardiovascular Diseases page reports chemicals annotated

to this term as well as chemicals curated to disease descend-

ants (e.g., hypertension, long QT syndrome, angiodema,

etc.). Here, we used the parent terms Cardiovascular

Diseases for CardioTox, Nervous System Diseases for

NeuroTox, Kidney Diseases for RenalTox and Liver Diseases

for HepatoTox. Results were downloaded and sorted to re-

trieve chemicals with a ‘marker/mechanism’ relationship (–

Tox profiles); chemicals with a ‘therapeutic’ relationship

were used to construct the treatment profiles (e.g.,

CardioTreat, NeuroTreat, RenalTreat and HepatoTreat). The

data were derived from chemicals and diseases curated from

the Pfizer drug–disease corpus and incidental data curated

from other CTD projects. A complete list of diseases and

chemicals for the four toxicity profiles is provided in

Supplementary File 1.

CTD phenotype curation

The drug–phenotype corpus was manually curated for

chemical–gene–disease, chemical–phenotype and gene–

phenotype interactions. To capture this new data, the

Curation Tool was modified to accommodate phenotype

terms. Phenotype interactions were annotated to a taxon,

Table 1. Pfizer’s text-mining queries

Query

number

Pfizer query Proportion of retrieved

findings (for corpus)

Three examples

Q1 MeSH field only:

[DRUG] toxicity/adverse

effects AND [DISEASE]

chemically induced

57% (drug–disease) PMID_3158144: [ISOPROTERENOL] toxicity [MYOCARDIAL INFARCTION]

chemically induced

PMID_10582204: [AZATHIOPRINE] adverse effects immunology

[ANGIOEDEMA] chemically induced

PMID_2269319: [ACEBUTOLOL] administration & dosage adverse

effects [MYASTHENIA GRAVIA] chemically induced

Q2 [DRUG] [DISEASE]

noun phrase

33% (drug–disease) PMID_20972624: [AZATHIOPRINE]-induced severe

[CHOLESTATIC HEPATITIS] in patient carrying TPMT*3C polymorphism

PMID_10752809: [ACETAMINOPHEN]-induced

[FULMINANT HEPATIC FAILURE]

PMID_10812192: Grade 1 [AMIFOSTINE]-related [HYPOTENSION]

Q3 [DISEASE] induced

by/caused by/due

to/after [DRUG]

10% (drug–disease) PMID_1698072: [OPTIC NEUROPATHY] caused by [AMIODARONE]

PMID_10750146: Spontaneous sustained monomorphic [VENTRICULAR

TACHYCARDIA] after administration of [AJMALINE] in a patient

with Brugada

PMID_10778901: We present a case of irreversible

[SENSORINEURAL HEARING LOSS] due to [AZITHROMYCIN]

ototoxicity in an otherwise healthy woman

Q4 [DRUG] regulatory

verb phrase [MeSH]

100% (drug–phenotype) PMID_8891335: The immunosuppressants cyclosporin A and

[TACROLIMUS] inhibit PMOR inhibitor-induced [APOPTOSIS]

PMID_21226268: Accordingly, it was demonstrated that

[PIOGLITAZONE] improves [OXIDATIVE STRESS]

PMID_21707983: [LABETALOL] patients had slower [HEART RATES]
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and biocurators also curated anatomical terms to describe

where the phenotype occurred. When necessary, multiple

anatomical terms were concatenated to increase specificity

(e.g., Brain—Blood Vessels—Endothelial Cells). For this pilot

project, CTD used MeSH terms as a source for both pheno-

type and anatomy controlled vocabularies (21). For pheno-

types, we required a control vocabulary of non-disease-

term biological events that was species independent. This

ruled out several well-established disease vocabularies and

organism-specific phenotype ontologies. Instead, Pfizer sci-

entists selected 143 terms from the MeSH ‘Phenomena and

Processes [G]’ branch to be used as phenotype terms, as

these best reflected Pfizer’s interest. For an anatomical con-

trolled vocabulary, biocurators selected from 2 774 terms

from the MeSH ‘Anatomy [A]’ branch, which provided a

deep and robust coverage of body systems and cell types.

This dataset is not yet integrated with CTD’s dynamic web-

based content, but all phenotype interactions are publicly

available by clicking on http://ctdbase.org/reports/CTD_

pheno_ixns.xls to download an Excel file (6.6 MB).

Phenotype–disease inference analysis

Chemicals that were annotated to both phenotypes

and diseases were used to make inferred relationships be-

tween phenotypes and diseases. Data from the chemical–

phenotype file was integrated with CTD’s public chemical–

disease dataset on 8 May 2013 (CTD version 13 096) to

generate 102828 phenotype–disease inferences (Supple-

mentary File 2). This file was then restricted to inferences

with 10 or more shared chemicals to increase the stringency

of the inferred relationship. A matrix of the number of

shared chemicals (log2-transformed) for 74 pheno-

types� 750 diseases was constructed and analysed as a

two-dimensional hierarchical clustering and rendered as a

heatmap using JMP version 8.0 (SAS Institute, Cary, NC). For

the clustering, distance was calculated using Ward’s min-

imum variance method with standardized values (22). The

dendrogram was manually trimmed to represent the over-

all similarity among diseases and identified 18 clusters. For

disease classification, all 750 diseases were mapped to 36

generic disease categories using CTD’s MEDIC-Slim disease

vocabulary (9) to better summarize and visualize the dis-

ease classifications, as previously described (18). The top

four disease classes, as a percentage of each cluster, were

graphed as a pie chart.

Calculating text-mining precision

Pfizer text mining, using internal dictionaries, retrieved

2 310 normalized concepts (1 261 drug, 958 disease and 91

phenotype terms). The precision of term and event (e.g.,

chemical–disease or chemical–phenotype) extraction was

measured by comparing the text-mined terms supplied in

the Pfizer corpus (input) to the CTD curation dataset

(output), calculating precision at both the article level

(PMID, PubMed identification number) and at the term

level for each individual corpus as well as the combined

corpus, and for each individual term as well as all terms

in aggregate. For the article-level metrics, two scores

were calculated: one comparing the number of hits against

all the articles in each text-mined corpus (TM-All) and

another against solely the curated articles in each corpus

(TM-Curated). Although the vast majority of terms used by

the Pfizer text-mining processes were directly resolvable to

their counterpart CTD chemical, disease and phenotype

controlled vocabularies, cross references were created by

CTD staff to resolve many of the remaining unmatched

terms (e.g., the Pfizer text-mining term ‘Retts Disease’

was mapped to CTD’s MEDIC disease term ‘Rett

Syndrome’). Of the 2310 total Pfizer text-mining terms,

142 (6%) were irresolvable by CTD and dropped from this

analysis; these included 70 disease terms (e.g., suicidal be-

havior, hunger, ego, emotions, etc.) and 72 drug terms

(e.g., uk-008451, DRUG430730, immune globulin, fb-532,

etc.). If a Pfizer text-mined term (input) was ultimately

curated by CTD (output) for the respective PMID to a CTD

counterpart term, resolvable synonym to the counterpart

term or a child of the counterpart term, it was counted as a

true positive; if CTD curated to unrelated chemicals or dis-

eases, the Pfizer terms were scored as false positives.

Results and discussion

CTD curation metrics

For the drug–disease corpus (78263 articles), 5 CTD biocura-

tors reviewed the set in �9 months and averaged 5.5 min

per article over the entire project period (Figure 1). This fast

review rate was due to the articles being intentionally

skewed more toward literature describing binary chemical

and disease relationships, as opposed to gene information

that tends to be more complex. The average number of

curated chemical, disease and gene terms per curated art-

icle were 1.7, 2.0 and 0.5, respectively (Table 2), demon-

strating �4-fold predominance of chemical and disease

terms compared to genes. Curating gene information is

the most time-consuming aspect of CTD biocuration be-

cause it typically requires access to the full text to resolve

species information and the official gene symbol (using

synonyms, alternative names, reactive monoclonal antibo-

dies, DNA sequences, derived RT-PCR primers, accession

identifiers or citations mentioned by the authors).

Constructing chemical–gene interactions also takes longer

to code because of the option of over 50 different action

codes that can be multiplexed into detailed, nested struc-

tured notations (20). On the other hand, resolving chemical

and disease terms to their official controlled vocabularies is

often accomplished quickly and easily from the title or
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abstract, and the structured notation for such interactions

is exclusively binary (20).

For the drug–phenotype corpus (10 366 articles), the bio-

curators reviewed the set in 3 months and averaged

15.9 min per article, yet there appeared to be a greater

degree of individual biocurator variability, ranging be-

tween 8.7 and 21.1 min per article (Figure 1). The compara-

tively longer time to curate this set (vs. the drug–disease

corpus) and the variability is likely due to several factors.

First, biocurators needed to familiarize themselves with a

new curation module with two new controlled vocabularies

(phenotype and anatomy). Second, drug–phenotype art-

icles had an overall greater density of curatable informa-

tion compared to drug–disease articles, with the former

averaging 7.3 interactions per curated article vs. 3.5 in the

latter (Table 2). Third, drug–phenotype articles contained

more gene information compared to drug–disease articles:

1.9 genes per article vs. 0.5, respectively (Table 2), and, as

explained above, curating gene information tends to be

more time-consuming.

For both projects, CTD biocurators curated from the ab-

stract whenever possible, but were allowed to curate also

from the full text if necessary, especially to resolve any rele-

vant issues mentioned in the abstract. A total of 61 530

articles were manually curated: 51 884 for drug–disease

and 9 646 for drug–phenotype (Table 2). For the drug–dis-

ease corpus, 40 781 (79%) were curated exclusively from

the abstract and 11 103 (21%) required at least some cur-

ation from the full text. Of the 9 646 articles for the drug–

phenotype corpus, 7 480 (78%) were curated solely from

abstracts and 2 166 (22%) required going to the full text.

At the interaction level, a total of 254 173 interactions were

manually curated: 183 849 for drug–disease and 70 324 for

drug–phenotype (Table 2). For the drug–disease corpus,

123 563 (67%) were from the abstract and 60 286 (33%)

from the full text. For the drug–phenotype corpus, 42 044

(60%) were abstract-derived and 28 280 (40%) were gar-

nered from the full text.

Enhancement of CTD content

Of the 182 508 interactions curated from the drug–disease

corpus, 145 366 (80%) were for chemical–disease, 32 539

(18%) for chemical–gene and only 4603 (2%) for gene–

disease interactions (Table 2), reflecting the intentional and

successful skewing of this corpus for drug–disease informa-

tion. An additional 33 582 interactions involving chemicals,

genes and diseases were also collected from the drug–

phenotype corpus (Table 2). The Pfizer articles comple-

mented CTD’s routine chemical-centric approach to article

selection (14). CTD content has been primarily based upon

articles triaged by querying PubMed for both a chemical-of-

interest and a gene concept to bias for articles describing

chemical–gene interactions. Here, however, the Pfizer

drug–disease corpus was instead skewed for chemical and

disease terms without the necessity of gene information,

allowing for a very different type of corpus to be collated.

Of the combined 58 572 chemical–gene interactions

manually curated, 52 387 (89%) were interactions not

yet represented in CTD. For the 5 345 gene–disease

interactions, 78% were new to CTD and for the 152 173

chemical–disease interactions, 47% were new. In total,

these interactions have expanded and enhanced CTD with

respect to new chemical–disease information, especially for

pharmaceuticals.

Figure 1. Project metrics. From December 2010 to September
2011, five CTD biocurators reviewed 78 263 articles for drug–
disease information (top graph, green bars). Biocurators
curated from just the abstract whenever possible, but exam-
ined the full text if necessary to resolve any relevant issues
mentioned in the abstract. Review rates for each individual
biocurator (bottom graph, BC1–BC5, dotted colored lines)
were calculated based upon billing invoices, and the biweekly
average of all five biocurators is also shown (solid black line).
In September 2011, biocurators transitioned to reviewing
10366 articles for drug–phenotype information (top graph,
blue bars). An increase in performance (as reflected by a de-
crease in rate) is seen as both projects progressed. For drug–
disease curation, the average rate initiated at 10.3 min per
article (17 December 2010) and ultimately improved to an
average rate of 5.5 min per article over the entire period.
For drug–phenotype curation, the average initial rate was
19.5 min per article (17 September 2011), improving to
13.4 min per article (13 January 2012), with an aggregate aver-
age rate of 15.9 min per article over the period.
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From the drug–disease corpus, a total of 5 562 chemicals,

9 167 genes and 2 697 diseases were ultimately curated

(reflecting CTD’s policy to curate every mentioned chem-

ical, gene or disease, not just the terms for which an article

was triaged), and the 20 most frequently curated terms for

each group are shown (Figure 2A–C). Since genes were not

among the text-mining selection criteria in the triaging

process, they could act as an unbiased indicator of the re-

sults. As a means of gauging the type of information being

captured, we evaluated the top 20 genes using CTD’s Set

Analyzer tool (http://ctdbase.org/tools/analyzer.go) to find

their associated GO biological processes (GO-BP) (Figure 2B,

inset). Four of the top 10 most significant processes were

types of ‘response to chemical stimulus’ (GO:0042221),

including responses to organic substances (GO:0010033),

oxygen-containing compounds (GO:1901700) and organic

cyclic compounds (GO:0014070), supporting and confirming

the curated genes’ role in toxicogenomic responses and

interactions with drugs. For comparison, we sampled 800

genes (20 at a time) randomly selected from the bottom

half of the 9 167 gene list; none of these gene sets had

any enriched GO processes achieving a significance thresh-

old (corrected p-value< 0.01; not shown).

Toxicity profiles

This curation project expanded the number and coverage

of chemical–disease interactions in public CTD, allowing a

better representation of the drug-induced events for the

four physiological systems central to Pfizer drug safety pre-

diction: cardiovascular, neurological, renal and hepatic

toxicity. We constructed four data profiles of chemicals

with ‘mechanism/marker’ relationships to diseases related

to these four systems: CardioTox (composed of 1 847 chem-

icals and 305 cardiovascular diseases), NeuroTox (2 533

chemicals and 522 nervous system diseases), RenalTox

(1 047 chemicals and 64 kidney diseases) and HepatoTox

(1 275 chemicals and 55 liver diseases). A list of the chem-

icals and diseases for each toxicity profile is provided in

Supplementary File 1.

In CardioTox, the most frequently curated toxicities were

for abnormal blood pressure (hypotension, hypertension)

and heart rate (bradycardia, tachycardia and arrhythmias);

for NeuroTox the most abundant relationship was between

704 chemicals and seizures; kidney diseases and injuries

were the most common curated endpoints for RenalTox;

and for HepatoTox, drug-induced liver injury was over-

whelmingly represented for 744 chemicals (Figure 3A). A

Venn analysis of the associated drugs showed chemicals

unique to each toxicity system, chemicals common to

more than one system and 360 shared chemicals that af-

fected all 4 systems (Figure 3B). One possibility for some

overlap may be due to disease terms mapping to more

than one physiological system; for example, brain infarc-

tion is both a cardiovascular and a neurological disease;

thus, chemicals annotated to it are automatically shared

between CardioTox and NeuroTox. However, the chemical

crossover between system toxicities due to shared disease

ontology was limited, since only 72 diseases mapped to 2

systems, 1 disease mapped to 3 systems (Zellweger

Syndrome to NeuroTox, RenalTox and HepatoTox) and no

Table 2. Article and interaction statistics

Data Drug–disease corpus Drug–phenotype corpus Total

No. articles reviewed 78 263 10 366 88 629

No. articles curateda 51 884 9 646 61 530

No. articles rejected 26 379 720 27 099

No. total interactions 183 849 70 324 254 173

No. chemical–disease interactions 145 366 6 807 152 173

No. chemical–gene interactions 32 539 26 033 58 572

No. gene–disease interactions 4 603 742 5 345

No. phenotype interactions 1 341b 36 742 38 083

Average no. interactions per curated article 3.5 7.3 n/a

Average no. chemicals per curated article 1.7 2.3 n/a

Average no. diseases per curated article 2.0 0.5 n/a

Average no. genes per curated article 0.5 1.9 n/a

Average no. phenotypes per curated article <0.0b 1.6 n/a

Average no. anatomy terms per curated article <0.0b 1.7 n/a

Average no. taxa per curated article 1.0 1.0 n/a

aabstract curation whenever possible; full text was examined if necessary to resolve issues.
bcurated from 401 drug–disease articles during transitional period to drug–phenotype phase.

n/a, not applicable.
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diseases mapped to all 4 systems. Thus, the majority of

overlapping chemicals is due to drugs affecting multiple

systems, perhaps through common genes or pathways or

possibly via non-genetic modes.

These toxicity profiles can be further analysed to improve

mechanistic understanding of drug-induced events.

Computational toxicology methods and advanced chemoin-

formatics can use these curated datasets, combined with mo-

lecular structure files, to correlate structural motifs and

defined toxic endpoints to identify potential alerts for chem-

ical-associated events for cardiovascular, neurological, hep-

atic or renal toxicity (23,24). As well, the common 360

chemicals shared by all 4 systems might identify molecular

processes and signals prevalent to many physiological sys-

tems. Additional profiles can be easily constructed for

other events, such as SkinTox, CancerTox, ImmunoTox,

LungTox, etc. (Table 3). Conversely, complementary treat-

ment profiles (–Treat) can be constructed for drugs with a

curated ‘therapeutic’ relationship (Table 3) to look for

likewise connections between structural motifs and positive

outcomes for diseased systems to potentially advance

pharmaceutical drug design or repositioning.

Phenotype curation

Chemicals can also affect biological systems before causing a

disease or without necessarily resulting in a disease. At CTD,

we refer to these non-disease events as phenotypes (e.g.,

‘abnormal cell proliferation’ is a phenotype while ‘lung can-

cer’ is a disease; ‘increased adipogenesis’ is a phenotype

while ‘obesity’ is a disease). Curating phenotype data can

provide information about chemical-induced events at the

molecular and cellular level before a disease develops. To

our knowledge, no other public database manually curates

the scientific literature for the acquisition of chemical-

induced (non-disease term) phenotypes. To that end, CTD

biocurators reviewed 10 366 articles triaged for both a

drug-of-interest and a phenotype from a list of 143 available

terms preselected by Pfizer. To capture this data, CTD’s

Figure 2. Top 20 curated terms. The 20 most frequently curated chemicals (A, blue), genes (B, green) and diseases (C, red) from
the drug–disease corpus, as measured by the number of articles from whence the term was curated, out of 51 884 total curated
articles for this corpus. The inset in (B) lists the 10 most significantly enriched GO-BP and their corrected p-value (Bonferroni
multiple testing adjustment) for the top 20 genes. (D) The 20 most frequently curated phenotypes (black) from the drug–
phenotype corpus (out of a total of 9646 curated articles).
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Curation Tool was modified to accommodate new pheno-

type action codes, 143 phenotype terms and 2774 anatomy

terms (Figure 4A). From the drug–phenotype corpus, 36 742

phenotype interactions were curated, and an additional

1 341 interactions came from 401 articles of the drug–dis-

ease corpus that were incidentally curated for phenotype

information during the transition period between projects

(Table 2). In total, 9 489 curated articles yielded 38 083

phenotype interactions, of which 31 903 (84%) were for

chemical–phenotype, 6% were for gene–phenotype and

10% were for complex chemical–gene–phenotype inter-

actions (Figure 4B). Apoptosis was the most frequently

curated phenotype, followed by blood pressure, cell prolif-

eration, oxidative stress and cell cycle (Figure 2D).

Figure 3. Diseases and chemicals for four system toxicity profiles. (A) The top 10 curated diseases are ranked by the number of
chemicals curated to each disease for cardiovascular toxicity (CardioTox, blue; 305 diseases), neurological toxicity (NeuroTox, yellow;
522 diseases), kidney toxicity (RenalTox, green; 64 diseases) and liver toxicity (HepatoTox, red; 55 diseases). (B) Venn diagram of
3 886 chemicals associated with CardioTox (blue; 1847 chemicals), NeuroTox (yellow; 2533 chemicals), RenalTox (green; 1047 chem-
icals) and HepatoTox (red; 1275 chemicals). There are 360 chemicals (center gray subset) common to all four systems.
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Going forward, CTD plans to further develop and expand

this phenotype module with a more comprehensive con-

trolled vocabulary for non-disease terms frequently per-

turbed by chemicals. A candidate ontology is the GO-BP

that contains over 25 700 terms and covers a greater

range and granularity of biological events (25). CTD could

easily transition this current pilot module to using GO.

Seventy-five of the 143 MeSH phenotype terms used here

already have direct equivalents in GO, and cross-mapping

those terms retains 32 215 of the 38 083 (85%) curated

interactions. This pilot data may help seed an expanded,

fully integrated chemical–phenotype module in CTD.

Phenotype–disease inferences

To demonstrate the utility of a curated phenotype dataset,

we integrated the chemical–phenotype file with CTD’s

chemical–disease dataset to generate inferences between

phenotypes and diseases: if phenotype A is directly curated

to chemical B, and chemical B is directly curated to disease C,

then phenotype A is inferred to disease C (via shared chem-

ical B). Network scores, which CTD has used to rank chem-

ical–disease inferences (15), were similarly generated for

each phenotype–disease relationship. In total, 102 828 infer-

ences were established, linking 120 phenotypes to 2817 dis-

eases, based on shared chemicals (Supplementary File 2). Top

inferences based on the highest number of shared chem-

icals (and network scores) included phenotype–disease

inferences between blood pressure–hypertension, heart

rate–bradycardia, oxidative stress–drug-induced liver injury

and apoptosis–acute kidney injury.

CTD then used this phenotype–disease inference file to

construct a two-dimensional matrix, where each intersect-

ing cell represented the number of shared chemicals be-

tween the phenotype and disease. For this analysis,

inferences between a phenotype and disease were required

to share a minimum of 10 chemicals. This stringency

reduced the matrix to 74 phenotypes and 750 diseases.

Two-dimensional hierarchical clustering ordered the

phenotypes and diseases based on the similarity of the pat-

tern profiles of shared chemicals (Figure 5).

Eighteen disease clusters were identified from the den-

drogram. Many of the clusters show distinct disease classifi-

cation profiles (pie charts, Figure 5). Cluster 1 has 5

phenotypes (cell cycle, proliferation, apoptosis, cell death

and blood pressure) connected to 19 diseases; the largest

disease class for this cluster is cancer, specifically of the

immune, lymphatic and digestive systems (Figure 5).

Interestingly, cluster 2 (which contains only apoptosis and

cell proliferation) is connected to 44 diseases skewed toward

a very different profile dominated by skin diseases (e.g., con-

tact dermatitis, rosacea, localized scleroderma, erythema

nodosum, etc.). Similarly, cluster 3 (which only contains

apoptosis) includes 55 diseases, mostly of the nervous

system and cardiovascular system. Preliminary analysis indi-

cates the potential for making meaningful connections be-

tween chemicals, early pre-disease phenotypes and diseases.

Table 3. Chemical–disease profiles from CTD

Disease terma Toxicity profile

name

No. chemicals

(M-type)b

No.

diseases

Therapeutic

profile name

No. chemicals

(T-type)b

No.

diseases

Cardiovascular diseases CardioTox 1 847 305 CardioTreat 1 543 231

Nervous system diseases NeuroTox 2 533 522 NeuroTreat 2 216 476

Liver diseases HepatoTox 1 275 55 HepatoTreat 635 56

Kidney diseases RenalTox 1 047 64 RenalTreat 528 62

Skin diseases SkinTox 1 145 146 SkinTreat 667 165

Neoplasms CancerTox 1 007 240 CancerTreat 1 516 312

Immune system diseases ImmunoTox 982 126 ImmunoTreat 720 141

Respiratory tract diseases LungTox 945 132 LungTreat 706 116

Metabolic diseases MetaboloTox 855 142 MetaboloTreat 535 140

Hematologic diseases HematoTox 822 98 HematoTreat 313 82

Gastrointestinal diseases GastroTox 583 88 GastroTreat 538 82

Eye diseases EyeTox 542 129 EyeTreat 281 107

Endocrine system diseases EndoTox 522 89 EndoTreat 530 90

Muscular diseases MuscleTox 497 46 MuscleTreat 198 33

Lymphatic diseases LymphaTox 197 43 LymphaTreat 295 52

Bone diseases BoneTox 148 49 BoneTreat 184 48

Connective tissue diseases ConnectiTox 122 25 ConnectiTreat 166 40

aInput term used to retrieve data using CTD’s Batch Query tool.
bM, marker/mechansim-type relationship (for –Tox files); T, therapeutic-type relationship (for -Treat files).
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Figure 4. CTD’s phenotype curation module. (A) Pfizer provided CTD with 10 366 articles text mined for a drug-of-interest,
phenotype, anatomy and taxon (orange file, upper-left corner). Biocurators entered each article’s PMID into the CTD Curation
Tool and retrieved the PubMed abstract for curatorial review (red arrow and box, upper-right corner). Biocurators curated from
just the abstract whenever possible, but examined the full text if necessary to resolve any relevant issues mentioned in the
abstract. Drug–phenotype interactions were generated using CTD’s structured notation, codes and controlled vocabularies in the
Curation Tool (blue panel). In this prototype, 143 phenotype terms and 2774 anatomy terms were available. Here, the biocurator
coded an interaction (Ixn field) describing how the drug norepinephrine (C1 field) resulted in increased apoptosis (P1 field) using
an in vitro system from rats (Taxon field) of cultured ventricular myocytes (Anatomy 1–3 fields). The Curation Tool validates
terms entered by the biocurator in real-time, and the green color of the text boxes indicates the terms are valid for curation. (B)
Examples of CTD’s curated phenotype interactions. Of the total 38 083 interactions, 84% describe chemical–phenotype inter-
actions (blue box), 6% gene–phenotype interactions (red box) and 10% complex chemical–gene–phenotype interactions (yellow
box).
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Text-mining precision

To measure the quality of the automatically extracted terms

and events, we compared Pfizer’s text-mined terms supplied

with each article (input) with the terms selected by CTD bio-

curators for curation (output). As input to biocurators, Pfizer

text-mining queries (using their subsets of chemicals and dis-

eases of interest) retrieved 1261 unique drug, 958 unique

disease and 91 unique phenotype terms. Ultimately for

output, biocurators curated to 5 562 unique chemical, 2 697

unique disease and 121 unique phenotype terms (adhering

to CTD policy to curate all mentioned actors and not just the

terms for which the article was triaged).

For the drug–disease corpus, 51 884 articles (66%) con-

tained curatable information and 26 379 (34%) were re-

jected; for the drug–phenotype corpus, 9 646 articles

(93%) were curated and a mere 720 (7%) were rejected;

and combining the 2 sets, 69% of all the Pfizer articles

were curated and 31% were rejected (Figure 6A). This

overall rejection frequency was better than CTD’s historic,

pre-text mining rejection frequency of 40% (26).

Figure 5. CTD phenotypes inferred to diseases through shared chemicals. A matrix of 74 phenotypes (rows) by 750 diseases
(columns) was constructed where each cell represented the number of shared chemicals. The matrix was analysed by two-
dimensional hierarchical clustering and visualized as a heatmap where the normalized number of shared chemicals are colored
(green = low; black = medium; red = high). The similarities among the number of shared chemicals for diseases across all pheno-
types are shown in the dendrogram beneath the heatmap, where the lengths of the lines are inversely proportional to the
similarity (i.e., short = highly similar, long = dissimilar). An enlargement (blue boxes, blue arrow) shows how the disease dendro-
gram was trimmed to select 18 disease clusters (dotted line, with clusters numbered), and these boundaries are also represented
on the heatmap (numbered white boxes). Below, the number of unique phenotypes, chemicals and diseases are charted for each
cluster. In pie charts at the very bottom, predominant disease classes for some of the clusters are shown (only the top four
disease classes are graphed). For example, of the 19 diseases in cluster 1, 28% of them represent cancers, 13% digestive system
diseases, 13% immune system diseases and 9% lymphatic diseases. To the right of the heatmap, the similarities among the
number of shared chemicals for phenotypes across all diseases are also shown in another dendrogram, where the lengths of the
lines are inversely proportional to the similarity.
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To gauge text-mining effectiveness, we calculated the

raw number and percentage of true positives (i.e., where

an article’s input text-mined term, or child of that term,

matched an output curated term) vs. false positives (i.e.,

where none of an article’s input terms, or children of

those terms, matched any of the output curation). Metrics

were calculated at both the article level and term level for

the two separate collections (drug–disease and drug–

phenotype) as well as the combined set.

Article level. For the 78 263 articles in the drug–disease

corpus, 49 090 (63%) had true positives for any one

matched chemical and/or disease term; however, this fre-

quency increases to 95% when measured exclusively

against the pool of 51 884 successfully curated articles for

this corpus (Figure 6A). Likewise, for the 10 366 articles in

the drug–phenotype corpus, 9 369 (90%) had true positives,

and this frequency also increases to 97% when measured

solely against the pool of 9 646 curated articles (Figure 6A).

Lastly, when the 2 are combined, 58 459 articles (66%) had

true positives, which increased to an aggregate percentage

of 95% when only considering the pool of 61 530 curatable

articles (Figure 6A).

Term level. For the drug–disease corpus, Pfizer identified

186 419 occurrences of text-mined input terms (94 996 oc-

currences for drugs and 91 423 for diseases). Of the 94 996

drug terms, 51 181 (54%) were true positives, and of the

91 423 disease terms, 36 624 (40%) were true positives

(Figure 6B). For the drug–phenotype corpus, there were

20 904 occurrences of input terms (10 478 for drugs and

10 426 for phenotypes). Of the 10 478 drug terms, 8 077

(77%) were true positives; of the 10 426 phenotype terms,

8 157 (78%) were true positives (Figure 6B). Combining the

sets, 40, 56 and 78% of all Pfizer text-mined disease, drug

and phenotype terms were curated (respectively), produ-

cing an overall aggregate hit frequency of 50% for the

entire project (Figure 6B).

The higher correlation between phenotype-based text

mining (input) and ultimate curation (output) may be due

to Pfizer and CTD using the same MeSH terms that the

National Library of Medicine uses to index PubMed

Figure 6. Curation and text-mining metrics. (A) Curation and text-mining metrics at the article level. The top graph shows the
number of articles and the bottom graph shows the percentage for each corpus (drug–disease, drug–phenotype and combined).
Curation metrics are measured by the number of curated articles (green bars) vs. number of rejected articles (gray bars). Text-
mining metrics are measured by true positives (blue bars) vs. false positives (red bars) and measured against all the articles in the
corpus (TM-All) as well as against solely the curated articles in the corpus (TM-Curated). (B) Text-mining metrics at the term level.
The top graph shows the number of text-mined terms and the bottom graph shows the percentage for each term category
(disease, drug, phenotype and aggregate of all the text-mined terms) from each corpus. Phenotype terms were not text mined
for the drug–disease corpus and disease terms were not text mined for the drug–phenotype corpus (indicated by asterisks).
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abstracts (27). The higher true positive frequency for the

drug–phenotype corpus compared to the drug–disease

corpus (77% vs. 54%, respectively) might be due to several

factors. First, the semantic pattern used in the text mining

for the former corpus did not allow more than two words

between the bracketed concepts in ‘[DRUG] regulatory verb

phrase [MeSH TERM]’. This restricted proximity between

terms may have biased the corpus to only articles with

the most direct drug–phenotype interactions, and hence

resulted in both higher curation frequency (93%) as well

as higher true positives for drug terms (77%) and pheno-

types (78%). Second, CTD does not curate ‘negative’ data

for chemical–disease interactions. Thus, if an article re-

ported how a drug did not have an effect upon a disease,

that information was not curated; however, ‘negative’

events were permissive for phenotype interactions, allow-

ing biocurators to code interactions describing how drugs

might inhibit or not affect a phenotype. Third, there was a

7.5-fold difference in sample size between the two sets of

articles (10 366 vs. 78 263 articles, respectively).

Overall, these text-mining results were impressive when

viewed in the context of the CTD curation process, because

measuring the effectiveness of text mining at CTD can

be understated. For example, there are many instances

where cited text-mining terms are not actually involved

in the types of interactions/relationships captured by

CTD biocurators. Consequently, the complete universe of

valid, cited text-mining terms specifically resident within

each article is not necessarily recorded by CTD biocurators

(28). One key metric that would seem to most accurately

reflect the success of the Pfizer text mining is that 95% of

the curatable articles contained one or more of the text-

mined terms in an interaction. The increase in the text-

mining success rate between all articles vs. curated articles

(from 66% to 95%) suggest that the rejected articles

more often than not contained the text-mined terms, just

Figure 7. Enhanced content helps develop testable hypotheses for known drug–disease events. CTD’s page for the drug borte-
zomib is selected for ‘Diseases’ data (orange tab), and the results have been filtered for the category ‘Nervous system disease’
(red circle) to focus on NeuroTox events. Bortezomib is inferred to peripheral neuropathy by 150 genes (red arrow, ‘Inference
Network’). Embedded web tools automatically generate lists of enriched GO terms, pathway annotations and gene–gene inter-
action maps (blue arrows).
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not in a context in which they were suitable for CTD

curation.

Summary

Text mining and manual curation of the scientific literature

is a way to discover and unlock vast amounts of data ori-

ginally stored as free-text by authors. Curating this data

into structured formats via the use of controlled vocabul-

aries and ontologies helps convert the information into

computable knowledge, which can be more easily and ac-

curately managed, queried, explored and analysed. Here,

we described how a successful collaboration between Pfizer

safety scientists and the biocuration staff at CTD resulted in

the text mining and manual review of over 88 000 scientific

articles to develop a dataset of drug-induced adverse

events skewed toward cardiovascular, neurological, renal

and hepatic toxicity.

This enhanced curated content can now be used to fill in

the molecular gaps and find putative genes and pathways

for developing testable hypotheses for drug–disease pro-

cesses since CTD provides inference networks of genes

that connect chemicals to diseases (11). For example, the

drug bortezomib (a proteasome inhibitor used to treat mul-

tiple myeloma) is known to cause peripheral neuropathy in

some patients, but the mechanistic process is still not clear

(29). CTD discovers 150 genes that connect bortezomib to

peripheral neuropathy, and the embedded web tools auto-

matically calculate the enriched GO terms, pathway anno-

tations and interaction maps for those connecting genes

(Figure 7). This sophisticated knowledge management

system can help researchers generate novel hypotheses

about expanded molecular pathways of the drug–disease

event and facilitate new screening assays for future

pharmaceutical compound survival.

This curation is freely available to the public through

CTD. As well, the data will be inevitably disseminated fur-

ther into the scientific community via more than 50 other

external databases that routinely incorporate CTD’s manual

curation into their aggregated resources (http://ctdbase.

org/about/publications/#use). In fact, curation from this

project has already been incorporated into MetaADEDB, a

new database of adverse drug events (30,31). As well, the

dataset has been leveraged recently as a reference set to

validate new algorithms for drug repositioning (32), as a

standard for comparing successful drug–disease and drug–

gene knowledge entity metrics (33), and as a resource for

identifying chemical etiologies of diabetes (34). Additional

improvements in text-mining strategies and manual bio-

curation will continue to enhance CTD as a premier re-

source for predictive toxicology. Other public–private

relationships between database experts and commercial

entities may also result in similar custom curation projects

that can be shared with the scientific community.

Citing and linking to CTD

To cite CTD, please see: http://ctdbase.org/about/publica-

tions/#citing. Currently, 53 external databases link to or

present CTD data on their own websites. If you are inter-

ested in establishing links to CTD data, please notify us

(http://ctdbase.org/help/contact.go) and follow these in-

structions: http://ctdbase.org/help/linking.jsp.

Supplementary Data

Supplementary data are available at Database Online.
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