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Years of sequence feature curation by UniProtKB/Swiss-Prot, PIR-PSD, NCBI-CDD, RefSeq and other database biocurators

has led to a rich repository of information on functional sites of genes and proteins. This information along with variation-

related annotation can be used to scan human short sequence reads from next-generation sequencing (NGS) pipelines for

presence of non-synonymous single-nucleotide variations (nsSNVs) that affect functional sites. This and similar workflows

are becoming more important because thousands of NGS data sets are being made available through projects such as The

Cancer Genome Atlas (TCGA), and researchers want to evaluate their biomarkers in genomic data. BioMuta, an integrated

sequence feature database, provides a framework for automated and manual curation and integration of cancer-related

sequence features so that they can be used in NGS analysis pipelines. Sequence feature information in BioMuta is collected

from the Catalogue of Somatic Mutations in Cancer (COSMIC), ClinVar, UniProtKB and through biocuration of information

available from publications. Additionally, nsSNVs identified through automated analysis of NGS data from TCGA are also

included in the database. Because of the petabytes of data and information present in NGS primary repositories, a platform

HIVE (High-performance Integrated Virtual Environment) for storing, analyzing, computing and curating NGS data and

associated metadata has been developed. Using HIVE, 31 979 nsSNVs were identified in TCGA-derived NGS data from breast

cancer patients. All variations identified through this process are stored in a Curated Short Read archive, and the nsSNVs

from the tumor samples are included in BioMuta. Currently, BioMuta has 26 cancer types with 13 896 small-scale and

308 986 large-scale study-derived variations. Integration of variation data allows identifications of novel or common

nsSNVs that can be prioritized in validation studies.

Database URL: BioMuta: http://hive.biochemistry.gwu.edu/tools/biomuta/index.php; CSR: http://hive.biochemistry.gwu.

edu/dna.cgi?cmd=csr; HIVE: http://hive.biochemistry.gwu.edu
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Introduction

Rapidly evolving sequencing technologies have exponen-

tially increased the output of genomics data (1, 2), which

has led to revolutionary discoveries in cancer biology and

other biological sciences (3–5). The field of biomarker dis-

covery has benefited tremendously from this technology,

with hundreds and thousands of variations being asso-

ciated with diseases from single studies (6–8). However,

there are several challenges to analyzing the vast amount

of data (Big Data) that next-generation sequencing (NGS)

technologies are creating, and all laboratories do not have

the resources to perform such large-scale studies (9, 10).

Therefore, it is not surprising that many researchers still

publish results from studies that involve less expensive gen-

otyping technologies producing smaller amounts of data.

Such smaller studies can sometimes help validate results

from larger projects, thereby providing unprecedented

levels of cooperation between scientists engaged in large-

and small-scale studies.

The forementioned cooperation is difficult because gen-

omics data are large, varied, heterogeneous and widely

distributed. Extracting and converting these data into rele-

vant information and comparing results across studies have

become an impediment for personalized genomics (11).

Additionally, because of the various computational bottle-

necks associated with the size and complexity of NGS data,

there is an urgent need in the industry for methods to

store, analyze, compute and curate genomics data. There

is also a need to integrate analysis results from large pro-

jects and individual publications with small-scale studies, so

that one can compare and contrast results from various

studies to evaluate claims about biomarkers.

Databases are mainly of two types: primary databases

that comprise raw data and secondary databases that ex-

tract relationships and filter the information available from

the primary databases and add annotations that are gen-

erated either manually or automatically. One of the prob-

lems often faced by end users of Big Data is the lack of

curated information in primary NGS data repositories,

such as NCBI Short Read Archive (12) and The Cancer

Genomics Hub (https://cghub.ucsc.edu/). It is expected that

curated secondary databases will help organize Big Data

and make it more user-friendly, similar to what secondary

databases like RefSeq (13), UniProtKB/Swiss-Prot (14) and

PIR-PSD (15) have done and are still doing for GenBank

(16). Coherent organization of analysis results of NGS

data will also allow use of higher-level databases such as

Pfam (17), PIRSFs (18), PANTHER (19), KEGG (20) and others

that group objects into functional groups and provide in-

formation on biological networks and processes.

One of the major thrusts of NGS is identification of

human genetic variations, which is used to better under-

stand human diseases (21–23). Although computational

approaches are available to predict which variants are po-

tentially deleterious and associated with disease (24–27),

the first steps involved in the process, such as mapping of

short sequence reads to human reference and identifica-

tion of single-nucleotide variations (SNVs), are computa-

tionally expensive, and few investigators have the

resources or expertise to perform analysis that involves

downloading terabytes of data from databases and pro-

cessing and computing on them (10, 28). Furthermore, vari-

ations that are associated with cancer are currently

available from diverse databases that use different work-

flows, and it is challenging to compare results from differ-

ent sources. Many of these databases and projects have

specific focus. The cBio cancer genomics portal (29) mostly

consists of data from The Cancer Genome Atlas (TCGA), and

its goal is to provide an integrated view of cancer genomics

data from TCGA and other large projects. International

Cancer Genome Consortium (ICGC) data portal allows

member institutions to manage and maintain their own

databases locally and also allows them to present data

and information to the users through a single portal (30).

UniProt provides manually curated cancer mutation data

that are available from publications (14), and resources

such as HGMD (31) have added to such data in the past

few years. The Catalogue of Somatic Mutations in Cancer

(COSMIC) (32) focuses on curating information on somatic

mutations in human cancer largely from Cancer Genome

Project at the Sanger Institute, UK, TCGA and other large-

scale published projects. Other than UniProt, to the best of

our knowledge, no group is currently engaged in extracting

data through extensive manual curation of information

available in publications and providing it freely. It is well

known that such curation is hard to perform as expounded

by Bairoch et al. in their article ‘Swiss-Prot: juggling be-

tween evolution and stability’ (33). For NGS data without

the availability of clear standards in terms of data or ana-

lysis, it is even more challenging, and it is clear that not one

group can tackle this challenge alone. There is a pressing

need to develop data and computational standards as ele-

gantly outlined in the recent Nature Genetic editorial (34).

One of the questions posed in the editorial outlines the

current state of one of the most widely used NGS pipelines

‘If I run the same sequence reads from a single cancer

genome through this pipeline of assembly and variant call-

ing twice, can I expect 70–80% concordance between the

results?’ It is clear something needs to be done, and recent

publications and efforts by the Human Genome Variation

Society show that there is a significant interest in the re-

search community to solve these problems (35).

In view of some of these difficulties, BioMuta has been

created to integrate cancer-related non-synonymous single-

nucleotide variations (nsSNVs) from various sources, which

are associated with specific cancer types and publications.

Such integration, we believe, will assist in the development
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of standards by allowing direct comparison of data pro-

vided by different groups. BioMuta is an integrated se-

quence feature database that provides a framework for

automated and manual curation of features, such as

nsSNVs. Sequence feature information in BioMuta is col-

lected not only from COSMIC (36), ClinVar (http://www.

ncbi.nlm.nih.gov/clinvar/) and UniProtKB (14) but also

through active biocuration from publications and auto-

mated analysis of NGS data from sources such as TCGA

using a novel data analysis platform HIVE (High-perform-

ance Integrated Virtual Environment) (37, 38). Although

databases such as COSMIC add large-scale data to their

databases (97 publications associated with all nsSNVs in

COSMIC), our goal is to manually curate data from small-

scale studies that, to the best of our knowledge, is not the

focus of any of the current resources other than UniProt

(118 publications associated with cancer). It is important

to note that UniProt curation effort is more comprehensive

than just curating cancer biomarkers; hence, we believe

that our work extends the UniProt effort. We believe that

computationally and manually curated and integrated data

and metadata will provide unprecedented value to biolo-

gical researchers by making available details from multiple

studies (big and small) that ordinarily a user would not be

aware of (thereby helping scientists the same way that

Model Organism Databases, RefSeq, UniProtKB/Swiss-Prot

and other curated databases have been doing for years).

Biocuration of data obtained from primary databases re-

quires a framework for analyzing, annotating and comput-

ing, which has led to the development of several curation

tools at all major bioinformatics institutes. Many of these

biocuration tools are geared toward analysis of small-scale

data such as small-number genes or proteins and therefore

are not optimal for analysis of NGS data. In an elegant

article ‘Big data: the future of biocuration’, Doug Howe

and colleagues have pointed out how curation always

lags behind data generation in funding, development and

recognition (39). The authors also provide three urgent ac-

tions to tackle this problem: (i) authors, journals and cur-

ators should work together; (ii) facilitate community-based

curation efforts; and (iii) support for scientific curation as a

professional career. We would like to add a fourth action

stating that there is an urgent need to also develop novel

platforms for biocuration of Big Data. Software and hard-

ware that have worked well for the past decades can no

longer adequately support the needs of the modern cur-

ator who is analyzing vast amounts of data. In this article,

we describe how time-tested curation of sequence features

through reading papers supplemented with data integra-

tion from diverse sources and also through the analysis of

NGS data can help create a comprehensive curated data-

base of cancer-related nsSNVs, which can be of immediate

use to the community. We subscribe to the thoughts ex-

pressed by Howe et al. that biocuration provides an

organized approach in translating the recent explosion of

biological data into meaningful results, and curated data-

bases are essential for novel discoveries in biomedical

research (39).

BioMuta data sources

Data sources for BioMuta are shown in Figure 1. Unless

otherwise noted, all accessions and identifications (IDs)

are mapped using ID Mapping table (40), followed by pair-

wise alignment and mapping of sequence positions with

methods that have been used previously (24, 41). Only

those nsSNVs that could be mapped to UniProtKB/Swiss-

Prot human protein that have the Complete Proteome key-

word tag are retained in BioMuta.

Although there are several efforts worldwide to collect

and disseminate cancer genomics variation data, it is clear

that the data are heterogeneous and it is difficult for users

to compare and contrast data from different data sources.

Different algorithms are used to identify variations, and

also, to the best of our knowledge, biocuration of variation

data from publications on cancer biomarkers is limited. In

all, 118 publications were retrieved from UniProt and 97

from COSMIC. The BioMuta project through literature

mining-assisted curation has already added 85 publications

that are not present in either COSMIC or UniProt. In add-

ition to this, the complementary Curated Short Read arch-

ive (CSR) project provides additional mutation data to

BioMuta from TCGA. Future plans include addition of

data from ICGC and other cancer genomics projects as

data linked to publications becomes available from these

resources (criteria for inclusion of external data in BioMuta

include association of record with a publication).

Catalogue of Somatic Mutations in Cancer

The file, CosmicWGS_MutantExport_v65_220513, which

contains all coding point mutations, was downloaded

BioMuta
ClinVar

UniProt

Curated Short Reads

Manual cura�on

Others…

COSMIC

Figure 1. nsSNV data from various sources are collected, fil-
tered and mapped to UniProtKB/Swiss-prot–defined complete
human proteome and integrated into BioMuta.
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from COSMIC (42). The first step involved filtering out

entries without a PubMed identification (PMID). Because

the cancer descriptions in COSMIC are complex, the

cancer description columns (primary site, site subtype, pri-

mary histology and histology subtype) were manually

checked and converted into TCGA cancer categories

(https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). A total

of 283 895 nsSNVs of 904 143 variations were retrieved

from the COSMIC file.

ClinVar

ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) is a database

that provides information about sequence variations and

associations to human health. Tables were downloaded

from the ClinVar ftp site (ftp://ftp.ncbi.nlm.nih.gov/pub/

clinvar/). A total of 4590 cancer-related variations with

PMIDs were retained. The majority of the records from

ClinVar were filtered out because they either did not

have PMID or the cancer type was not easily discernible.

UniProtKB

UniProt (14) provides comprehensive curated protein se-

quences and functional information. All proteins that con-

tained cancer-related keywords (cancer, carcinoma glioma,

blastoma, leukemia, melanoma, adenocarcinoma, lymphoma

and tumor) in the sequence feature (FT) line were extracted

from UniProtKB/Swiss-Prot–defined human complete prote-

ome, and 2279 manually verified variations were added to

BioMuta. UniProt does not provide genomic location; hence,

for these variations genomic locations are not provided.

Manual curation

By using key terms [cancer, single-nucleotide polymorphism

(SNP), biomarker, variant, variation, etc.], articles from

PubMed (http://www.ncbi.nlm.nih.gov/pubmed) were

retrieved and manually curated to obtain variation infor-

mation. PMIDs not present at the time of curation in

COSMIC, ClinVar and UniProtKB were selected for manual

curation. A total of 139 sites from 85 articles were added to

BioMuta through this process.

Curated Short Read archive

Currently there are thousands of large-scale NGS data from

patients and cell line samples that are available from pri-

mary short read data repositories such as TCGA (http://can

cergenome.nih.gov/) and NCBI Short Read Archive (43) and

listed through dbGaP (44). We expect that integrated ana-

lysis of these data will lead to novel discoveries. For ex-

ample, NGS data from TCGA provides a rich source of

sequence data that can be mined to extend and comple-

ment mutation and SNV information available from dbSNP,

UniProt, COSMIC and other variation databases. We intend

to identify all nsSNVs from representative samples from all

data sets that have matched case and controls and also

have exome and RNA-Seq data. Analysis of these subsets

of samples provides a rich source for biological discovery.

All variation data can be further analyzed using SNVDis,

which is a proteome-wide SNV distribution analysis tool

(24). For this study, NGS data from 20 breast cancer patients

(22 tumor samples and 33 normal) were analyzed to iden-

tify nsSNVs. Results from this analysis and additional infor-

mation such as phenotypic information were curated and

added to a CSR. A total of 31 979 nsSNVs of 291 803 SNVs

from tumor samples were added to BioMuta. Direct access

to CSR is available at http://hive.biochemistry.gwu.edu/dna.

cgi?cmd=csr. Users can search for variations present in

tumor and normal samples using gene or protein accession

numbers and view whether the variation is already present

in dbSNP. Searching using TCGA IDs is also supported. The

CSR curation platform is supported by HIVE, which is

described in the section below.

HIVE for biocuration

A sophisticated IT framework is required for analyzing,

annotating and computing the vast amounts of data

generated using NGS technologies. HIVE provides such a

platform and is used to analyze NGS data. HIVE is a bio-

computing operating system, which provides the ideal

backbone to integrate modular software into a data analy-

tics backbone. The HIVE architecture provides a highly par-

allel processing environment, which allows optimal

compatibility and performance for both native and indus-

try-standard tools. All algorithmic services and tools manip-

ulate data from three sources: data loaded preliminary into

the system, data provided by the user during a computa-

tion inquiry or data computed during a previous computa-

tion. HIVE has an ensemble of parsers, loaders, converters

and validators for all industry-standard biological data for-

mats (such as sequences, alignments, profiles). All data in

the system are available for downloading in a variety of

industry-accepted data formats (fasta, SFF, fastq, BAM,

SAM). The primary step in many genomic workflows is to

align and map short reads to a reference genome. There

are several software programs with their own alignment

algorithms. The different algorithmic approaches of each

tool create computational trade-offs in speed, accuracy

and performance to optimize the detection of variants in

the alignment (45, 46). Currently, HIVE has the following

alignment tools integrated and parallelized: HIVE-hexagon

(native HIVE alignment tool), Bowtie (47) and BWA (48).

After alignment of short reads to a reference genome

with any of the alignment tools, variants can be identified

through comparison of the sample genome with the refer-

ence genome.

Currently, the following protocol is in use in the CSR pro-

ject (a BioMuta data source) to identify variations: Short read

data are obtained from TCGA (http://cancergenome.nih.gov/)

via The Cancer Genomics Hub data portal (https://cghub.ucsc.
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edu/). The reference used in the alignment is the hg19,

GRCh37 Genome Reference Consortium Human Reference

37 (GCA_000001405.1) downloaded from UCSC (http://

hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/).

UniProtKB protein amino acid position and ID mapping is

done using SNVDis and ID Mapping services (24, 40). After

the raw SNV data are generated using Bowtie (47) and SAM

tools (49), filters are used to select high-quality SNVs that are

of desirable coverage (>10 reads) and quality score (>20).

The filtration process also rejects detected SNVs falling out of

the exome regions. Results of the variation profiling tool can

be further evaluated manually using HIVE native displays as

shown in Figure 2.

BioMuta content

To ensure usability of the database, care is taken to verify

that all SNVs in BioMuta have the following characteristics:

(i) has PMID for all imported data, (ii) is an nsSNV, (iii) can

be mapped to UniProtKB/Swiss-Prot–defined human

proteome and (iv) has either gene/protein or genome coor-

dinates. SNVs associated with PMIDs that report <1000 var-

iations are considered small-scale study variations, and

those that are associated with PMIDs that report >1000

variations are considered large-scale studies and are

hence marked as large-scale study variation. Literature

mining variations are those that are automatically

extracted through literature mining procedures. Such var-

iations are currently not available to the public. Table 1

provides detailed statistics of the number of variations

obtained from different databases. The majority of the var-

iations are obtained from COSMIC and CSR-TCGA. Through

manual curation of 85 publications, 139 sites were added to

BioMuta. Adding such manually curated records in BioMuta

is one of the top priorities of the project. Table 2 provides

an overview of example search parameters, number of

Figure 2. HIVE interface showing result obtained from SNV profiling of short sequence reads mapped to nucleotide sequence
surrounding a variation site. (A) Overall coverage result with the 121 485 241 position, showing variation. (B) Reads mapped to
the reference sequence with the column of interest are highlighted in yellow. (C) Only variations are shown in this panel.
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articles retrieved and overall number of articles that were

found to include variation information that can be included

in BioMuta. More specifically, different combinations of

search terms are used and multiple search results are com-

bined to create a nonredundant set of PMIDs. Title and

abstracts are read to extract articles of interest. Titles/

abstracts with gene/protein name, cancer type, tumor

type, variation site, mutation- and biomarker-related

words are prioritized for curation. The next step involves

reading the manuscript and any relevant Supplementary

Tables to retrieve variation-related information. Finally,

accession numbers, mutation and mutation positions are

verified, and attempts are made to manually check and

include missing information such as chromosomal location,

Table 1. Twenty-six cancer types and 322 882 (small-scale: 13 896; large-scale: 308 986) associated variations in BioMuta

Cancer typesa COSMIC UniProt ClinVar Manual CSR-TCGA

Small-

scaleb

Large-

scalec

Small-

scale

Large-

scale

Small-

scale

Large-

scale

Small-

scale

Large-

scale

Small-

scale

Large-

scale

Lung (LUAD) 121 80 006 105

Colon (COAD) 486 68 249 235 20

Breast (BRCA) 176 7386 342 1 3314 16 31979

Esophageal (ESCA) 43 25 980 1

Ovarian (OV) 1229 16 411 31 1276 4

Skin (SKCM) 496 17 041 2

Prostate (PRAD) 77 10 920 1

Head and neck (HNSC) 716 11 838 1

Rectum (READ) 9760 10

Lymphoid (DLBC) 1710 7006

Adrenocortical (ACC) 1000 4515 1

Pancreatic (PAAD) 896 3164 3

Brain (LGG) 773 2383

Uterine (UCEC) 490 1414 1

Kidney (KIRC) 893 115

Liver (LIHC) 1224 1023 14 3

Glioblastoma (GBM) 776

Acute myeloid (LAML) 409 8

Thyroid (THCA) 513 7 3

Bladder (BLCA) 450 2

Lung (LUSC) 256

Stomach (STAD) 89

Kidney renal (KIRP) 33 42

Kidney chromo (KICH) 57

Non-small lung (NSCLC) 4 8

Cervical (CESC) 1 5

Otherd 5319

aLUAD, lung adenocarcinoma; COAD, colon adenocarcinoma; BRCA, breast invasive carcinoma; ESCA, esophageal carcinoma; OV, ovarian

serous cystadenocarcinoma; SKCM, skin cutaneous melanoma; PRAD, prostate adenocarcinoma; HNSC, head and neck squamous cell

carcinoma; READ, rectum adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ACC, adrenocortical carcinoma;

PAAD, pancreatic adenocarcinoma; LGG, brain lower grade glioma; UCEC, uterine corpus endometrial carcinoma; KIRC, kidney renal clear

cell carcinoma; LIHC, liver hepatocellular carcinoma; GBM, glioblastoma multiforme; LAML, acute myeloid leukemia; THCA, thyroid

carcinoma; BLCA, bladder urothelial carcinoma; LUSC, lung squamous cell carcinoma; STAD, stomach adenocarcinoma; KIRP, kidney

renal papillary cell carcinoma; KICH, kidney chromophobe; NSCLC, non-small cell lung cancer; CESC, cervical squamous cell carcinoma

and endocervical adenocarcinoma.
bSmall-scale—SNVs associated with publications that report <1000 SNVs.
cLarge-scale—SNVs associated with publications that report >1000 SNVs or SNVs identified using computational pipelines from existing

NGS data.
dCancer types not specified or well defined.
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accession number/s and valid HGNC gene symbols. Curation

results are cross-checked by curators and through the vali-

dation process.

Users can download the entire BioMuta table or browse

the database by searching for records using gene names

and UniProtKB or RefSeq accessions. Search results include

a graphical representation of the mutations and a table

that can be downloaded in tab-delimited format and

further analyzed by Microsoft Excel or simple scripts.

Users have the ability to select a specific row in the results

table and send comments to BioMuta curators. This type of

direct feedback will help us improve database content. All

records are linked to the Early Detection Research Network

(EDRN) Knowledge Environment through its online public

portal (50). EDRN is a distributed knowledge network that

integrates cancer biomarker research results from across

the network. This includes the integration of annotations

regarding biomarkers under study with the results from

those studies that can be used for analysis. The biomarkers

themselves are annotated from studies performed by the

EDRN and linked to the publications and external protein

and genomic databases. The annotations include informa-

tion about the success of the biomarkers that have been

studied. The EDRN Knowledge Environment allows for

external linking to the specific data captured within the

system. This has allowed for BioMuta and EDRN to be

linked together through specific attributes of the biomar-

kers, including common gene names provided by HGNC

(51), which are annotated with the biomarkers within the

EDRN knowledge system and biomarker database. The inte-

gration of these highly curated systems becomes plausible

given the adoption of common identifiers and the promo-

tion of online portals and web services.

BioMuta has data from various sources, and it is possible

that some of these databases might contain errors in terms

of the genomic coordinates and/or the gene/protein

positions. To reduce the propagation of these types of

errors, we have validation procedures to check the table.

To address the heterogeneity of the different variation

data sources, all variant records are unified via the

UniProtKB/Swiss-Prot human proteome set by providing

each variant a UniProtKB accession number and position.

To achieve this, all variations with genomic coordinates are

first mapped to genes/transcripts using SeattleSeq services

(http://snp.gs.washington.edu/SeattleSeqAnnotation137)

and then mapped to UniProtKB protein accession and posi-

tion using methods described previously (24). Briefly, the

mapping process includes mapping of RefSeq accessions to

UniProtKB accessions using ID mapping services provided by

Protein Information Resource and UniProt (40), followed by

pairwise alignment of the sequences to map the positions.

For all the records that cannot be correctly mapped to the

coding region or if the amino acid does not match the

UniProtKB-defined proteome or for nucleotides if they do

not match the RefSeq nucleotide for that position, the

entire row is discarded after manual evaluation of the error.

BioMuta utility

One of the immediate applications of the BioMuta project is

to evaluate variations that are obtained from various sources

through biocuration and thereby provide ways to prioritize

variations for further experimental evaluation by the EDRN

community and others. The evaluations can be performed by

both comparing and contrasting mutations data from differ-

ent cancer types and/or from different studies. Additional

evaluation of mutations can also be performed by interro-

gating NGS data from TCGA or ICGC or other projects to see

whether specific mutations are present in certain cancer

types and what their frequency is (Figure 3).

One of the goals of researchers is assessing the func-

tional impact of variations. Figure 4a provides example ana-

lysis results of how the BioMuta data can be used to better

understand the functional impact of nsSNVs from different

cancer types. For this analysis, all the nsSNVs were mapped

to functional sites that were obtained from UniProtKB

sequence feature annotation. Based on this analysis, we

notice that a large number of posttranslational modifica-

tions (PTMs) and active and binding sites are affected by

nsSNVs. It is interesting to note that for breast cancer, there

is a high number of nsSNVs that affect N-linked glycosyla-

tion sites. To find out whether certain types of PTM or

other functional sites are resistant to variations, P-values

were calculated based on methods described earlier (24,

52), to estimate the significance between observed and

expected numbers. The results indicate, as expected, for

several of the functional sites, observed variations are sig-

nificantly lower than the calculated expected values. More

specifically—acetylation: observed 105, expected 224.28,

P-value 4.53E-19; active site: observed 59, expected 93.18,

Table 2. Example PubMed search terms and results

Search terms Total

articlesa

Positive

articlesb

SNP, biomarker, cancer 702 60

Biomarker, cancer, single-nucleotide-

polymorphism

1986 43

Polymorphism, biomarker, cancer 5215 20

SNP, exon, cancer 394 16

Gene namec, cancer, SNP 20 4

Total 143d

aTotal number of articles retrieved using the search terms.
bArticles from which data were extracted for inclusion in BioMuta.
cTargeted curation of specific genes, e.g. MTA1, MTA2, SULF2,

SHBG, DLX4, etc.
dArticles and annotations that pass validation step are retained.
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P-value 9.89E-05; binding site: observed 102, expected

123.69; C-linked glycosylation: observed 1, expected 1.68;

g-carboxyglutamic acid: observed 5, expected 2.61;

methylation: observed 45, expected 26.09, P-value 2.42E-

07; N-linked glycosylation: observed 551, expected 467.78,

P-value 9.60E-05; O-linked glycosylation: observed 28,

expected 76.64, P-value 1.54E-10; palmitoylation: observed

1, expected 4.52; phosphorylation: observed 1083, expected

2325.07, P-value 1.71E-183; prenylation: observed 0,

expected 2.00; S-nitrosylation: observed 7, expected 22.25,

P-value 1.65E-04; sulfation: observed 1, expected 1.68;

sumoylation: observed 7, expected 19.19, P-value 1.33E-

03; ubiquitylation: observed 257, expected 668.12, P-value

3.78E-74 (P-values >0.05 are not shown). Data from specific

cancer types were also analyzed to evaluate whether cer-

tain PTMs are more affected by certain types of cancer

(Figure 4b). The majority of functional sites analyzed

seem to be protected from mutation (significantly less

observed variations than expected). It is hard to explain

why for certain cancer types some of the functional sites

appear to be less protected. More data are required to

evaluate these trends. All the variations obtained in our

pipeline are also integrated into SNVDis (24). To facilitate

evaluation of the effects of variations, PolyPhen-based (6)

predictions are also included in the BioMuta table. SNVDis

provides users with applications that can be used to evalu-

ate the distribution of nsSNVs on protein functional sites,

domains and pathways at the entire proteome level. Such

proteome-wide analysis is complementary to functional

impact analysis using methods such as PolyPhen (27) and

SIFT, (26) and similar algorithms.

Integration of data, as the one performed in this study,

allows identification of genes that have high level of varia-

tions. From the small-scale category, the top five genes in

terms of number of unique nsNSVs–PMID pairs are TP53,

PBRM1, MEN1, ARID1A and NF1. For the large-scale cate-

gory, the genes are BRCA2, BRCA1, TP53, TTN and

CACNA1C. In search of variants that are recorded in more

than one database, the variants that have same UniProtKB

accession, amino acid position and variation were identified.

There are 518 variants found in two or more data sources

(Supplementary Table S1). We expect this overlap to

increase as more data from other cancer-genomics studies

are included. Of these 518 overlapping variants, the CSR

database contributes the most to this number of shared var-

iants (>95%), thereby showcasing the utility of evaluating

variations by analyzing TCGA data. Another interesting fact

is that almost 90% (23 of 26) of the literature-based

COSMIC UniProt Publica�onsOthers…

Gene/Protein 
accession/Gene
name

Genomic 
coordinates

Varia�on 
Gene/Protein 

(posi�on)

Cancer type PMID

NM_130800.2
O00255
MEN1

64575133-
64575133

(chr 11)

C|A (1193); G|V
(230)

Pancrea�c 
adenocarcinoma 

[PAAD]

21252315

Small-scale varia�ons*
Small-scale studies
<1000 varia�ons/pmid

Literature mining +
manual cura�on

in silico screening of NGS reads

EDRN Portal

Large-scale varia�ons*
Large-scale studies
>1000 varia�ons/pmid

Literature-extracted varia�ons*
(literature mining)

TCGA short reads; NCI-
60 exome

Other genomic data

EVALUATED VARIATIONS

Phase I: Ongoing

Phase II: Future plans

*Varia�ons  associated with 
mul�ple cancer types can be viewed

Figure 3. BioMuta data flow and utility in evaluating variations obtained from various cancers.
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manually curated variation overlaps are from CSR and not

from COSMIC, suggesting that CSR database even with a

limited number of patient data might already be useful in

evaluating published cancer-related variations.

Our overarching goal is to provide whole-genome and

exome analysis capabilities through HIVE or similar

platforms where users can upload short read sequences

and map them to the human reference genome followed

by flagging of sites that are impacted by variations and are

already reported by other studies. Such analysis will allow

researchers to quickly evaluate personal genomes of

patients or study subjects.
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Figure 4. Loss of functional sites (PTM sites, active and binding sites). (A) Top six cancer types with the highest number of records
in BioMuta. Lung adenocarcinoma (LUAD), colon adenocarcinoma (COAD), breast invasive carcinoma (BRCA), esophageal carci-
noma (ESCA), ovarian serous cystadenocarcinoma (OV) and skin cutaneous melanoma (SKCM). (B) Statistical analysis of loss of
functional sites show that for some cancer type–specific functional sites are less susceptible to variation (colored graph area
almost touching the perimeter—where perimeter represents P-value close to 0).
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Future perspective

Efforts directed toward creating databases such as CSR,

ClinVar, RefSeq, UniProt, HGMD (31) PharmGKB 54),

IntOGen (7), ICGC (8) and others, which provide informa-

tion on variations and disease or other phenotypic details,

will provide methods connecting genomic alterations with

clinical parameters. These efforts are vital for using the full

potential of NGS technologies (3), leading to novel discov-

eries that will translate to diagnostic and therapeutic tar-

gets (4, 54). All of these databases will benefit from

additional variation sites extracted through the biocuration

of information from publications. Our future plans include

automated literature mining methods that will provide tar-

geted extraction of publications that can be used to anno-

tate major cancer genes. We also intend to provide

community annotation tools to cancer biologists so that

they can add notes related to experimental validation of

the variations and the possibility of using them as diagnos-

tic or prognostics markers. This information can be used by

curators to provide additional structured information to

these entries. Engaging the entire scientific community in

community annotation efforts has been difficult (51, 55).

Therefore, we will initially focus on involving the EDRN

community and other specific cancer researcher groups

such as Alliance of Glycobiologists (http://glycomics.cancer.

gov/) in our initial community annotation efforts.

Access

BioMuta and CSR are updated at least once every 4 months.

Access to all data is available without any login require-

ments. To use HIVE’s computationally intensive tools, users

need to register at http://hive.biochemistry.gwu.edu/dna.

cgi?cmd=userReg. Temporary login is provided for evalua-

tion purposes such as browsing the interfaces or viewing

example analysis results. HIVE login URL: http://hive.biochem-

istry.gwu.edu/dna.cgi?cmd=login&follow=home; evaluation

userid: xlhive@yahoo.com; password: pilotHive5. Users can

also install HIVE on their own hardware or use HIVE-in-a-

box, which is a low-cost alternative to analyze NGS data

using predetermined workflows. For additional details,

users are encouraged to contact the HIVE team (http://hive.

biochemistry.gwu.edu/dna.cgi?cmd=contact).

Supplementary Data

Supplementary data are available at Database Online.
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