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Abstract

The breadth and depth of biomedical literature are increasing year upon year. To keep

abreast of these increases, FlyBase, a database for Drosophila genomic and genetic

information, is constantly exploring new ways to mine the published literature to in-

crease the efficiency and accuracy of manual curation and to automate some aspects,

such as triaging and entity extraction. Toward this end, we present the ‘tagtog’ system, a

web-based annotation framework that can be used to mark up biological entities (such

as genes) and concepts (such as Gene Ontology terms) in full-text articles. tagtog lever-

ages manual user annotation in combination with automatic machine-learned annotation

to provide accurate identification of gene symbols and gene names. As part of the

BioCreative IV Interactive Annotation Task, FlyBase has used tagtog to identify and

extract mentions of Drosophila melanogaster gene symbols and names in full-text

biomedical articles from the PLOS stable of journals. We show here the results of three

experiments with different sized corpora and assess gene recognition performance and

curation speed. We conclude that tagtog-named entity recognition improves with a

larger corpus and that tagtog-assisted curation is quicker than manual curation.
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Introduction

A major challenge facing biological databases today is the

increase in data available for curation. Concurrent with an

increase in the number of biological journals, there has been

a movement from printed literature to web-based HTML

and PDF. This has removed many of the financial and tech-

nical constraints on the length and the number of articles a

journal can publish. For the past 30 years, the number of

Drosophila-related primary research articles published each

year has steadily increased from �1000 in 1980 to >2000 a

year since 2001 (1). FlyBase (http://flybase.org) is the prem-

ier database of Drosophila melanogaster genes and genomes

(2) and manually curates Drosophila-related information

from the published literature. This information hangs from

genetic objects, such as genes, alleles and transgenic con-

structs. Our genetic literature curation pipeline has two

main stages: (i) skim or author curation, where the genes in

a paper are identified, and flags are added to indicate the

presence of a new reagent or data type (e.g. a new allele or

gene expression in a perturbed background), and (ii) full

curation, where all other genetic objects are added and

annotated with phenotypic, molecular, expression and inter-

action data. Manually curating each gene mentioned in a

paper is a time-consuming process and takes a significant

amount of curator effort. Finding a way to automate this

process would greatly increase curation efficiency, not to

mention the number of papers that could be fully curated.

Since the meeting at the BioCreative workshop in 2012,

FlyBase has been collaborating with tagtog to identify and

extract Drosophila gene mentions from PLOS journals (3).

tagtog (http://tagtog.net) is a web-based framework for the

annotation of named entities. The tagtog system allows bio-

curators to annotate gene symbols manually and leverages

machine learning methods to perform the same type of an-

notations computationally (Figure 1). Initially, the tool is

trained with a small set of manually annotated documents.

tagtog can then be used to process a set of novel documents

wherein automatically generated predictions are made,

which can be reviewed and validated by the user. This con-

tinuous and interactive retraining of the machine learning

methods with user feedback can lead to an ever-improving

performance in automatic prediction (4). Once optimized,

the trained machine learning methods can be used to process

and annotate a large volume of documents to a sufficiently

accurate level.

In this collaboration between FlyBase and tagtog, we

have annotated >450 PLOS journal articles and explored

whether the size of the annotated corpus affects the preci-

sion and recall of automatic named entity recognition

(NER) and whether NER can speed up gene symbol and

name annotation.

The tagtog system

In the following section, we briefly showcase some of tag-

tog’s main features.

- Multiple projects: users can create different annotation

projects and load their own dictionaries and corpora.

- Team collaboration: multiple users on the same project

are also supported, allowing curation teams to view and

annotate the same set of documents.

- Entity normalization: entities (such as gene names) can

be normalized to unique identifiers (IDs) using a refer-

ence dictionary submitted by the user.

- Active learning: tagtog actively asks for user feedback

on predicted annotations. A proposed mechanism was

already developed in an early version of tagtog, pre-

sented at the BioCreative 2012 workshop (5).

- Document searching: papers can be searched using the

search tool at the top of the interface. Options include

searching by document ID (based on the digital object

identifier), entities or whether a paper has been fully

annotated. In the future, we hope to add the facility to

search by PubMed ID (PMID).

- Browser support: the system runs on all major current

browsers only requiring HTML5 and javascript.

Chrome and Firefox are officially supported. Other

browsers like Opera, Safari and Internet Explorer

(9 and 10) are regularly tested but lack official support

at this point.

- Import options: any paper following the NCBI Journal

Publishing Tag Set (6) or the BioMed Central format

(7) can be uploaded to tagtog. This includes full-text

papers from the PLOS, BioMed Central, Chemistry

Central and Springer Open collections. In the near fu-

ture, we will accept papers from the new JATS format

(8) and plain text files.

- Export options: three export file formats are supported:

a tab-separated list of terms linked to PMIDs (TSV for-

mat), the new BioC format (9) and ‘anndoc’ XML, our

in-house format. Further file formats can be added on

request.

Defining the annotation guidelines

On project creation in tagtog, the first step for a user is to

define the annotation guidelines (Figure 2). These guide-

lines stipulate what should be annotated and how this

relates to the entity class. There are the following options:

- Entity: choose the entity class name to annotate. For

this project, we chose to annotate all D. melanogaster

gene mentions, both as symbols (for example, ‘dpp’ or

‘amn’) and names (for example, ‘decapentaplegic’ or
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‘amnesiac’), where the gene is a separate string or is

separated from another entity by a hyphen. We also

included some non-Drosophila genes, such as the com-

monly used GAL4 drivers from the UAS-GAL4 system

(10) and expression markers such as GFP, RFP and

lacZ.

- Entity Dictionary: upload a user-defined dictionary of

collected entity names. The dictionary can contain

synonyms and database-specific IDs, allowing data in-

tegrity checks and seamless integration of the results

with the parent database. We generated a dictionary of

FlyBase gene symbols, gene names and gene symbol and

name synonyms based on the ‘FB_2013_05 release

fb_synonym_fb_2013_05.tsv.gz’ file available from the

files download page on the FlyBase Web site (11).

- Meta Information: define a list of checkboxes for docu-

ment triage, e.g. whether the article contains human dis-

ease mentions or information on a new transgene. We

generated checkboxes for all the FlyBase triage flags, so

the annotation of the tagtog corpus could be used dir-

ectly in the FlyBase curation.

- Annotatable material: select the sections of the full-text

articles that can be annotated and trained on. The anno-

tation of captions from figures and images can be

decided independently: ‘always’, ‘never’ or ‘section-

dependent’. For this project, we annotated the title,

abstract, materials and methods, results and figure le-

gends. We did not annotate gene mentions in the intro-

duction or the conclusion/discussion sections, as per

FlyBase curation rules.

Figure 1. Example of the document display and editor in tagtog.
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- Pre-Annotations: users can activate or deactivate this

feature. Pre-annotations are annotations that are auto-

matically generated within an individual document

when a user adds or removes an annotation (i.e. selects

or deselects a word). These automatic annotations are

generated as follows: if a user selects the entity ‘X’, in

the same document all mentions of ‘X’ will be pre-

annotated and assigned to the same entity class. The

converse is true for deselections. Note that the auto-

matic pre-annotations are not machine learning-based

but simple matches of equal strings. The pre-annota-

tions are marked with a special flag and have to be vali-

dated or removed by the user before the containing

article can be used for training.

The machine learning component of tagtog

A core defining characteristic of the tagtog system is that

the users can choose the entity class to annotate, such as

genes, Gene Ontology terms or diseases. The system boasts

a general-purpose named entity recognizer implemented

with conditional random fields (CRFs) (12). For the bio-

medical domain, the CRFs are trained with common fea-

tures used in previous systems. However, in contrast to

best performing methods like AIIAGMT (13), which use

the aggregation of various CRF models, we use one sole

backward model. This results in a slightly lower perform-

ance but has the benefit of an increased speed, which is

essential in a user-interactive application. The recognizer

can be customized to the prediction task at hand by means

of user feedback and by using a dictionary of entity terms.

The system can also be expanded with new machine anno-

tators via plug-ins to enable annotation of diverse classes

and domain languages within the same document. If

desired, the machine learning component of tagtog can be

turned off to allow biocurators to use the tagtog interface

exclusively for manual curation.

Defining the project corpus

Every project in tagtog manages a corpus of documents,

which can be uploaded either individually or in batches. The

system’s internal parser recognizes the documents’ sec-

tions, subsections, figures, tables and some additional meta-

information such as the paper’s original uniform resource

locator (URL). The project corpus can be augmented progres-

sively as the user sees fit. Currently, documents are placed in

two folders, the ‘pool’ folder, where most documents are

placed, and the ‘gold’ folder, where a smaller set of manually

annotated documents is used exclusively for the evaluation of

the machine learning methods’ performance. Only the docu-

ments in the pool folder can be used for training.

Generating the FlyBase corpus

To date, FlyBase curators have manually annotated 451

full-text articles using the tagtog interface. The PLOS

Figure 2. Annotation guidelines.
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journal collection was chosen for document sampling be-

cause PLOS makes all their research papers fully available

for text mining (14), and the PLOS journal collection cov-

ers many aspects of Drosophila research. All sampled

papers are from between 2011 and 2013. The following

document sections were annotated: title, abstract, results,

materials and methods and figure and table legends. The

paper annotations have been used to iteratively train the

machine learning component of tagtog. So far, we have

performed three annotation and benchmark iterations. In

the first two iterations, annotations were done manually

by a sole curator and automatically by the system. In the

third iteration, all five FlyBase curators annotated papers

manually. All the manual annotations and corrections

were performed using tagtog’s document editor interface.

Iteration 1: a sole curator (P. McQuilton) manually anno-

tated a training set of 20 articles, representative of the

Drosophila-related papers found in PLOS journals. The

number of 20 ‘seed’ articles was chosen based on best prac-

tices by previous experiments on active learning (15). We

searched the PLOS Web site using the term ‘Drosophila

melanogaster’ from 2011 onward and then randomly se-

lected 20 articles that had been already annotated and

incorporated into the FlyBase database. Trained with these

documents, the system was applied to predict gene men-

tions in an unlabeled validation set of 99 articles. The cur-

ator then went through the validation set and corrected,

added or removed the predicted annotations, when appro-

priate. Mismatched annotations between the original pre-

dictions and the revised annotations were counted as

errors.

Iteration 2: the two sets of papers used in Iteration 1 were

united to form a training set of 119 articles. For evaluation,

the user manually annotated a test set of 20 new articles

(which we will refer to as the ‘Gold Standard’. The system

was retrained on the 119 articles and benchmarked against

the 20 Gold Standard articles. In contrast to Iteration 1,

prediction errors could be compared directly against the

test set.

Iteration 3: the previous two sets, plus a further 312 papers

curated by five different FlyBase curators, were combined

to form an annotated corpus of 451 fly-related papers.

These papers were used to retrain tagtog before the assess-

ment on the Gold Standard set (20 papers).

Measuring performance on the FlyBase corpus

We used standard NER evaluation measures to benchmark

performance, namely, precision (P), recall (R) and F1

measure (F1). Precision measures the percentage of correct

predictions, i.e. the number of correct predictions divided

by all predictions. Recall measures the percentage of cor-

rectly identified entities, i.e. the number of correctly identi-

fied entities divided by all entities present in the test

document. There is typically a trade-off between precision

and recall; F1 averages the two into one sole measure.

More precisely, F1 is the harmonic mean between precision

and recall. Only exact matches between the ‘tagtog’ predic-

tions and the test annotations are counted as correct, i.e.

the predictions have to match the exact word boundaries

[for example, ‘Su(H)’ but not ‘Su(H) protein’]. Two types

of counts were considered: (i) unique entities on a docu-

ment basis. That is, for a test entity X in a document, the

predictions are right if at least one mention of that entity

can be identified in that document, wrong otherwise (for

example, at least one mention of the gene ‘dpp’ is correctly

identified, no matter whether other mentions may be

missed). Equivalently, all unique entities identified by the

predictions but not present on the test annotations are

counted as errors. (ii) All entity mentions for all docu-

ments. That is, for all entity mentions, matching predic-

tions and test annotations are counted as correct, whereas

mismatched mentions, either false-positive findings or

false-negative findings, are counted as errors (so in this

case, three correct mentions of ‘dpp’ can be identified,

while one mention is missed and recorded as a false nega-

tive). Note that for testing, only the annotatable sections

defined by the curator are compared.

Figure 3 shows the entity recognition performance for all

entity mentions in a paper, i.e the ability of tagtog to identify

the presence of a gene mention, either as a symbol or name.

The figure shows that the performance has steadily improved

(taking the F1 measure) in proportion to the corpus size. The

same performance improvement behavior is seen for unique

entity recognition (Figure 4), that is, the ability to identify

the presence of a gene at least once in a paper. In this case,

however, we found a large reduction in precision perform-

ance from Iteration 1 (P¼ 0.82) to Iteration 2 (P¼0.45). We

observed numerous false-negative findings that were re-

peated only once in the text, examples: ‘BamH1’ in ‘jour-

nal.pgen.1003042’ or ‘oskar’ in ‘journal.pgen.1003079’.

False-negative findings can significantly impact performance

of unique entities, but leave the performance of all mentions

mostly unaffected if the unique false-negative findings repre-

sent a small fraction of the total number of mentions.

Nevertheless, in Iteration 3, both the precision and the recall

for unique entities increased considerably (P¼ 0.64 and

R¼ 0.63).

The final number of 451 papers consists of a test set of

20 manually annotated documents plus a training set of

431 documents, which combine manual and automatic

annotations (that have subsequently been manually vali-

dated). We have deposited this corpus in the BioC

Page 5 of 8 Database, Vol. 2014, Article ID bau033
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Itera�on 1 Itera�on 2 Itera�on 3 
Recall 0.44 0.46 0.63 
Precision 0.82 0.45 0.64 
F1 measure 0.57 0.45 0.64 
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Figure 4. Unique entity recognition performance over all three corpora sizes.

Itera�on 1 Itera�on 2 Itera�on 3
Recall 0.21 0.49 0.57
Precision 0.87 0.85 0.84
F1 measure 0.34 0.62 0.67
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Figure 3. Entity recognition performance over all three corpora sizes.
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format (7) at the BioC repository (http://www.ncbi.nlm.

nih.gov/CBBresearch/Dogan/BioC/) for use by other text-

mining groups. We believe the corpus to be the largest and

the most complete gene mention annotation set in full-text

articles currently available.

The BioCreative interactive annotation task

challenge—curation time

Within the framework of the BioCreative IV workshop,

the purpose of the interactive annotation task (IAT) was to

ascertain the possible benefit in terms of curation effort of

machine-assisted annotation versus manual annotation.

The task for tagtog was divided as follows:

1. Manual annotation: using the tagtog interface, a biocu-

rator manually annotated a set of 20 documents with

an entity class of her choice. The machine learning

component of tagtog was consequently trained on the

first manual set and provided automatic annotations

for a second set of 20 documents.

2. Assisted annotation: using the tagtog interface, the bio-

curator reviewed and corrected, where appropriate,

the automatic predictions of the second set of 20

documents.

Curation time was measured for both subtasks, and the

results were compared. Two biocurators participated in

the task, Mary Schaeffer from MaizeDB (first) and Ritu

Khare from NCBI (second):

• The first biocurator chose to annotate maize-related

genes and uploaded a self-defined dictionary of

terms. She is an expert in this kind of annotation.

A total of 6 h and 34 min was taken for the manual

annotation and 4 h and 5 min for the assisted anno-

tation. This indicates a reduction in curation time of

�1.6-fold.
• The second biocurator chose to annotate Drosophila

gene names and symbols and uploaded the same dic-

tionary as used with the FlyBase corpus. The second

curator is not an expert in this kind of annotation.

She spent 9 h and 19 min for the manual annotation

and 4 h and 49 min for the assisted annotation. This

indicates a reduction in curation time of �1.9-fold.

Conclusions

We have shown that tagtog can be used successfully to an-

notate Drosophila gene symbols and names. We have also

shown that the accuracy of these annotations increases with

the size of the training corpus. In addition, we have shown

that tagtog-assisted NER can reduce overall curation time.

This gradual improvement in accuracy, combined with the

shortening of curation time by 1.6- to 1.9-fold compared

with completely manual curation, illustrates the benefit of

including text-mining techniques, such as tagtog, in cur-

ation. To our knowledge, these preliminary results represent

one of the first NER evaluations with a substantial amount

of full-text articles in the biomedical field.

Given the encouraging nature of the curation time ex-

periments, we plan to expand our analysis of curation with

tagtog to assess whether the increase in curator speed is

due to familiarity with the tool or assisted annotation.

These experiments have also shown that tagtog can be

used to annotate gene symbols from species outside of

Drosophila, such as maize.

In future work, we will check for the presence of

repeated entities between documents that could bias the

NER evaluation between iterations and assess inter-

annotator agreement between the five FlyBase curators to

allow performance benchmarking. NER with full-text art-

icles is understood to be considerably more difficult than

for abstracts (16, 17), and although we have not special-

ized the machine learning methods used here for

Drosophila gene mention extraction, we are pleased with

the level of performance. The continuous learning of tag-

tog is designed to generate cheaper (in terms of manual

curation effort) training data, by taking advantage of

semiautomatic annotation. We will continue to add to the

FlyBase corpus, with the aim of increasing NER accuracy

and the potential incorporation of tagtog (or the output

from tagtog) into our genetic literature curation pipeline.

In this article, we have illustrated how tagtog-assisted

annotation can benefit manual curation from the litera-

ture. We have shown how the identification of D. mela-

nogaster gene symbol and name mentions has gradually

improved with more training data and user feedback. This

illustrates the adaptability of the tagtog system to the spe-

cific curation requirements of the user, and there seems to

be a potential for further improvement in NER perform-

ance. Thanks to our participation in the BioCreative IV

IAT challenge, we have been able to achieve promising

results in the reduction of curation time through the use of

tagtog-assisted curation compared with manual gene men-

tion extraction. As a result of our experiments, we have

generated the FlyBase corpus, one of the largest corpora of

full-text articles with entity annotations in the field of bio-

medical text mining. We have made this available in BioC

format for use by the text-mining community.
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