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Abstract

Mapping reads to a reference sequence is a common step when analyzing allele effects

in high-throughput sequencing data. The choice of reference is critical because its effect

on quantitative sequence analysis is non-negligible. Recent studies suggest aligning to a

single standard reference sequence, as is common practice, can lead to an underlying

bias depending on the genetic distances of the target sequences from the reference.

To avoid this bias, researchers have resorted to using modified reference sequences.

Even with this improvement, various limitations and problems remain unsolved, which

include reduced mapping ratios, shifts in read mappings and the selection of which vari-

ants to include to remove biases. To address these issues, we propose a novel and gen-

eric multi-alignment pipeline. Our pipeline integrates the genomic variations from known

or suspected founders into separate reference sequences and performs alignments to

each one. By mapping reads to multiple reference sequences and merging them after-

ward, we are able to rescue more reads and diminish the bias caused by using a single

common reference. Moreover, the genomic origin of each read is determined and anno-

tated during the merging process, providing a better source of information to assess dif-

ferential expression than simple allele queries at known variant positions. Using RNA-

seq of a diallel cross, we compare our pipeline with the single-reference pipeline and

demonstrate our advantages of more aligned reads and a higher percentage of reads

with assigned origins.
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Introduction

Many next-generation sequencing analyses rely on an

alignment to a reference genome. Generally, this alignment

is to a single reference sequence, regardless of the underly-

ing organism’s ploidy. When parental haplotypes differ in

their similarity to the reference sequence, a significant

alignment bias can result (1, 2). This is particularly prob-

lematic when allele counts are treated as quantitative

measures. Therefore, it is important to use proper reference

sequences for read mapping, as it will inevitably affect the

accuracy of alignments in terms of mapping ratio (i.e. the

ratio of reads that are mapped) and mapping locations.

The most commonly used approach is to map reads to a

standard reference and rely on the error tolerance of the

aligner to compensate for the genomic variations of the tar-

get sequence. Gregg et al. (3) aligned F1 hybrids from re-

ciprocal crosses between the isogenic mouse strains CAST/

EiJ and C57BL/6J to the NCBI37/mm9 mouse genome and

transcriptome to study parent-of-origin effects. However,

this approach favors reads with reference alleles, and it is

worth noting that the mouse reference genome is largely

based on C57BL/6J. This results in a systematic bias, called

the reference bias. To reduce this reference bias, Degner

et al. (2) proposed masking every known polymorphic

location in the reference genome with a third allele. This

approach reduces the total number of reads aligned be-

cause the added masked alleles always introduce mis-

matches, which all aligners attempt to minimize. In fact,

unmapped reads result when the best mapping considered

has excessive mismatches. In RNA-seq experiments, this

reduction in mapped reads leads to underestimation of ex-

pression level of genes with variations (4). Several attempts

have been made to create a sample-specific reference gen-

ome or transcriptome for alignments. Keane et al. (5)

aligned reads from F1 cross of C57BL/6J�DBA/2J to a

C57BL/6J-based reference genome and an approximate

DBA/2J genome where known DBA/2J variants, primarily

single nucleotide polymorphisms (SNPs), were substituted

into the reference. Turro et al. (4) proposed a hybrid pipe-

line that first aligned reads to a reference genome to call

SNPs, and then realigned the same reads to a customized

transcriptome with the discovered SNPs incorporated. As

single-base substitutions do not change genome coordin-

ates, it is straightforward to embed SNPs. However, this

method cannot be easily generalized to other frame-shift-

ing variants such as small indels, inversions and copy num-

ber variants to which a sequence aligner is more sensitive.

Rozowsky et al. (6) proposed AlleleSeq for constructing a

modified diploid genome by inserting SNPs and indels into

the reference genome and using this diploid genome as

the reference during alignment to avoid errors caused by

reference bias. Although AlleleSeq is similar to our pro-

posed pipeline, it is limited to diploid organisms.

Moreover, as shown below, it analyzes differential expres-

sion at variant positions, which will become more difficult

as the density of variants increases.

After reads are mapped, the relative read counts in spe-

cific regions of the sequence are often used to quantify

abundance within a genomic region. In DNA sequencing

(DNA-seq), local read counts are used to estimate copy-

number gain or loss (7, 8). In RNA sequencing (RNA-seq),

local read counts are used to quantify gene expression lev-

els and to identify the isoforms expressed (4, 9). In diploid

organisms, researchers have been interested in assessing

the differential expression levels between parental haplo-

types (i.e. parent-of-origin or allele effects). In a typical

analysis of differential expression, the read coverage at

each known variant position are partitioned according to

allele and then used to estimate the imbalance (3, 5, 6).

Statistical corrections to the read counts are required when

the density of local variations allows multiple variants to

fall in the same read or read-pair. Thus, in regions with

dense genomic variations, the quantitative use of read

counts is complicated both by an inability to align, and a

difficulty of establishing the independence of each variant

observation.

We propose a new read annotation pipeline that over-

comes most of these problems. It uses multiple alignments

and a merging process in an attempt to resolve a given

read’s origin.

First, we leverage the existing databases of genomic

variants to build custom reference genome sequences for

all parental haplotypes, each of which is used in an inde-

pendent alignment procedure. We call these synthetic gen-

omes pseudogenomes. Unlike most previous methods,

different types of variations, such as SNPs, indels and

structure variants (SVs), can all be integrated into the pseu-

dogenomes. As the coordinates in the alignment to pseudo-

genomes are no longer relative to the reference because of

the incorporated indels and SVs, we remap all positions

back to the reference coordinate system after alignment.

This remapping enables comparisons of the pseudogenome

alignments and allows us to use existing annotations

(i.e. positions of gene exons and functional elements),

which are generally based on the reference sequence’s

coordinates.

In a second stage, we merge alignments to multiple

pseudogenomes and assign an origin to every read. Because

of the previous multi-alignment process, each read may be

aligned to more than one pseudogenome. Even within

the same pseudogenome, depending on the settings of an

aligner, reads can be mapped to multiple locations.
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Although discarding reads with multiple mappings is a

common practice (1, 5, 10, 11), their exclusion can lead to

additional biases in downstream estimation (4). In the

merging stage of our pipeline, we resolve such multiple

mappings where possible by keeping the best choice based

on several well-defined criteria. Meanwhile, each read is

labeled with its most likely origin based on comparing its

mappings in multiple pseudogenomes. This label facilitates

downstream analyses, as read counts instead of allele

counts are used to assess differential expression, which re-

quires less severe independence assumptions (measures

based on the origin labels of a read need only consider the

likelihood that reads are from the same transcript, whereas

measures based on allele counts at a particular genomic

position must, in addition, consider the likelihood that

nearby variants are from the same read).

Methods

In this section, we describe our pipeline for annotating

multi-parental sequencing data. For the purpose of discus-

sion, we will assume that the data set being analyzed is

RNA-seq from a two-founder diallel cross. The diallel pro-

duces samples from crossing two isogenic parental gen-

omes. Our pipeline is not limited to analyzing diallels, nor

is it limited to RNA-seq analysis, as discussed in the

‘Discussion and conclusion’ section. For comparison pur-

poses, we also consider a second analysis pipeline that uses

a single reference genome and attempts to achieve similar

annotations. In all fairness, this single-reference pipeline is

only an approximation to the front ends of other published

methods. We have deliberately attempted to separate the

annotation phase of sequence analysis from subsequent

analyses in our pipeline. Our new pipeline consists of mul-

tiple alignments that incorporate all known genetic vari-

ants into a genomic model followed by annotation and

merging. Assessments of the differential expression levels

owing to parent, allele or slice variants are considered

downstream uses of our annotations. We contrast our

multi-alignment-based approach with a representative ref-

erence-based pipeline and highlight their major differences.

Single reference pipeline

In traditional reference-based alignment pipelines, short

reads from high-throughput sequencers are first mapped,

and genetic variation is considered afterward. There are

significant advantages in using a standard reference gen-

ome. In addition to supplying a standard coordinate system

for comparison between target genomes, reference coord-

inates anchor nearly all of the genome’s functional annota-

tions, such as gene/exon locations, transcription factor

binding sites and notations of common variants. When all

samples are aligned to this reference, genomic comparisons

are significantly simplified. However, the mappability to

the reference genome is reduced if a sample has a large

number of variations from the reference. This results in ei-

ther a reduction in the number of reads mapped and/or an

increase in mapping errors. If the number of errors exceeds

the aligner’s tolerance, the read will be simply dropped

from the output and its information will be lost. In short, a

sample that is genetically distant from the reference will

typically align fewer reads and with reduced confidence

than a sample that is closer to the reference.

There is an extra step of annotating the reads after they

are mapped in the alignment. Specifically, the known

allelic variations between the parental genomes are used to

assign its origin. Consider a diallel cross of two inbred

mouse strains as an example. If a mapping shares three

SNPs with the maternal strain but only one with the pater-

nal one, the single-reference pipeline assumes that the map-

ping is from the maternal side. If such counts are the same,

suggesting an equal chance of coming from either one,

then the strain origin of this mapping cannot be

determined.

Multi-alignment pipeline

One of the flaws with the single-reference pipeline, applied

to an entirely homozygous inbred sample, is the fact that

the alignment process does not take into account known

sequence differences between the given inbred and the ref-

erence. Instead, this is typically handled later during ana-

lysis or as a post-alignment annotation (as described in the

‘single-reference pipeline’ section). One of the major differ-

ences in our new pipeline is to take advantage of known al-

lelic differences as early in the pipeline as possible.

MOD format

We first propose a general-purpose framework for map-

ping back and forth between genomes, which is suitable

for both short reads and genomic annotations. It is facili-

tated by a mapping file, called a MOD file, that describes

all variations between a reference and a target genomic

sequence (12). MOD files provide a generative mapping

from reference sequence to a target sequence that incorpor-

ates all known structural variants (SNPs, indels, transloca-

tions and inversions).

The MOD format is composed of instructions that

transform one genome sequence into another. It is essen-

tially an edit transcript relating two strings (13), and it

provides a basis for quantifying the similarity of two se-

quences. A MOD file is not necessarily unique, nor do we

make any claims with regard to minimality. We call the
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genome before transformation the source and the one after

the destination. Each MOD file is directional, i.e. always

from the source to the destination.

A MOD file consists of two parts (Figure 1a): a header

and a body. The header includes the metadata of the trans-

formation, such as the version of the MOD format, the

source, the destination and so forth. The body holds the in-

structions, each of which has its affected position and argu-

ments. Positions are all stored in the source coordinate

system, and the bases before and after modification are

included in the arguments.

There are three basic types of instructions defined in the

MOD format: s-, d- and i-instructions. They describe sin-

gle-base substitutions, single-base deletions and insertions,

respectively. All instructions are atomic, in that they refer-

ence no more than one position from the source. It is obvi-

ous that both s-instructions and d-instructions are atomic.

For i-instructions, we merely add new sequence after an

anchor position in the source without altering any base;

thus they are also atomic.

One way to generate a MOD file is to convert common

variant calls into instructions. For example, SNPs and gen-

omic insertions can be directly changed to s-instructions

and i-instructions, respectively. For genomic deletions, we

need to break each of them up into single-base deletions

before converting to d-instructions (Figure 1a and b).

Notice that the position information in adjacent d-instruc-

tions is redundant. However, the design choice of keeping

all instructions atomic facilitates later MOD-file manipula-

tions, whose advantages are considered to outweigh this

slight redundancy. Moreover, the additional space over-

head is recovered when MOD files are compressed.

Complex structure variants, such as tandem duplica-

tions, inversions and translocations, can be described by

the current set of instructions. For example, a tandem

duplication is represented by repeating an i-instruction at

the same location, whereas inversions (or translocations)

are implemented by a series of d-instructions at the source

sequence position and a corresponding i-instruction of the

inverted (or transferred) sequence at its new position. We

recommend annotating such coupled sets of instructions

using comments following the instructions.

Pseudogenome construction

MOD formatted files provide a generative procedure for

transforming a source sequence to a destination. We can gen-

erate a pseudogenome for the inbred based on the reference

and known genetic variants (SNPs, insertions and deletions).

In our pipeline, the MOD Interpreter will execute the

instructions of a MOD file for an inbred strain and incorp-

orate variants into the reference genome sequence to

obtain a pseudogenome. The detailed procedure is shown

in Algorithm 1. The generated pseudogenome is then used

in the alignment process instead of the reference genome,

so the end result of alignment is a BAM file (14) using the

coordinate system of the pseudogenome.

Algorithm 1 Pseudogenome Construction

1: function BUILDSEQ(chrom, chromLen, srcSeq)

2: instructionSet  LoadInstructions(chrom)

3: srcPos 0

4: dstSeq 00
5: for all inst 2 instructionSet do

6: insPos inst :position

7: if srcPos< insPos then

8: dstSeqþ¼ srcSeq½srcPos : insPos�
9: srcPos insPos

10: end if

11: Execute Instruction s on Position insPos

12: end for

13: if srcPos< chromLen then

14: dstSeqþ¼ srcSeq½srcPos : chromLen�
15: end if

16: return dstSeq

17: end function

Pseudogenome alignment and annotation

Separate alignments create problems when comparing sam-

ples. If we tried to compare a CAST/EiJ inbred to a PWK/

PhJ inbred using only the pseudogenome alignments, there

would be two different genomic coordinate systems in play.

To alleviate this issue, we use the same set of known allelic

differences incorporated into the pseudogenome to translate

all of the mapped reads back to the reference coordinate sys-

tem. This involves going through each mapped read and ad-

justing the mapping position, cigar string and edit distance

to match the reference genome instead of the pseudoge-

nome. It is done by scanning a MOD file and accumulating

the number of shifted bases affected by d-instructions and i-

instructions. For every pair of corresponding regions in the

two genomes, we record a pair of offsets. Given a position

in the source, we first look up in the source offsets to find

out in which region it falls and then compute its destination

position. This step is performed by a Python program called

Lapels in our pipeline (Algorithm 2).

Finally, each mapping is annotated with a series of tags

to preserve information from the original pseudogenome

alignment. To assess the mapping quality, each remapped

read retains the cigar string and edit distance from the ori-

ginal pseudogenome mapping as tags. These tags allow us

to calculate the original quality scores and preserve
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information regarding the differences between the refer-

ence and pseudogenome mappings for that read.

Unfortunately, alignments are more difficult to assess

for multi-parental crosses and diploid organisms in general

because there are multiple sets of allelic differences to in-

fluence the alignment. In a diallel sample, there are two

sets of allelic differences to take into account. We address

this problem by constructing pseudogenomes for all contri-

buting founder genomes, performing separate alignments

of the full data set to each pseudogenome, and remapping

them back to a reference genome while annotating differ-

ences as described earlier (Figure 2).

Merging—comparing alignments

Next, we consider all annotated alignments as input

and merge them into a single output by choosing the best

mapping for each read. This is performed by Suspenders in

our pipeline (15). Suspenders sorts the BAM files by read

name and systematically compares each alternative map-

ping. For each read, it extracts all mappings from each

(a) (b)

Figure 1. A MOD file example (a) and the corresponding sequences of the source and the destination (b). There are two SNPs between these se-

quences, and they are represented as two s-instructions at source positions 2 and 19. A three-base deletion (from source positions 8–10) is observed,

and it is broken up into three d-instructions. The insertion after position 17 is directly added to the MOD file without any conversion because of its

atomicity.

Figure 2. Multi-Alignment Pipeline for a diallel cross. Here we assume that the organisms being considered are diploid. The first step is to create two

pseudogenomes using the list of known allelic differences, align the same reads to both pseudogenomes and convert the mappings back to the refer-

ence coordinate system. Next we merge the two alignments and keep only the best mappings to either pseudogenome in the final merged file.
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Lapels-annotated BAM file before comparing the results.

As explained earlier, information from the original pseudo-

genome alignment is preserved by the annotation step.

The first step in the merge process is to identify the ori-

gin of each mapping. To do this, Suspenders first identifies

identical mappings based on the mapping start position

in the reference genome (chromosome and coordinate), its

cigar string in the reference genome, its pairing (either

paired or unpaired) flag, its fragment end flag (either first

or second) and its quality score [e.g. the Bowtie end-to-end

score (16)] from the pseudogenome mappings. The start

position and cigar string assure that the two mappings in

question cover the same genomic interval in the reference

coordinate system. If the pairing and fragment end flags

are also the same, it indicates that the read fragment was

mapped in the same way in the separate pseudogenome

alignments. The final criterion of comparing quality scores

implicitly takes allelic differences into account and is dis-

cussed in greater detail later. If a read’s mappings to two

or more pseudogenomes are identical, Suspenders merges

the mappings into one logical unit and tags the mapping

with a bit vector to identify the origin. For example, for a

diallel sample, it would tag each mapping with a 2-bit flag

set indicating its origin (01: first parent, 10: second parent,

11: either parent). Read mappings that uniquely map to a

single pseudogenome are tagged according to their source

(i.e. by setting a single bit).

Algorithm 2 Remapping Reads

1: function REMAPREADS(chrom)

2: readSet  LoadReads(chrom)

3: instructionSet  LoadInstructions(chrom)

4: regionMap BuildMapping(instructionSet)

5: for all r 2 readSet do

6: Look up r :position in regionMap and get delta

7: r :positionþ¼ delta

8: Save and adjust r :cigar , tag NM (edit distance)

9: end for

10: return readSet

11: end function

12: function BUILDMAPPING(instructionSet)

13: srcPos 0

14: delta 0

15: regionMap fg
16: for all inst 2 instructionSet do

17: Insert ðsrcPos! deltaÞ into regionMap

18: if inst :type is s-instruction then

19: srcPosþ¼ inst :length

20: continue

21: else if inst :type is i-instruction then

22: deltaþ¼ inst :length

23: else if inst :type is d-instruction then

24: srcPosþ¼ s:length

25: delta�¼ inst :length

26: end if

27: end for

28: Insert ðsrcPos! deltaÞ into regionMap

29: return regionMap

30: end function

For paired-end reads of a fragment, we ‘link’ parental

origins. The main idea is that if one read from a fragment

can be assigned to a parent unambiguously, we infer that

its mate also came from that same parent, even if the mate

contains no informative variants. To illustrate the signifi-

cance of linking, in our example single-reference pipeline

(‘Single-reference pipeline’ section), each read is treated in-

dependently during the annotation step even if it is mapped

as a paired-end read, thus requiring the presence of an

informative allele in the read to assign its origin. This ap-

proximates the common process of examining alignments

only at informative variant positions, while retaining the

ability to detect whether two variants fall on the same

read. In our new pipeline, if two read mappings are prop-

erly paired, then they are treated as a single unit through-

out the entire merging process. This means that (i) the

mappings of two properly paired reads will be marked

with the same parental origin, (ii) the quality score will be

calculated once based on the mismatches and indels from

the paired mapping and (iii) the merge always prefers a

paired-end mapping to one or two single-end mappings

from the pair.

Merging—filter pipeline

Entering into the filtering section of the pipeline, we have a

set of possible mappings for a given fragment where each

mapping is marked with an origin flag. By sending the set

through a series of filters, we remove mappings from the

set until only one possible mapping remains for each frag-

ment. Before filtering, Suspenders checks to see whether

any of the possible mappings are mated paired ends. If so,

it immediately removes all unpaired mappings from con-

sideration, as we prefer a paired mapping over an unpaired

one. If there are no paired-end mappings, the mappings are

grouped depending on whether they are the first or second

read from the fragment, and a mapping set from each read

is independently sent through the Suspenders filters. The

two unpaired ends of the same fragment may be filtered in

different ways because they are handled separately.

The next step is to send the mapping sets through a ser-

ies of three filters (shown in Figure 3): Unique, Quality and

Random. If a mapping is output by a filter, we add
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additional annotation to indicate the chosen mapping as

coming from that filter. The Unique filter identifies the

reads whose mapping sets contain a single mapping and

outputs these mappings. These include all reads having a

unique mapping to only a single pseudogenome, and reads

mapping to multiple pseudogenomes with single identical

mapping as defined previously. In short, the Unique filter

outputs simple cases where a read (or two paired reads)

has one unique mapping across all pseudogenomes. In

Figure 3, reads 1, 2 and 3 each have a single unique pos-

itional and score mapping, so they are all output by the

Unique filter.

As mentioned earlier, the score comparison is where

this pipeline implicitly takes into account allelic variations

in the sample. An aligner typically uses a quality score to

quantify the mapping quality, which is a function of the

number of mismatches, insertions and deletions. Only the

mapping(s) with the best score are outputted. For example,

TopHat uses the Bowtie scoring scheme (16) when report-

ing possible mappings (17–19). Assume that a read aligns

to multiple pseudogenomes that straddle an informative

variant caused by a SNP. The mappings to pseudogenomes

with the matching variant will have fewer mismatches than

that to genomes with the alternate allele. As sequencing

errors are attributes of the read, they contribute mis-

matches equally to all pseudogenome mappings. In places

with no informative alleles, an aligner will report mappings

to all genomes with identical number of mismatches.

Additionally, if there are multiple variants under a read’s

mapping, the read may be mapped to multiple positions in

the genome, but usually only the best mappings are

reported. The Quality filter attempts to simulate this be-

havior by keeping only the best mappings and their corres-

ponding references. Before the filters, identical mappings

Figure 3. Sample filter path for mapping sets of five reads in a diallel cross labeled such that ‘4b:90’ is mapping ‘b’ of read 4 with a score of 90. Before

filtering, 1a and 1b are combined into 1a/b because they have the same position and score in both mappings. Additionally, 5c and 5d are also com-

bined. The mapping sets of reads 1, 2 and 3 are all outputted by the Unique filter, as there is a single positional mapping for each. The mapping sets

of reads 4 and 5 have multiple mappings, so they are diverted to the Quality filter by the Unique filter. The Quality filter outputs 4a, as only one map-

ping of read 4 has the best score (100 compared with 90). The mapping set of read 5 has three mappings with identical scores and is therefore

diverted to the Random filter, which chooses one mapping arbitrarily. As there are three in the set, each one has a 33.3% chance of being chosen,

with 5b being the arbitrary choice in this example.
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(with same coordinates and scores) were combined into a

single unit. However, the mappings were not combined if

their scores were different. The Unique filter treats them as

two different mappings from distinct origins and passes

them to the Quality filter.

Read fragments with multiple mappings (possibly to the

same position) are passed to the Quality filter. For each

read fragment, we regenerate the original scores of the

pseudogenome mappings from the stored cigar strings and

edit distances saved during the annotation phase when

remapping back to the reference. If only one mapping has

the best score, then that mapping is outputted by the

Quality filter. In Figure 3, the mapping set of read 4 has

two different mappings (one from maternal and one from

paternal). The maternal mapping has a higher quality

score, so it is outputted by the Quality filter.

However, if multiple mappings of a mapping set have

the same best score, then we pass those mappings to the

Random filter as a last resort. The Random filter will

choose only one from the set at random to keep in the

merged result. Each chosen mapping is tagged with the fil-

ter it came from, so the option to remove all mappings

from the Random filter can be performed in downstream

analysis. In Figure 3, the mapping set of read 5 has three

possible mappings with identical scores. Each mapping has

a 33.3% chance of being chosen for the final output. After

each read fragment has been processed using the filter pipe-

line, the final result is a single merged file containing at

most one mapping for each single-end read and at most

one paired mapping or two unpaired mappings for each

paired-end read. Additionally, each read mapping is tagged

to identify its pseudogenome origin and the filter that out-

put it during the merge process.

Results

We evaluated our pipeline using a full diallel cross of two

wild-derived inbred mouse strains: CAST/EiJ and PWK/

PhJ. We use the notation of CAST� PWK to represent the

cross whose maternal and paternal parents are CAST/EiJ

and PWK/PhJ, respectively. Likewise, the reciprocal cross

is denoted by PWK�CAST.

We first extracted mRNA from brain tissues of 10 fe-

male samples (five for each cross). Then we used Illumina

HiSeq 2000 platform to sequence the transcribed cDNA

and obtained around 1.2G paired-end reads with 100 bp

(2� 100). The number of reads per sample is shown in

Table 1.

To generate MOD files for the two founder strains, we

first extracted SNPs and indels from the VCF (20) files

(downloaded from ftp://ftp-mouse.sanger.ac.uk/REL-1105/).

Only high-confidence SNPs and indels for the 19 autosomes

and X were incorporated into the MOD files. Variants on

mitochondria (M) were extracted from other sources (http://

cgd.jax.org/datasets/popgen/diversityarray/yang2009.shtml).

The MOD files used in this article can be found at http://

www.csbio.unc.edu/CCstatus/index.py?run¼Pseudo. For

each MOD file, the statistics for the whole genome are sum-

marized in Table 2.

We ran several tools with their default parameter

settings in both pipelines. RNA-seq reads were aligned

against the genomes by Tophat (v2.0.5). In the multi-

alignment pipeline, we used Lapels (v1.0.4) to map each

read coordinate back to the reference, and Suspenders

(v0.2) to merge and tag mappings. Only one mapping per

read was reported in the final output.

Comparison of mapping ratio

We examined the fraction of mapped reads from align-

ments to pseudogenomes, and compared it with the frac-

tion of the same reads when mapped to the standard

reference genome. This is an imperfect comparison, as we

consider only whether a read maps without considering the

accuracy or quality of the mapping. The mapping ratios

are shown in Figure 4.

Observe that more reads are mapped to each parental

pseudogenome than to the reference. The percentage gain

is �3% for both pseudogenomes in the two crosses. A

similar increase can be seen in the percentages of uniquely

mapped reads. This suggests that by integrating the

Table 2. Statistics of MOD files for CAST/EiJ and PWK/PhJ

Strain s-instructions d-instructions i-instructions

CAST 17 674 364 4 834 899 4 206 776

PWK 17 202 935 4 715 249 3 457 436

The counts are in units of base pairs. For s-instructions and d-instructions,

they are just the numbers of instructions, respectively. For i-instructions, the

counts are derived from adding up the number of bases in each inserted

sequence.

Table 1. Total number of reads for 10 samples in two F1

hybrid crosses

Strain CAST�PWK PWK�CAST

Sample 1 115 936 064 119 926 340

Sample 2 87 988 306 90 706 788

Sample 3 142 479 432 170 423 066

Sample 4 137 698 560 92 829 168

Sample 5 137 953 398 93 801 072

Total 622 055 760 567 686 434
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variations of parental strains into the reference, we have

obtained two better genomes for the reads to align to.

If we consider whether reads mapped to either or both

pseudogenomes, the combined recovery rate gain almost

doubles to around 6%. To take advantage of this gain, we

use the merge process of our method to combine the two

sets of alignments in the following section.

Comparison of parental origin labeling

After reads are mapped, our new pipeline and single-reference

pipeline next attempt to label the pseudogenome origin of

every read where possible. This is a crucial step for down-

stream analyses, which leverage the labels to determine

differential gene expression between the parental strains.

As common aligners can allow a small amount of mis-

matches during alignment, reads containing SNPs may still

be mapped to the reference. After alignment, the single-

reference pipeline can check every SNPs positions in the

reads and count the numbers of maternal alleles and pater-

nal alleles. Then the ratio of the two allele counts is used to

determine the parental origin of each reads. If no maternal

and paternal alleles are observed or both counts are the

same, it will be classified into the ‘can’t tell’ category.

Otherwise, we choose to label the mapping according to

which the allele count is greater.

In our proposed pipeline, the label for each mapping is

determined during the merging stage after considering the

mappings to multiple pseudogenomes. This process takes

place in three filtering stages whose details were discussed

in the ‘Merging filter pipeline’ section.

We compared the performance of both pipelines in

labeling read origins. To reduce bias between two crosses,

we only used reads that mapped to the autosomes. The

biases are introduced by mitochondrial RNA expression,

which is entirely of maternal origin, and a skewing of

the X-inactivation ratios in heterozygotes, which prefers

genes expressed from the CAST/EiJ chromosome (21).

Furthermore, reads with multiple mappings are discarded

by the single-reference pipeline, which is a common strat-

egy described by many researchers (1, 5, 10, 11). To make

the comparison more fair, we ignored the mappings output

by the Random filter in our pipeline. Any mappings output

by the Random filter are treated as unmapped reads in the

figures and tables. The percentage of reads in each category

is shown in Figure 5.

Although only 4.3% more reads are processed in our

method than in the traditional one, there is higher percent-

age of reads assigned to a unique parent of CAST or PWK.

Specifically, �5% of reads are gained for each parental

category, while the reads in the ‘can’t tell’ class are reduced

by >5%.

To better understand the results, we investigated the re-

lation between categories in the two pipelines. The results

of the two reciprocal crosses are shown in Tables 3 and 4,

respectively.

On one hand, a large portion of reads in the CAST cat-

egory of the single-reference pipeline were assigned to the

same category in the multi-alignment pipeline. The per-

centage is around 96% for both crosses. The same percent-

age can be seen in the PWK category as well. This reflects

that most reads with non-trivial labels in the traditional

single-reference method are covered in the corresponding

categories in our approach.

Figure 4. Mapping ratio and unique mapping ratio of reads to the refer-

ence genome, two pseudogenomes and either pseudogenome. Using a

single pseudogenome provides a gain of �3% over the reference gen-

ome, and using both almost doubles the gain to 6%.

Figure 5. Percentage of parental origin labels in the single reference

pipeline compared with the multi-alignment pipeline. The single-refer-

ence labels were generated after alignment by checking the alignment

for strain-specific alleles. We removed non-autosome mappings, multi-

mapped reads and reads filtered by the Random filter. In general, each

strain category gains �5% in the multi-alignment pipeline that can be

broken down into �2% from reads that did not map and �3% that were

‘Can’t tell’ in the single-reference pipeline.
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On the other hand, the previous 5% increase in CAST

and PWK categories of our method can be attributed to the

(2%) reads that cannot be aligned to the standard reference

and the (3%) reads whose parental origin cannot be deter-

mined using the traditional method. This is to be expected,

as our approach uses a merged set of alignments and lever-

ages more information, such as quality score and linking,

to decide the origin labels.

Performance of merging

To evaluate the accuracy and consistency of the merging

procedure, we applied the same multi-alignment pipeline

to inbred samples of CAST and PWK, pretending that they

are F1 hybrids crosses (i.e. we performed alignments to

both pseudogenomes, annotated reads and remapped them

back to the reference, and merged the results). These

inbred strains can be considered as the negative controls.

Figure 6 shows the percentage of mapped reads that are

outputted by each of the three filters. Around 60% of reads

are merged in the Unique filter step, suggesting they have ei-

ther unique mappings in one of the pseudogenomes or identi-

cal mappings in both of them. Another 33% reads have

multiple pseudogenome mappings with one mapping better

than the rest, so they are filtered by quality score. The re-

maining 6% have multiple mappings with identical quality

scores, so one was randomly chosen to be reported in the

final output. The consistency of filtering percentages in differ-

ent strains, including the hybrid crosses and inbreds, suggests

that the filters in the merging process do not bias the result.

In Figure 7, we show the percentage of mapped reads in

each of the parental origin categories. To avoid the bias

caused by the X chromosome and mitochondria, only

reads mapping to autosomes were considered in this ana-

lysis. Around 60% of reads fall into the ‘Can’t tell’ class,

and this percentage is consistent in F1 hybrids (the second

and the third) as well as negative controls (the first and the

last). For the residual 40%, we can see the ratio of CAST

reads to PWK reads is 1:1 for the F1 hybrids, which is ex-

pected because reads are equally likely to come from either

parent in autosomes. The ratio for inbred strains, however,

is different. In fact, the majority of the 40% are classified

to the corresponding inbred strain, whereas only 1.4–1.5%

are mislabeled. This error rate is likely caused by sequenc-

ing noise or unannotated parental alleles.

Discussion and Conclusion

Although we only applied our pipeline to RNA-seq short

reads in this experiment, it is also applicable to other

Figure 6. Average filter distribution of mapped reads for diallel samples

in the multi-alignment pipeline. F and G denote CAST and PWK, re-

spectively. As each category is approximately equal, it suggests that

there is no inherent bias to a strain caused by the filters.

Table 4. Parental origin of reads from PWK�CAST samples

Single reference pipeline

CAST PWK Cannot

tell

Others Total

Multi-alignment pipeline

CAST 8.09% 0.12% 2.96% 2.05% 13.22%

PWK 0.12% 8.08% 2.95% 2.01% 13.16%

Cannot tell 0.03% 0.03% 38.73% 1.25% 40.04%

Others 0.17% 0.18% 0.87% 32.26% 33.48%

Total 8.41% 8.41% 45.51% 37.57% 100.00%

Note that nonautosome mappings, multi-mapped reads and Random fil-

tered reads are in the ‘Others’ category.

Table 3. Parental origin of reads comparison for the two pipe-

lines from CAST�PWK samples

Single reference pipeline

CAST PWK Cannot

tell

Others Total

Multi-alignment pipeline

CAST 7.95% 0.12% 2.89% 2.13% 13.09%

PWK 0.12% 8.03% 2.91% 2.10% 13.16%

Cannot tell 0.03% 0.03% 39.08% 1.33% 40.47%

Others 0.18% 0.19% 0.88% 32.03% 33.28%

Total 8.28% 8.37% 45.76% 37.59% 100.00%

Note that nonautosome mappings, multi-mapped reads and Random fil-

tered reads are in the ‘Others’ category. The diagonal represents reads labeled

with the same origin in both pipelines. In all, 5.8% of reads were ‘Cannot

Tell’ in the single reference pipeline but labeled as either CAST or PWK in the

multi-alignment pipeline. Additionally, 4.23% were in the ‘Other’ category

for the single reference, but labeled as either CAST or PWK in the multi-align-

ment pipeline. These two values are compared with the 0.06 and 0.37% of

reads marked as CAST or PWK in the single reference pipeline, but labeled as

‘Cannot Tell’ or ‘Other’ in the multi-alignment pipeline. The net result is an

increase of �10% for the number of reads the multi-alignment pipeline could

assign a parent of origin over the single reference pipeline. Similar results for

the reciprocal cross are shown in Table 4.
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quantitative high-throughput sequence analysis tasks, such

as DNA-seq, Chip-seq, DNase-seq, Bis-seq, etc. For ex-

ample, studies of allele-specific copy number variations

can leverage our pipeline for DNA-seq data. The resulting

read-origin annotations can be used to estimate the num-

ber of DNA copies in different parental haplotypes in later

analysis steps.

Although we chose to use a diallel experiment to evalu-

ate our new pipeline in the ‘methods and result’ sections, it

is equally applicable to other multi-parental crosses. For

example, our multi-alignment pipeline can be directly

applied to recombinant inbred lines (RILs) [22] and back-

crosses. For a multi-parental cross with N distinct inbred

founders, we would generate N pseudogenomes and per-

form N separate alignments. These alignments can then be

merged using N BAM files. In this scenario, each mapping

that is saved to the output will have an N-bit flag set indi-

cating which files the read was found in. This allows for

cases where a mapping’s origin is shared/ambiguous be-

tween multiple founders. The latest version of Suspenders

allows for a variable number of input alignments during

the merging process.

Furthermore, we can incorporate additional filters into

the pipeline to better determine the origin of mappings.

In our experiment, we only used the Unique and Quality

filters as informative filters. This resulted in �5% of the

mapped reads being handled by the Random filter. Adding

an additional filter before the Random filter will help to re-

duce the amount of random choices made in the final out-

put. One possible filter is a Pileup filter based on choosing

among otherwise equal mappings the single mapping that

has the most surrounding mappings supporting it. To do

this, we first find all mapping sets that can be filtered by

the Unique or Quality filters and use their chosen map-

pings to compute the read coverage at each base in the ref-

erence genome. Then, any mapping sets that could not be

resolved using Unique or Quality would compare the

pileup coverage of each potential mapping in the set and

choose the mapping with the highest coverage. This will be

particularly useful for reducing the number of reads that

map to pseudogenes in RNA-seq. In cases where the pile-

ups are not significantly different, more computation or

simply using the Random filter may be necessary.

Suspenders currently has a preliminary version of this filter

included in the software package.

To summarize, we propose a new multi-alignment pipe-

line, which is generic enough to handle reads of various

types of organisms from different high-throughput

sequencing techniques. We demonstrated its effectiveness

on RNA-seq data from a diallel cross and compared our

pipeline with a single-reference pipeline. It is shown that

our pipeline outperforms the traditional single-reference-

based alignment approaches: not only are more reads

aligned by our pipeline, but a higher percentage of them

are assigned a correct origin.

The two key components of our pipeline, Lapels and

Suspenders, are Python scripts that can be downloaded at

https://code.google.com/p/lapels/ and https://code.google.

com/p/suspenders/.
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