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Abstract

Manual extraction of information from the biomedical literature—or biocuration—is the

central methodology used to construct many biological databases. For example, the

UniProt protein database, the EcoCyc Escherichia coli database and the Candida

Genome Database (CGD) are all based on biocuration. Biological databases are used

extensively by life science researchers, as online encyclopedias, as aids in the interpret-

ation of new experimental data and as golden standards for the development of new

bioinformatics algorithms. Although manual curation has been assumed to be highly

accurate, we are aware of only one previous study of biocuration accuracy. We assessed

the accuracy of EcoCyc and CGD by manually selecting curated assertions within ran-

domly chosen EcoCyc and CGD gene pages and by then validating that the data found in

the referenced publications supported those assertions. A database assertion is con-

sidered to be in error if that assertion could not be found in the publication cited for that

assertion. We identified 10 errors in the 633 facts that we validated across the two data-

bases, for an overall error rate of 1.58%, and individual error rates of 1.82% for CGD and

1.40% for EcoCyc. These data suggest that manual curation of the experimental literature

by Ph.D-level scientists is highly accurate.
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Background

Model Organism Databases (MODs) have become tightly

woven into the fabric of modern life science research. The

creators of MODs such as EcoCyc, Saccharomyces

Genome Database, Mouse Genome Informatics, Candida

Genome Database (CGD) and The Arabidopsis

Information Resource (TAIR) have used manual curation

to amass hundreds of thousands of curated assertions

(henceforth, facts) from >100 000 publications. Ph.D-level

biologists read scientific publications, extract key facts

from these publications and enter these facts into both

structured and unstructured fields in MODs. Manual cur-

ation has been widely assumed highly accurate under the

idea that PhD-level biocurators can understand and accur-

ately interpret the life science literature, and correctly tran-

scribe the facts that they read. The goal of this work was to

assess the accuracy of MOD curation.

MOD accuracy is important because MODs are used

daily by thousands of scientists as online encyclopedias

and to help interpret new experimental data in the context

of existing knowledge. The data captured in MODs are

also used to develop gold standards for training and evalu-

ating predictive algorithms in bioinformatics. For example,

when developing algorithms for predicting promoters, op-

erons or protein–protein interactions, bioinformaticists use

MODs as sources of reference data sets to evaluate and op-

timize the accuracy of their algorithms (1–3). MODs have

received millions of dollars in government funding over the

previous 20 years and are widely supported by their re-

spective communities, yet limited data exist regarding their

accuracy.

In 2009, the error rate for curated protein–protein

interactions in several databases was found to be 3–9%

[averaging 3.8% (22/574)] by (4) [after correction of sig-

nificant analytical errors in the estimates by (5)]. However,

Cusick et al. and Salwinski et al. checked �450 protein–

protein interaction facts, which is a limited sample from

which to infer the accuracy of all biocuration (see

Discussion for other related literature). Thus, to determine

how well this result generalizes to other types of curated

databases, and whether different types of curated data

might yield different error rates, more data are required.

To that end, we studied the error rate in biological cur-

ation for EcoCyc (6) and CGD (7) as of March 2014, opt-

ing to study curation errors where a database assertion is

not found in the assertion’s referenced publication, that is,

false-positive assertions. (The Discussion section considers

other possible types of database errors.) We used a meth-

odology similar to (4, 5) and assessed the accuracy of a

limited number of facts from randomly chosen gene

pages (the fact set) within EcoCyc and CGD. For each

member of the fact set, a validator checked whether the

publication(s) cited by the source MOD contained that

fact. Thus, our methodology measured the correctness of

the facts present within these MODs, but did not assess

whether the MODs extracted all facts from each publica-

tion, or whether the contents of a MOD reflect the most

current state of knowledge.

Methods

Validation was performed on EcoCyc version 17.5 and on

CGD data available in March 2014. Validators (both

Ph.D-level scientists and Ph.D students) who were em-

ployed by institutions other than the developers of the re-

spective databases performed the fact checking, to reduce

potential bias. EcoCyc fact checking was performed by a

CGD curator (author MS), by GWL, by KCL and by AYC;

CGD fact checking was performed by curators of EcoCyc

and MetaCyc (IMK, DW and CF) and by KMM.

The validation procedure was as follows. Each validator

was given a target number of 50–200 facts to check, and

each performed the following steps until they had checked

the target number of facts:

• Consider a gene chosen at random by a web service.
• Choose up to five facts with literature-based support

within the gene web page [e.g. ‘enzyme X requires

cofactor Y’, ‘enzyme X has Km value Y for substrate

Z’ and ‘protein X is annotated with Gene Ontology

(GO) term Y’].
• Access the publication cited for that fact and check

whether the fact is found within the publication.

If found, score ‘yes’ (correct); if not found, score ‘no’

(error).

We used the approach of checking multiple facts per

gene for efficiency’s sake, as it allowed a validator to check

multiple facts from the same publication, and it decreased

the incurred publication-access fees. Because EcoCyc and

CGD cover a wide range of types of assertions, a wide

range of types of facts were checked, from enzyme activity

to transporter activity to protein–protein interactions.

Validators were warned of possible sources of confusion,

such as different synonyms used to refer to biological enti-

ties or different units of measurement used in the databases

versus the publications.

We tracked all validation results within a spreadsheet

that recorded the following data: the gene, the fact checked

for each gene, the status of ‘correct’ versus ‘error’, the pub-

lication(s) checked when the status was ‘error’ and a com-

ment by the validator. A database curator then evaluated

the results. Validators were informed of the curator’s

evaluation and suggested corrections, and given further

opportunity to comment.
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Software was written to check and remove potential du-

plications in the randomly chosen gene sets and to tabulate

the scoring data.

Results and discussion

Table 1 summarizes the validation results. Because our

study was designed to measure false-positive assertions,

the error rate measures precision. Early in the process, we

discovered that not only do curators make errors while

curating but also validators make mistakes while validat-

ing. While checking the errors reported by the validators,

we found several cases that we considered validation

errors. We also found shortcomings in our validation

protocol and instructions. The rigid Yes/No scoring

scheme, originally intended to simplify data analysis, did

not allow for differentiation based on the type, source and

severity of the error. Therefore, we analyzed all reported

errors and rescored them where warranted. The

Supplementary file contains all scoring data. The column

labeled ‘Yes/No’ contains the initial scoring reported by

the validators; the column labeled ‘Modify’ contains cor-

rections to the initial scoring that were made by curators

with the approval of the validator. All corrected lines in

the validation data files are colored red. In Table 1, ‘Facts

in error: initial’ reports the number of errors identified

by the validators before correction; ‘Facts in error: final’

reports the number of true errors after subsequent analysis.

The types of corrections made to the validation data

were as follows. (i) In a few cases, a validator scored a fact

as an error (not present in the publication), although the

fact was present in the cited publication. (ii) In several

cases, validators found facts that indeed were not present

in the cited publication, but were correct as evidenced by

another publication (often cited in the same gene page).

That is, the referenced publication was incorrect or the

publication list for a fact was incomplete. Two each of the

reported ‘initial’ errors in EcoCyc and CGD were of this

type. We considered this type of error to be an error in the

metadata (the citation) that would not lead a database user

to a false scientific conclusion; therefore, we did not score

it as a ‘final’ database error.

Validation and rescoring identified 10 ‘final’ factual

errors and an additional 12 errors that were removed from

the ‘final’ list of errors for the reasons stated above. The 10

factual errors were of several types. Some free-text state-

ments (such as descriptions of mutant phenotypes) ap-

peared to have been added to the wrong gene/protein in

the database. In other cases, GO term assignments were

incorrect. For example, the Escherichia coli ArtQ protein,

one of the predicted subunits of an arginine ABC trans-

porter, was annotated with GO:0015426, ‘polar-amino

acid-transporting ATPase activity’ in EcoCyc. However,

although the function of this protein—as part of a trans-

porter complex—can reasonably be predicted, it is only the

entire complex, not the ArtQ subunit alone, that could po-

tentially be annotated with this function. In addition, the

curator should not have used an evidence code indicating

the presence of experimental data supporting function of

the ArtQ subunit in the cited paper. Such curation errors

highlight the fact that GO term curation is a complex task

requiring significant training.

Several errors appear to have resulted from a curator

missing an important piece of information that is not

prominently stated in a publication. In one example, en-

zymatic activities associated with both soluble and mem-

brane fractions are described in detail in one section of the

article, whereas peptide sequences that identify the soluble

protein Ynk1 are shown in a different section. A curator

failed to connect the two facts and assigned an incorrect

GO term for cellular component. In another example, a

curator missed a figure showing several mutant phenotypes

for multiple genes, and instead relied on a confusingly

worded summary description of the results in the text,

which led to an incorrect phenotype annotation. These ex-

amples highlight the need for curators to carefully double

check the annotations they make.

Our protocol whereby validators choose the individual

facts to check on a gene page might be considered a poten-

tial source of bias. In MODs that contain many different

types of data, validation results will always depend on the

familiarity of the validator with the type of data being vali-

dated. For example, a professional biocurator who is

familiar with the Gene Ontology may be more likely to val-

idate GO term assignments, and may also be able to iden-

tify more errors in GO term assignments. Conversely, a

validator who is not familiar with GO may not recognize

an erroneous GO term assignment.

As our reported error rates are based on a sampling of

facts from the respective databases, we expect fluctuation

Table 1. Validators¼The number of people who performed

validation checks on that database

Statistic EcoCyc CGD

Validators 4 4

Facts checked 358 275

Facts in error: initial 8 13

Error rate: initial 2.23% 4.72%

Facts in error: final 5 5

Error rate: final 1.40% 1.82%

Lines marked ‘initial’ represent errors initially reported by the validators.

Lines marked ‘final’ represent our final adjusted accounting of errors after

corrections described in the text.
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in the reported error rates each time the validation exercise

is repeated. We adopted a bootstrap approach to quantify

the uncertainty in our reported error rates. This approach

was necessitated by the complexity of our fact-sampling

protocol, under which genes are initially selected, and then

a (variable) number of facts for each gene are checked.

Standard methods to measure variability would have been

available under a fact-sampling scheme that selects uni-

formly at random from all available facts; but such a sam-

pling scheme, although amenable to textbook analysis,

requires a prohibitively expensive effort to identify all facts

in the database, including those located within free-text

(natural language) fields.

In our bootstrap analysis, we created 10 000 artificial

samples for each database, using a scheme that mimics as

closely as possible our fact-sampling protocol: each boot-

strap sample has the same number of facts as the original

validation set and consists of genes selected at random

with replacement from those seen during validation; each

time a gene is selected for membership in the bootstrap

sample, all of its validated facts are included (until the sam-

ple attains the required size). These 10 000 artificial sam-

ples yield a bootstrap distribution of error rates, from

which we can calculate measures of variability. For the

CGD database, the bootstrap standard deviation, namely

0.78%, furnishes an estimate for the standard error in the

reported error rate; a 95% confidence interval for the true

database error rate, obtained from the 2.5th and 97.5th

percentiles of the bootstrap distribution, is (0.36, 3.64%).

For the EcoCyc database, the standard error is estimated at

0.62%, and a 95% confidence interval for the database

error rate is (0.28, 2.79%).

General discussion

We now have a larger data set from which to address the

overall accuracy of biocuration. Our study validated a new

set of 633 diverse types of MOD facts, uncovering 10 fac-

tual errors. The overall error rate of 1.58% found here

is similar in magnitude to the 3.8% average error rate in

protein–protein interaction data found by Salwinski et al.

Clearly, these two studies are not the final word in data-

base or biocuration accuracy assessment. Although other

publications have discussed curation errors, they have been

anecdotal and have not estimated curation error rates. The

potential confusion over whether ‘manual curation’ is used

to mean extraction of information from biomedical art-

icles, or whether it is used to mean manual assignment

of protein functions via sequence-analysis software—

although the two topics are certainly related, as curation of

experimentally determined protein functions can be

used to supplement and correct functions assigned by

sequence-analysis software. Several groups have studied

error rates in protein functional annotation (8–10), with

(9) concluding that ‘Our results also highlight the value of

building and supporting manually curated databases that

rely heavily on experimental evidence available from many

types of biological experiments’.

Previous discussions of errors in manual extraction of

information from publications include discussions of errors

that occur in chemical databases and the importance of

manual curation and quality-control procedures for ensur-

ing accuracy in such databases (11, 12), and an in-depth

analysis (13) of the scientific confusion and curation errors

that led to the incorrect attributions of enzyme function in

a number of bioinformatics databases. A study of curated

protein-interaction data examined variation in curation of

the same papers by different database projects, and found

that differences in curated facts reflected both divergent

curation policies for those databases, as well as curation

errors (14). Another study of protein-interaction curation

found that improved curation policies and quality-control

measures improve curation quality (15), and that consist-

ently following data-dissemination standards is ‘the most

effective action a researcher can take to assist database cur-

ators and ensure the efficient and accurate deposition of

their data into a relevant database’ (16).

The developers of EcoCyc plan to continue assessing its

accuracy by using the same methodology used herein. The

model of enlisting volunteer students and database users in

such an evaluation is a scalable way of assessing database

accuracy. A Web site call for validation by users allows

accuracy studies to proceed on an ongoing basis, with peri-

odic publication of the results. Providing a more accurate

estimate of the database error rate, an ongoing validation

process, will lead to a more accurate database because cur-

ators will, of course, correct any errors that are identified.

We invite interested scientists to contribute to the EcoCyc

validation project by following the instructions at http://

ecocyc.org/ecocyc-validation-study.shtml.

Our study did not consider several types of database

errors. For example, a false-negative error is one where a

database curator has curated a publication that contains a

fact F, and F is within the curation scope of the database,

but F was not included in the database. These errors of

omission would be harder to validate, in part because of

the difficulty in training validators regarding the curation

scope of a given database. Another type of error is an error

of specificity, where a publication may demonstrate a fact,

but the curator recorded a less-specific version of that fact

(for example, annotation to a more general Gene Ontology

term). The recorded fact may be correct, but it could have

been more specific. Further, the controlled vocabulary to

which the gene product is curated can change over time,
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often with more-specific elements being added, so errors of

specificity can accrue over time. Situations may exist where

fact F is present in publication P1, but a later series of pub-

lications conclusively showed F to be false. If the database

contains F with a citation to P1, do we consider the data-

base correct because it correctly captured F from P1, or do

we consider the database in error because it does not accur-

ately reflect the modern view of F? Curation of the same

type of data across different databases can cause unex-

pected variability because of differing curation method-

ology (14, 17).

Clearly manual biocuration is not perfect, and curators

can and do make mistakes. However, different MODs use

a variety of approaches to ensure or improve the accuracy

of their curation efforts. EcoCyc and CGD encourage users

to report encountered errors via the ‘Report Errors or

Provide Feedback’ link at the bottom of every EcoCyc data

page, and via a link labeled ‘Send a message to CGD cur-

ators’ on each CGD page. EcoCyc receives approximately

one error report every 2 months; CGD receives approxi-

mately one to two error reports per year.

In addition, certain systematic methods can be used to

identify some types of database errors, although they are un-

likely to identify the factual errors identified by validators.

For example, EcoCyc has developed 19 different programs

to detect a large number of possible errors within the data-

base (in many cases, the errors are repaired automatically).

Examples included malformed Enzyme Commission (EC)

numbers or nonexistent EC numbers; numeric values that

do not satisfy numeric constraints (e.g. a pI value that is not

a valid pH; a genome coordinate that exceeds the length of

the chromosome); and checks that PubMed references are

valid PubMed IDs.

A promising new approach to ensuring MOD quality is

generating metabolic models directly from an MOD, and

then checking these models for correctness against experi-

mental data sets. EcoCyc has pioneered this approach and

used it since 2012 (6, 18), helping to identify incomplete-

ness in both our knowledge and representation of E. coli

metabolism. The SGD project improves database accuracy

by comparing manually curated GO annotations with

computationally predicted GO annotations (19). Future ef-

forts to identify potential errors in databases by using auto-

mated approaches might include comparing manual GO

annotations for orthologous genes in other organisms.

Annotations that differ significantly might identify in-

stances that warrant further review.

Consider that ‘database error rate’—meaning the overall

error rate observed in a database—may not always be the

same as ‘curation error rate’. We would expect the two rates

to differ if some of the data within a database were curated

and other data were not curated (e.g. high-throughput data

loaded from other sources). EcoCyc contains such mixed

data (e.g. its data on lethality of gene knockouts are loaded

from other sources, and its experimental GO term annota-

tions are added by sources such as EcoliWiki, CACAO and

UniProt). ‘Curation error rate’ could alternatively mean the

rate of errors in the initial entry of curated information into

the database, or the overall error rate in all curated data

fields at a given point in time. These two error rates could

differ if some of the errors created during initial data entry

were later corrected owing to one of the multiple quality-

checking procedures just described.

A common criticism of manual curation is that it is both

expensive and not scalable to the massive amounts of data

generated and published in the biological domain. To what

degree could manual curation be supplemented or replaced

by automated information extraction (AIE)? The answer

clearly depends on the type of data targeted for automated

curation. Methods for recognizing the names of biological

entities have improved in recent years, with F1 scores

(a measure of accuracy that combines precision and recall)

recently reported to be in the 80–94% range (20). However,

unpublished results from the recent BioCreative IV competi-

tion show that higher-complexity tasks in automated cur-

ation, such as assignment of GO terms from text, is still

highly error-prone. Example projects achieved F1 scores

of 33.9% (http://www.biocreative.org/media/store/files/

2013/bc4_v1_20.pdf) or 26% (http://www.biocreative.org/

media/store/files/2013/bc4_v1_22.pdf). Thus, the currently

available tools are not yet sufficiently reliable to be used in

an unsupervised fashion, even for narrow curation tasks.

However, real-world MOD biocurators gather broad

types of data, often using reasoning rooted in their experi-

ence as biologists, to make annotations and synthesize infor-

mation. In EcoCyc, curated data on gene function, enzyme

activities, metabolic pathways and regulatory networks are

stored in >300 different database fields. Currently, no pro-

gram can accurately extract any one of these information

types; extracting all of them accurately is clearly much

harder. Biocurators often synthesize information for genes/

proteins, metabolic pathways and regulatory interactions,

which is a capability that is far beyond AIE. Another set of

curator functions that exceeds the capabilities of AIE is

tracking inconsistencies and changes in the names of genes,

proteins and metabolites, and detecting and resolving dis-

agreements in the literature. It is clear that biocurators ac-

curately perform multiple complex information-extraction

tasks that are currently well beyond the capabilities of AIEs.

Conclusions

We validated the correctness of 633 facts chosen from gene

pages in the EcoCyc and CGD databases. Each fact was
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validated by checking the publication referenced for that

fact. Ten factual errors were found, for an overall error

rate of 1.58%, and individual error rates of 1.40% for

EcoCyc, and 1.82% for CGD. We encourage further stud-

ies of this type to gather additional data. We found that

involving the MOD user community is a scalable way of

performing validation studies.
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