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Abstract

Web services have become a popular means of interconnecting solutions for processing a

body of scientific literature. This has fuelled research on high-level data exchange formats

suitable for a given domain and ensuring the interoperability of Web services. In this art-

icle, we focus on the biological domain and consider four interoperability formats, BioC,

BioNLP, XMI and RDF, that represent domain-specific and generic representations and in-

clude well-established as well as emerging specifications. We use the formats in the con-

text of customizable Web services created in our Web-based, text-mining workbench Argo

that features an ever-growing library of elementary analytics and capabilities to build and

deploy Web services straight from a convenient graphical user interface. We demonstrate

a 2-fold customization of Web services: by building task-specific processing pipelines

from a repository of available analytics, and by configuring services to accept and produce

a combination of input and output data interchange formats. We provide qualitative evalu-

ation of the formats as well as quantitative evaluation of automatic analytics. The latter

was carried out as part of our participation in the fourth edition of the BioCreative chal-

lenge. Our analytics built into Web services for recognizing biochemical concepts in BioC

collections achieved the highest combined scores out of 10 participating teams.

Database URL: http://argo.nactem.ac.uk.

Introduction

A number of frameworks have been developed and

adopted to alleviate issues of interoperability between

various biomedical text-mining solutions. The General

Architecture for Text Engineering (GATE) (1) offers a

family of open-source text processing tools, including

GATE Developer, Embedded, which provides access to a

rich library of interchangeable components that can be
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integrated with user-defined applications. The GATE

framework has been recently applied to gene-associated

studies, drug-related searching and medical record analysis

(2). Another framework, the Unstructured Information

Management Architecture (UIMA) (3), promotes the inter-

operability of data processing components by defining

common data structures and interfaces. With the frame-

work gaining popularity over the past decade, several

UIMA-compliant repositories have been developed, includ-

ing those of U-Compare (4), META-SHARE (5), DKPro

Core (6) and JCoRe (7), and others that are focussed on

biomedical solutions, e.g. the clinical Text Analysis and

Knowledge Extraction System (cTAKES) library (8) and

the BioNLP-UIMA component repository (9).

Supporting these frameworks are workflow construc-

tion platforms that allow users to build customizable

natural language processing (NLP) solutions based on

workflows comprising interchangeable components.

GATE users, for instance, use the integrated development

environment GATE Developer in setting up pipelines with

task-specific plugins. Similarly, the stand-alone platform

U-Compare provides its users with access to a library of

UIMA components, from which NLP solutions, realized as

workflows, can be built. The wide applicability of such so-

lutions, however, is often hindered by the workflows’ soft-

ware dependencies on the source platforms. While most of

them provide import and export mechanisms to foster the

sharing of workflows, they are usually interchangeable

only within the same platform. Furthermore, their integra-

tion with other systems becomes a non-trivial task, often

requiring additional programming effort.

For these reasons, solutions deployed as Web services

have become more widely used and accepted, owing to

their public availability and conformance to standards, e.g.

Representational State Transfer (REST) architecture. They

are easily accessible to users from libraries such as the

BioCatalogue (10), a registry of Web services for the life

sciences, and Whatizit (11), a suite of biomedical concept

recognition services. The drawback, however, of imple-

menting solutions as Web services, is the requirement for

programming knowledge and effort.

With these considerations, it becomes desirable to de-

velop solutions while combining the strengths of work-

flows and Web services. On the one hand, building tools as

workflows based on interchangeable processing compo-

nents not only eliminates the need for programming effort,

but also allows for customization in terms of underlying

analytics and supported formats. Deploying them as Web

services, on the other hand, promotes cross-platform inter-

operability and far-reaching applicability. These desiderata

motivated the development of Web service deployment ex-

tensions to scientific workflow construction platforms

such as Taverna (12), Kepler (13) and Triana (14), as well

as U-Compare (15).

In parallel with the advancement of various frame-

works, repositories and platforms are efforts aimed at

establishing data interchange formats for encoding infor-

mation. Pioneer work towards this end include the first

stand-off annotation format from the TIPSTER Common

Architecture (16) and the abstract XML representation

from the Architecture and Tools for Linguistic Analysis

Systems, which incorporated annotation graphs (17). Later

on, the ISO/TC37/SC4 standard-compliant Graph

Annotation Framework format was also developed (18).

In encoding documents and annotations from the do-

main of biomedicine, more widely used and adopted for-

mats, namely those of the XML Metadata Interchange

(XMI) and Resource Description Framework (RDF), have

been used. The Colorado Richly Annotated Full Text cor-

pus (19), for instance, was distributed in both formats,

while the CALBC silver standard corpus was encoded in

the latter (20).

Biology-specific formats have also been introduced. The

BioNLP Shared Task series (http://2013.bionlp-st.org,

http://2011.bionlp-st.org, http://www.nactem.ac.uk/tsujii/

GENIA/SharedTask), which fosters community efforts in

developing solutions for fine-grained, biology-related in-

formation extraction, proposed their own format for shar-

ing data with participating solution providers (hereafter

referred to as BioNLP format).

The BioC format was actively promoted by two tracks

of the fourth edition of the BioCreative workshop (21, 22)

in its aim to advance the reusability of resources as well as

the interoperability of tools and Web services.

In this article, we describe customizable Web services

that support interoperable formats and are capable of

extracting various biologically relevant concepts and inter-

actions in a given data source. The mentioned custom-

ization of Web services is two-fold: (i) users are free to

design their own processing pipelines from a repository of

analytics, and (ii) the pipelines may be set up to accept and

produce a combination of input and output data inter-

change formats. We focus on two domain-specific formats,

namely, BioC and BioNLP, as well as generic formats,

XMI and RDF. The entire process is realized in the text

mining workbench Argo. A selection of the features of

Argo relevant for this work is listed and compared against

aforementioned solutions in Table 1.

In the remainder of this article, we present a discussion

of how Web services are customized and deployed from

workflows created using Argo, followed by an overview of

the various supported file formats. To illustrate, we pro-

vide two examples of Web service-enabled workflows

performing automated processing of diversely encoded
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biological documents. We next describe the corpora that

we have made available to the community as supporting

resources. We also provide a thorough description and re-

port on the results of our participation in the Comparative

Toxicogenomics Database (CTD) track of BioCreative IV,

which served as a systematic evaluation of our Web-service

methods. We conclude by summarizing our contributions

and discussing the limitations of proposed formats in terms

of interoperability.

Customizable Web services

The two types of customization of Web services, i.e. de-

signing users’ own processing pipelines and choosing a

combination of input and output formats, are realized in

our text-mining workbench Argo. The workbench is a

Web-based platform that allows users to collaboratively

design and evaluate text-mining workflows (23). The

workflows are created in a graphical user interface resem-

bling block diagramming. Each workflow is an arrange-

ment of a selection of available elementary processing

components or analytics. The most common arrangement

is a pipeline in which processing of input data is carried

out in a series of subsequent steps, where each step is an

elementary component. The available components range

from data deserializers (opening a workflow and ingesting

input data) and serializers (closing a workflow and produc-

ing output data) to NLP components to semantic analytics,

such as named entity recognizers and entity-interaction ex-

tractors. Argo features several data deserialization and

serialization components, or readers and writers, that are

Web service-enabled, i.e. the presence of these kinds of

components in a workflow facilitates its deployment as a

Web service.

A single workflow, therefore, ultimately governs the

2-fold Web service customization process. The selection of

Web service-enabled readers and writers imposes the input

and output formats of the service, whereas the other

components enclosed by the reader and writer define a pro-

cessing task.

The interoperability of processing components in a

workflow is ensured by UIMA by means of common inter-

faces and data structures. Components exchange common

annotation structures (CASes) whose semantics is governed

by flexible, well-defined and developer-expandable type

systems (annotation schemata).

Each execution/processing of a workflow deployed as a

Web service is assigned a unique URL that becomes the

service’s access point. Users can track the progress of pro-

cessing as well as gain access to their generated URLs via

Argo’s interface.

Supported formats

Argo currently includes several Web service-enabled read-

ers and writers that support generic formats, XMI and

UIMA Resource Description Framework (UIMA RDF), as

well as formats used in biological literature processing,

BioC and BioNLP.

XMI, an industry standard for exchanging metadata in-

formation, is an XML-encoded, stand-off format in a sense

that annotations about data are not located in-line (i.e.

within the data). XMI is popular as a data-exchange format

in UIMA applications because of the fact that the open-

source, Apache-licensed implementation of this framework

features utility tools for serializing and deserializing data

into and from this format (http://uima.apache.org).

UIMA RDF, a result of our earlier work (24), is essen-

tially an RDF representation of UIMA’s CASes. It uses

RDF Schema (http://www.w3.org/TR/rdf-schema) as the

underlying vocabulary that is suitable to fully express

UIMA structures, such as a hierarchy of types, their in-

stances and relationships between them; it also forms a

base for semantic languages such as OWL.

BioC (25), an emerging XML-encoded format, repre-

sents a collection of documents by interweaving in-line

Table 1. Comparison of selected functionalities of Argo and other related platforms

Feature Argo GATE Developer U-Compare Taverna Kepler Triana

Based on a standard interoperability framework þ � þ � � �
Web-based þ � � � � �
GUI-based workflow construction þ þ þ þ þ þ
In-built library of analytics þ þ þ � þ þ
Focussed on text mining þ þ þ � � �
Strong support for biomedical applications þ þ þ þ � �
Support for data curation þ þ � � � �
Workflow sharing þ þ þ þ þ þ
Web service deployment þ � þ þ þ þ
Customizable I/O formats for Web services þ � � � �
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annotations with stand-off annotations. In-line annota-

tions include the segmentation of document’s text into pas-

sages and optionally sentences. Stand-off annotations can

be embedded into these elements, allowing for the inclu-

sion of information such as text-bound locations and n-ary

relations between annotations. Virtually all allowed XML

elements may include structures for defining a list of key-

value pairs.

In the BioNLP format, both source text and annotations

are encoded in plain text and are kept in two separate files.

Annotations include named entities and biological proc-

esses or events, i.e. named relationships between an event

trigger word and other named entities and/or events.

To complete the possible combinations of input and

output formats for Web services, Argo also features a

reader that simply accepts data in plain text.

Workflows for processing biological
literature

Below, we describe two examples of workflows prepared

in Argo that can be deployed as Web services. The work-

flows process biological literature and extract biologically

relevant concepts and interactions. The first workflow fea-

tures homogenous input and output formats, whereas for

the second workflow the input and output formats are

different.

Identification of metabolic process concepts

The identification of biologically relevant concepts pertain-

ing to metabolic processes was a biocuration task that we

defined as part of our participation in the interactive track

of the BioCreative IV challenge (26). The task involved the

annotation of gene or gene products and chemical com-

pounds, as well as action words (verbs, verb nomina-

lizations or adjectives) signifying an occurrence of a

metabolic process involving the two concept types in a se-

lection of PubMed abstracts. The presented workflow, also

illustrated in Figure 1, is a simplified version of that used

in the BioCreative challenge.

The workflow is meant to update an input BioC collec-

tion that may include any biologically relevant text and an-

notations. Input and output are handled by the BioC Web

Service Reader and BioC Web Service Writer components.

The reader converts the BioC-compliant XML input data

by separating the source text from the BioC annotations.

Each document is then segmented into sentences and

tokens by the GENIA Sentence Splitter and GENIA

Tagger, respectively. Automatic recognition of metabolic

process concepts is performed by the built-in GGP recog-

nizer of the GENIA Tagger and OscarMER that recognizes

chemical compounds and action terms. Both components

use machine learning models. The SPARQL annotation

editor component (24) is used to align types between the

BioC type system and the type systems supported by the

other components. The writer performs the opposite con-

version to that of the reader.

Biological event extraction

The extraction of events in biological literature is the sub-

ject of the BioNLP Shared Task series. An event is defined

as a structure consisting of a typed trigger word or phrase

signifying a biological process (e.g. ‘activation’, ‘inhibits’)

and participating entities labelled with semantic roles (e.g.

‘theme’, ‘cause’). Events may also be enriched with attri-

butes (e.g. negation and speculation) that modify their in-

terpretation. Furthermore, event annotations may include

information pertaining to the equivalence or coreference

between expressions such as abbreviations and their cor-

responding expanded forms. The task, as it is defined in

the shared task series, is to process documents that already

contain the annotations of biological concepts (named

entities) and produce annotations pertaining to event trig-

gers, participants and modifications.

To showcase a heterogeneous combination of input and

output formats, the workflow described below and illus-

trated in Figure 2 begins with a BioNLP Web Service

Reader and terminates with a RDF Web Service Writer.

Each document in the BioNLP shared task format is ini-

tially segmented into sentences by the GENIA Sentence

Splitter. Each sentence is then processed by the Enju Parser

(27) and GENIA Dependency Parser (28), which provide

the next component, EventMine, with deep syntactic ana-

lyses. EventMine is a machine learning-based event

Figure 1. A Web service-enabled workflow built in Argo for identifica-

tion of metabolic process concepts. The workflow features BioC as the

Web service’s input and output format. The callouts show component-

specific output annotation types that are relevant for this workflow.
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extraction system that performs a series of classifications

for event trigger recognition, participant identification and

role assignment. Additionally, it is capable of resolving co-

references (29) and recognizing event modifications such

as negation and speculation (30). It achieved the best per-

formance on the BioNLP Shared Task GENIA 2011

(GE’11), Epigenetics and Post-translational Modifications

(EPI), Infectious Diseases (ID) and Pathway Curation (PC)

data sets and the second best on the Cancer Genetics (CG)

data set (31). The EventMine component in Argo allows

the user to choose a model tailored for a specific extraction

task (one of GE, EPI, ID, PC, CG), which ultimately de-

fines the output event types.

Biological literature corpora in interoperable
formats

For the benefit of the community, we used Argo’s format

conversion capabilities and transcribed several publicly

available corpora into the different formats supported by

the workbench. The resulting work was made available on

the Argo website (http://argo.nactem.ac.uk/bioc).

Metabolites corpus

NaCTeM’s Metabolites corpus consists of 296 MEDLINE

abstracts enriched with entity annotations corresponding

to metabolites and enzymes (32). Previously used in a pilot

study on yeast metabolic network reconstruction (33), the

documents were manually annotated by two domain ex-

perts who marked up names of enzymes and metabolites

appearing in the context of metabolic pathways. The cor-

pus was first converted from its original MEDLINE XML

format to the BioNLP format outside of Argo. We then

used the SPARQL annotation editor component to tran-

scribe it to the BioC format.

BioNLP shared task corpora

The biennial BioNLP shared task series have produced a

wide range of event-annotated corpora to support the de-

velopment and evaluation of event extraction methodolo-

gies. The transcribed corpora include data sets from the ID

and EPI tasks ran in the 2011 edition of the series, the CG

and PC tasks ran in the 2013 edition, as well as the GENIA

tasks (GE’11 and GE’13) ran in both editions.

The conversion from the original BioNLP format to

BioC is more complex than that from the Metabolites cor-

pus and goes beyond simple span-of-text annotations. The

BioC format proved to be sufficiently versatile to fully and

unambiguously transcribe the BioNLP corpora. Table 2

shows the example snippets of BioC syntax for each of the

BioNLP annotations. Entities and event trigger words are

transcribed to BioC annotations, whereas equivalent enti-

ties and events are transcribed to BioC relations. To disam-

biguate between them, we added infon elements with the

key ‘type’ and values appropriate to what the encompass-

ing elements represent. Infons are also used to encode event

modifications (negation, speculation). Multiple coreference

annotations (specific to the GENIA corpora) are combined

into a single BioC relation if they share the same subject.

Similar conversions of the BioNLP Shared Tasks cor-

pora to BioC were demonstrated by others (25, 34). In

comparison, we increased the semantic interoperability of

(mainly syntactically interoperable) BioC format by allo-

cating type URIs for each annotation. The URIs are built

from qualified names of annotation types of Argo’s type

systems. For instance, the UIMA built-in type uima.

tcas.Annotation has the URI uima:ts:uima.tcas.Annotation

(BioNLP-specific examples are shown in Table 2). The

‘uima:’ prefix is the URIs’ scheme name added to make the

type names comply with the URI specification and to hint

the source of type definitions. The ‘ts’ part of the URIs

stands for ‘type system’ and is added to emphasize and dis-

ambiguate that the rest of a URI is related to the type sys-

tem aspect of UIMA (as opposed to, e.g. data structures or

analytics).

The introduction of URIs augments the semantics of an-

notations in BioC for humans and partially for machines.

In the latter case, the URIs are of use to only those comput-

ing routines that are aware of this addition, as type URIs

are not part of the BioC specification.

Analytics evaluation

We evaluated the efficiency and effectiveness of our meth-

ods by participating in a shared task, referred to as the

CTD track, of the BioCreative IV challenge. The track was

organized specifically to encourage members of the text-

mining community to develop interoperable automatic

Figure 2. A Web service-enabled workflow built in Argo for biological

event extraction. The workflow accepts REST calls with data in BioNLP

format and produces RDF output. The callouts show component-spe-

cific output annotation types that are relevant for this workflow.
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tools that can possibly assist in the curation of the CTD

(35). This database is a publicly available resource that

integrates information on chemicals, genes and diseases

curated from scientific literature, aiming to foster under-

standing of the means by which drugs and chemicals af-

fect human health. Relationships between entities (e.g.

chemical-gene, chemical-disease and gene-disease) are

stored in the database by means of manual curation. The

CTD track required the preparation of RESTful Web ser-

vices capable of accepting input documents in the BioC for-

mat, and returning, within a minimal amount of time,

enriched versions containing annotations for unique

Table 2. Examples of the transcription of BioNLP annotations into BioC XML format

Annotation category BioNLP annotation

BioC transcription

Entities T1 Protein 19 49 interferon regulatory factor 4

<annotation id¼"T1">
<infon key¼"typeUri">uima:ts:uk.ac. . ..bionlpst.Entity</infon>
<infon key¼"type">Entity</infon>
<infon key¼"category">Protein</infon>
<location offset¼"19” length¼"30"/>
<text>interferon regulatory factor 4</text>

</annotation>

Events with modifications T11 Gene_expression 55 65 expression

E2 Gene_expression:T11 Theme:T1

M1 Speculation E2

<annotation id¼"TRIGGER_55_65">
<infon key¼"type">Trigger</infon>
<location offset¼"55” length¼"10"/>
<text>expression</text>

</annotation>

<relation id¼"E2">
<infon key¼"typeUri">uima:ts:uk.ac. . ..bionlpst.Event</infon>
<infon key¼"type">Event</infon>
<infon key¼"category">Gene_expression</infon>
<infon key¼"negation">false</infon>
<infon key¼"speculation">true</infon>
<node refid¼"TRIGGER_55_65” role¼"EventTrigger"/>
<node refid¼"T1” role¼"Theme"/>

</relation>

Equivalent entities * Equiv T2 T3

<relation id¼"EE53">
<infon key¼"typeUri">uima:ts:uk. . . .EquivalentEntities</infon>
<infon key¼"type">Equivalent</infon>
<node refid¼"T2” role¼""/>
<node refid¼"T3” role¼""/>

</relation>

Coreferences (GENIA corpora) R1 Coreference Subject:T13 Object:T3

R2 Coreference Subject:T13 Object:T4

R3 Coreference Subject:T13 Object:T5

<relation id¼"RT13">
<infon key¼"typeUri">uima:ts:uk.ac. . ..cas.bionlpst.Relation</infon>
<infon key¼"type">Coreference</infon>
<node refid¼"T13” role¼"Subject"/>
<node refid¼"T3” role¼"Object"/>
<node refid¼"T4” role¼"Object"/>
<node refid¼"T5” role¼"Object"/>

</relation>
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concepts of one of four types, namely, chemicals, genes,

diseases and action terms. We addressed this challenge by

using algorithms for sequence labelling (for identifying

chemicals, genes and diseases) and multiclass, multilabel

classification (for identifying action terms), while leverag-

ing relevant resources such as the CTD vocabularies and

other ontologies/databases (We note that during our par-

ticipation in the challenge Argo did not yet feature Web

service-enabled components, and the CTD Web services

were created outside of the workbench).

The organizers provided a development corpus of 1112

PubMed abstracts encoded in the BioC XML format. Each

abstract consisted of a list of unique chemicals, genes, dis-

eases and action terms that were manually identified by do-

main experts. The annotations did not include specific

textual locations of the concepts. Furthermore, they corres-

ponded to the preferred names of the concepts in the CTD

vocabularies, rather than the surface forms appearing in

actual text.

The automatic annotation methods, described later in

the text, heavily relied on several external dictionaries.

Apart from the chemical, gene and disease vocabularies

available in CTD, we also used databases listed in Table 3.

Chemical, gene and disease recognizers

We cast the problem of recognizing chemicals, genes and

diseases as a named entity recognition (NER) task.

Specifically, we modelled the data using conditional ran-

dom fields (CRFs) (49).

As the development corpus did not contain locations of

entities nor the exact forms in which they appear in the

documents, the first challenge we addressed was the gener-

ation of silver-annotated corpora suitable for the named

entity recognition task. Leveraging the CTD vocabularies,

we determined the locations of chemical, gene and disease

mentions in the abstracts using case-insensitive exact string

matching. This, however, introduced a considerable

amount of noise because of the ambiguity of certain names

(e.g. the chemical ‘lead’ matches verbs of the same form).

To mitigate this problem, we exploited the testing facility

(http://bc.ctdbase.org/ws) provided by the CTD track

organizers to identify and filter out false-positive results re-

turned for each document. The remaining entities (i.e. the

true-positive results) were then used in silver-annotating

the documents in the corpus with their specific locations

in text.

We observed, however, that in silver-annotating the

corpus for diseases, many of the names in the gold stand-

ard annotations were missed because of the various ways

in which they are expressed in text. For instance, the name

‘leukopenia’ appears as a curated disease for one of the ab-

stracts and while the adjective ‘leukopenic’ appears in text,

the name itself (or any of its synonyms) does not. To cap-

ture such cases, we developed a heuristic, approximate

string matching method based on overlapping stemmed

tokens. This algorithm is based on the steps outlined in

Table 4 and is applied to both the dictionary entries in the

CTD disease vocabulary as well as the noun phrases in

text. For each noun phrase-dictionary entry pair, a score is

computed based on the number of common tokens. If the

score is greater than an established threshold, the matching

tokens are silver-annotated in text.

As an initial step to the training of CRF models, the ab-

stracts were pre-processed by sentence splitting [using the

MEDLINE sentence model in LingPipe (http://alias-i.com/

lingpipe)], tokenization [using OSCAR4 (50)] and part-

of-speech and chunk tagging [using GENIA Tagger (51)].

The NERsuite package (http://nersuite.nlplab.org), our

CRF implementation of choice, generates lexical, ortho-

graphic, syntactic and dictionary match features that were

used in the training of the CRF models. In tagging named

entities in input abstracts, NERsuite generates the same set

Table 3. External databases used as dictionaries by the proposed NERs

Concept type External databases

Chemical Chemical Entities of Biological Interest (ChEBI) (36), DrugBank (37), Joint Chemical Dictionary (38),

PubChem Compound (39)

Gene UniProt (40), NCBI EntrezGene (41), GeneLexicon (42), Human Genome Organisation Ontology (HUGO) (43)

Disease Medical Subject Headings (MeSH) (44), Unified Medical Language System (UMLS) (45), Disease Ontology (46),

Online Mendelian Inheritance in Man (OMIM) Ontology (47)

Action term BioLexicon (48)

Table 4. Approximate string matching algorithm applied to

produce silver annotations

Step Phrase in text CTD entry

Input injured by stun gun Stun Gun Injury

Case normalization injured by stun gun stun gun injury

Stop word removal injured stun gun stun gun injury

Stemming injur stun gun stun gun injur

Reordering gun injur stun gun injur stun
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of features and assigns begin-inside-outside labels to the

token sequences using the trained models. These labels

are then processed to produce responses, i.e. text spans

corresponding to recognized concepts.

Two items relevant to how the tools were evaluated

came to our attention during the development phase of the

shared task: (i) although normalization of entities to the

CTD vocabularies was not a requirement, the official test-

ing facility calculated the number of successful matches by

attempting to map the responses to the CTD preferred

names in the gold standard annotations directly or indir-

ectly through synonyms, using case-insensitive exact string

matching; (ii) the task organizers communicated to the par-

ticipants that while a balance between precision and recall

is desirable, optimal recall was preferable as far as actual

CTD curation was concerned.

Considering these points, we incorporated a check for

responses that could not be mapped to CTD preferred

names. In such cases, we applied the previously mentioned

heuristic method on both the response annotation and

CTD entries to retrieve and return the most similar CTD

name or synonym (i.e. the highest scoring entry).

Action term recognizer

Unlike chemicals, genes and diseases, CTD action terms

were expressed in text much less explicitly. Action terms

such as ‘response to substance’ would rarely appear verba-

tim in actual text, with authors expressing the same idea by

instead saying that ‘A affects B in some manner C’. For this

reason, and considering that there was a relatively small set

of possible CTD action terms, we decided to cast the prob-

lem as a multiclass, multilabel classification task, in which

each abstract could be labelled with any number of action

terms (from a set of 53) depending on the types of chem-

ical-gene interactions that particular abstract pertains to.

Each abstract underwent the same pre-processing pipe-

line as the one applied for the other categories described in

the previous section. Using a one-versus-all approach, we

used support vector machines to train a total of 53 differ-

ent models (i.e. one for each of the 53 CTD action terms).

The feature set used in the training and classification

included (1) verb variant matches based on BioLexicon

entries, and (2) co-occurrence (and proximity) of chemical

and gene names with a biomedical verb variant. Features

of the first type were represented as booleans, while those

of the second type were normalized weights accumulated

based on the number of co-occurrences. To facilitate the

extraction of the second feature type, chemical and gene

names were tagged automatically using the CRF models

previously described. If the prediction returned by any of

the 53 models was greater than an established threshold,

the document was labelled with the CTD action term cor-

responding to that model.

Results

The CTD track organizers carried out the official evalu-

ation of the automatic tools using a test corpus consisting

of 510 PubMed abstracts. Reported in Table 5 are the offi-

cial (released by the organizers) results obtained by our rec-

ognizers, measured in terms of standard performance

metrics (micro-averaged precision, recall and F-score) and

average processing times.

Each of our recognizers performed well with average re-

sponse times of less than a second. This is especially true

for our chemical and gene recognizers that were also

ranked the highest (out of 10 and 9 teams, respectively) in

terms of F-score. The organizers also took into consider-

ation combined micro-averages, i.e. the average of the

F-scores from all concept categories. Our recognizers

achieved the highest combined average out of 10 teams

(22).

To evaluate the utility of external dictionaries, we com-

pared the performance of our solution with several other

versions that involved different number of dictionaries.

Table 6 summarizes the results (Although both sets of re-

sults presented in Tables 5 and 6 were obtained using the

same official online testing facility, there are minor dis-

crepancies between the two sets, which is the consequence

of a few changes in the gold standard corpora applied by

the BioCreative organizers over time). The difference in

F-score between the set-ups that do not use dictionaries

and the one that makes use of all the dictionaries is statis-

tically significant and ranges from 2.2 to 2.8% points for

the three categories: chemical, gene and disease. The add-

ition of the external vocabularies (listed in Table 3) im-

proves the performance in all cases over using only the

CTD vocabularies; however, the difference is only statistic-

ally significant for chemicals.

We also compared the performance of our NERs

trained on our generated silver corpus against the same

Table 5. Official BioCreative IV evaluation results for

NaCTeM’s CTD Web services

Category Precision

(%)

Recall

(%)

F-score

(%)

Average

response

time (sec.)

Chemical 75.24 73.41 74.31 0.77

Gene 53.61 70.86 61.04 0.80

Disease 34.67 49.42 40.75 0.78

Action term 34.53 50.72 41.09 0.92
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NERs trained on other, domain-related gold standard cor-

pora. We used the CHEMDNER corpus (52) prepared for

another track of BioCreative IV, the Gene Mention corpus

(53) prepared for BioCreative II and the NCBI Disease cor-

pus (54). The results, summarized in Table 7, show that

using our silver-annotation technique is superior to train-

ing NERs on established gold standard corpora in terms of

precision and F-score. This demonstrates that despite train-

ing on similar-domain data, the CTD corpus is much more

specialized. This is especially true for chemicals and genes.

For instance, although the recall for chemicals is better

when trained on the CHEMDNER corpus (by �10%

points), the corpus includes a far greater range of chemical

types, which has much more negative impact on precision

(that drops by �34% points).

Conclusions

Web-based Argo is a one-stop workbench with a conveni-

ent graphical user interface for creating text mining Web

services for the processing of biological literature. The

main advantage of the workbench over other platforms is

its unique mechanism for customizing Web services that in-

volves the formulation of user-defined processing tasks and

a selection of the services’ input and output formats. The

discussed formats, BioC, BioNLP, XMI and RDF, repre-

sent both domain-specific and generic representations and

include well established as well as emerging specifications.

The formats also differ in their support for syntactic and

semantic interoperability. Because of its specific and

limited, applicability, BioNLP defines precise syntax and

semantics. BioC defines mostly syntactic interoperability

with some rudimentary semantic definitions. We have pro-

posed to increase the semantic interoperability of this for-

mat by including URIs of annotation types. This, however,

can only be fully accomplished if the URI requirement be-

comes part of the format’s syntax. Most expressive, yet

fully interoperable are the generic XMI and RDF formats.

Their semantics are ensured by well-defined type systems

underpinning any UIMA-based platform, including Argo.

The customizable input and output formats are comple-

mented by highly effective and efficient biology-relevant

analytics available in Argo. The superiority of the analytics

was validated at an international challenge where our solu-

tions generally outperformed those submitted by other

groups, based on combined average scores.
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