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Abstract

Biocuration activities have been broadly categorized into the selection of relevant docu-

ments, the annotation of biological concepts of interest and identification of interactions

between the concepts. Text mining has been shown to have a potential to significantly re-

duce the effort of biocurators in all the three activities, and various semi-automatic meth-

odologies have been integrated into curation pipelines to support them. We investigate

the suitability of Argo, a workbench for building text-mining solutions with the use of a

rich graphical user interface, for the process of biocuration. Central to Argo are customiz-

able workflows that users compose by arranging available elementary analytics to form

task-specific processing units. A built-in manual annotation editor is the single most used

biocuration tool of the workbench, as it allows users to create annotations directly in text,

as well as modify or delete annotations created by automatic processing components.

Apart from syntactic and semantic analytics, the ever-growing library of components in-

cludes several data readers and consumers that support well-established as well as

emerging data interchange formats such as XMI, RDF and BioC, which facilitate the inter-

operability of Argo with other platforms or resources. To validate the suitability of Argo for

curation activities, we participated in the BioCreative IV challenge whose purpose was to

evaluate Web-based systems addressing user-defined biocuration tasks. Argo proved to

have the edge over other systems in terms of flexibility of defining biocuration tasks. As

expected, the versatility of the workbench inevitably lengthened the time the curators

spent on learning the system before taking on the task, which may have affected the us-

ability of Argo. The participation in the challenge gave us an opportunity to gather valuable

feedback and identify areas of improvement, some of which have already been

introduced.
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Introduction

Data curation from biomedical literature had been trad-

itionally carried out as an entirely manual effort, in which

a curator handpicks relevant documents and creates anno-

tations for elements of interest from scratch. To increase

the efficiency of this task, text-mining methodologies have

been integrated into curation pipelines. In curating the

Biomolecular Interaction Network Database (1), a pro-

tein–protein interaction extraction system was used and

was shown to be effective in reducing the curation work-

load by 70% (2). Similarly, a usability study revealed that

the time needed to curate FlyBase records (3) was reduced

by 20% with the use of a gene mention recognizer (4).

Textpresso (5), a text-mining tool that marks up biomed-

ical entities of interest, was used to semi-automatically cur-

ate mentions of Caenorhabditis elegans proteins from the

literature and brought about an 8-fold increase in curation

efficiency (6). More recently, the series of BioCreative

workshops (http://www.biocreative.org) have fostered the

synergy between biocuration efforts and text-mining solu-

tions. The user-interactive track of the latest workshop

saw nine Web-based systems featuring rich graphical user

interfaces designed to perform text-mining-assisted biocu-

ration tasks. The tasks can be broadly categorized into the

selection of documents for curation, the annotation of

mentions of relevant biological entities in text and the an-

notation of interactions between biological entities (7).

In this article, we present Argo and investigate whether

this primarily text-mining workbench is suitable to support

the aforementioned biocuration tasks. In a previous cur-

ation effort, the automatic processing within Argo was

found to be adequate for the completion of �84% of a

drug and enzyme annotation task, the remainder of which

was completed manually by a domain expert using Argo’s

manual annotation editor (8). Here, we demonstrate Argo

in the context of a biocuration task that was showcased

in the recently completed BioCreative IV challenge. Some

of the capabilities we describe were introduced as a result

of the participation in the challenge. The user feedback

we received allowed us to better understand the needs of

biocurators and adjust our system accordingly.

In the remainder of this article, we briefly introduce the

system and elaborate on specific capabilities that support

text-mining-assisted biocuration activities. We then present

a detailed discussion of our participation in the interactive

track at BioCreative IV, in which Argo was applied to a

specific biocuration task, the annotation of metabolic pro-

cess concepts and report on the results obtained and

insights gained from this exercise. We also provide a com-

parison of Argo against other biocuration systems. We

conclude by summarizing the lessons learned from this

study and by formulating plans for improvement to better

address the requirements of biocurators.

System overview

Argo (http://argo.nactem.ac.uk) is a multi-user Web-based

workbench for collaborative development and evaluation

of text-processing workflows (8). The workbench includes

an ever-growing library of elementary processing compo-

nents or analytics, developed mostly at the National

Centre for Text Mining (NaCTeM). They range from sim-

ple data (de)serialization to natural language processing

(NLP) to semantic annotation (named entity and relation-

ship recognition). The principal features of Argo include

the easy combination of elementary text-processing com-

ponents to form meaningful and comprehensive processing

workflows, the ability to manually intervene in the other-

wise automatic process of annotation by correcting or

creating new annotations and the enabling of user collab-

oration by providing sharing capabilities for user-owned

resources. The workbench is meant to accommodate a var-

iety of tasks and domains.

The tasks in Argo are defined by creating workflows,

i.e. by arranging a selection of elementary processing com-

ponents by means of interconnecting their outputs and in-

puts, and setting up their configuration parameters. The

most common approach is an arrangement that forms a

pipeline or a serial workflow. The generic flow involves

reading source data, performing automatic and/or manual

annotation on the data and then saving the annotations

(usually together with the source data). Each of these three

steps is highly configurable by the choice of elementary

processing components that best fit the task at hand. For

example, reading source data may be accomplished by

deserializing user-uploaded files in various formats, such

as plain text, XML and RDF, as well as by fetching data

from remote Web services, such as search engines.

Argo is available as a Web application and thus is ac-

cessed with a Web browser. Its graphical user interface

(GUI) provides access to the complete functionality of the

workbench.

User resources

Users interact with Argo primarily by developing work-

flows and—if source data is not fetched remotely—by

uploading their documents for processing with the work-

flows. Workflows are defined by users by visually arrang-

ing elementary components into interlinked graphs using a

dedicated graphical block diagram editor shown in

Figure 1. Processing components are represented in a dia-

gram as blocks that are linked with connectors. Although
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the most common arrangement is a pipeline (where the

output of each component is connected to at most one in-

put of another component), Argo also supports complex

arrangements with multiple branching and merging points

as shown in the figure.

Workflows created by users are listed and managed in

the Workflows panel (visible in Figure 2), which also

allows for initiating the processing of workflows whose

progress may be tracked, in turn, in the Processes panel.

Users can manage their documents in the Documents

panel whose functionality resembles that of a typical file

system. The documents are usually expected to be text files

that are used as source data for processing workflows.

Analogously, the workflows may store the intermediate

or final results of processing, e.g. XML files containing

annotations, in the same document space, that are later

available for users to download, or for use in further

processing.

Both workflows and documents can be shared among

the users of Argo. This makes it especially useful in terms

of distributing the workload of carrying out a curation

task: users with a technical background may entirely de-

sign a workflow, which they can then share with, for ex-

ample, biologists for them to run the workflow and

provide annotations using their domain expertise.

Technology and interoperability

Argo supports and is based on the Unstructured

Information Management Architecture (9). The architec-

ture is an OASIS standard (http://www.oasis-open.org/

committees/uima) for ensuring interoperability of individ-

ual processing components by defining common data

structures and interfaces. Annotations created in this archi-

tecture must adhere to customizable and well-defined

annotation schemata or type systems. Each processing

component imports (and supports) one or more such type

systems and is responsible for populating a common anno-

tation structure that is passed between components in a

workflow for further processing.

The actual processing of workflows is carried out on a

multi-core server, with additional support for execution on

high-throughput cloud computing frameworks, such as

HTCondor.

Biocuration in Argo

Argo includes several features that render the workbench

suitable for curation activities. In particular, one of the fea-

tures allows users to manually intervene in the processing

of a workflow by means of user-interactive processing

components. An example of this type of component is the

Figure 1. A screenshot of Argo’s workflow diagramming window. Users create their workflows graphically by selecting and placing elementary pro-

cessing components onto a drawing canvas and interconnecting them to form meaningful processing units.
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Manual Annotation Editor, a graphical interface that lets

users view, modify or delete existing annotations, or add

new ones [We use the term ‘annotation’ to denote any

added information that is not part of the original data

(document). They include span-of-text annotations as well

as non-text-bound annotations that may contain primitive

attributes (such as string, integer, boolean) as well as refer-

ences to other annotations]. The editor is the primary inter-

face between biocurators and the system. The functions of

the editor, a fragment of which is shown in Figure 3, in-

clude the following:

• Selecting a document for annotation from a list of avail-

able (previously processed) documents;

• removing or reassigning labels to already (possibly auto-

matically) annotated spans of text;

• adding new annotations by selecting a span of text and

assigning a label to it from a set of available labels (the

central panel in Figure 3);

• adding new or deleting existing document-level or rela-

tionship annotations that are not directly made on a

span of text (i.e., meta annotations);

• editing annotation features (attributes) via an expand-

able tree structure (shown on the right-hand-side panel

in Figure 3);

• support for overlapping (intersecting) annotations;

• a GUI for assigning identifiers from external databases

(see Figure 4); and

Figure 2. A screenshot of the Argo application showing the Workflows panel that lists and enables managing user-created workflows. The right-hand

side panel provides a description of the currently selected workflow as well as warning messages informing the user of problems with the underlying

components’ configuration or connections.

Figure 3. A screenshot of the fragment of Argo’s manual annotation editor. The editor allows users to visually create, modify or delete annotations in

the left-hand-side panel, as well as fill in more specific information (governed by a given annotation schema) for each of the annotations in the right-

hand-side panel.
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• filtering of annotations by semantic labels.

Relationships or interactions between biological entities

are constructed by first marking spans of text in the central

panel shown in Figure 3 and assigning labels (types).

Thereafter, the appropriate relationship annotation is cre-

ated on the right-hand-side panel and the relevant entities

are moved into the newly created relationship annotation.

The cohesion of these structures is maintained automatic-

ally and adheres to the annotation schemata in use.

Components

The fundamental building blocks of workflows are pro-

cessing components or analytics. Argo has an ever-growing

library of components whose functionalities range from

data reading/writing to NLP and text-mining analytics, to

annotation manipulation and evaluation. Tables 1–3 list

some of the components that are of interest to biological

curation tasks. Deserializers or data readers, shown in

Table 1, include local file readers, generic XML and RDF

readers, search engines and data-specific readers, such as

the BioNLP Shared Task Reader. Analytics components

shown in Table 2 are the main text-mining processing units

and include automatic recognition and ontology binding of

biologically relevant concepts, such as genes, chemicals

and species names, as well as complex interactions (events)

between these concepts. Finally, Table 3 lists utility com-

ponents that support automatic processing. These include

Figure 4. A screenshot of a window for selecting an identifier for an annotated fragment of text from an external resource—in this case, the ChEBI

ontology. Users may select the most suitable entry by browsing a selection in the left-hand-side panel and viewing the details in the central panel.

Table 1. Data serialization and deserialization components available in Argo that may be used in biocuration workflows as ter-

minal components for reading source data and saving the results of processing

Component name Description

Document Reader Deserializes text files stored in the user’s personal space (i.e. the Documents panel)

Kleio Search Remotely fetches PubMed abstracts matching a query set as a parameter

PubMed Abstract Reader Fetches abstracts directly from PubMed using a list of PubMed IDs as input

Input Text Reader Reads text supplied in a parameter

BioNLP Shared Task Reader Deserializes triple files (containing plain text, stand-off annotations of named entities and stand-off

annotations of events or structured relationships) as defined in the BioNLP shared taska

XMI Reader/Writer (De)serializes entire CASes (data and annotations) from/into the XML Metadata Interchange (XMI) format

RDF Reader/Writer (De)serializes entire CASes from/into RDF which may then be reused in other applications, e.g. in query

engines supporting SPARQL

BioC Reader/Writer (De)serializes selected annotations from/into BioC formatb

ahttp://2013.bionlp-st.org
bhttp://bioc.sourceforge.net
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the annotation editor, a component for aligning heterogen-

ous annotation schemata and components for evaluating

workflows against a gold standard data and for evaluating

inter-annotator agreement if the manual annotation of the

same data is performed by more than one curator. The col-

lection also features a component that allows users to con-

nect their own components running on their own machine

to an Argo workflow running on the server. This is espe-

cially useful in the development of dedicated processing

components that are not featured in Argo.

Workflows

Argo facilitates text-mining-assisted biocuration by

means of task-specific highly customizable workflows. The

workbench’s wide range of available components allows

users to define semi-automatic curation workflows based

on their specific needs.

The workflow shown in Figure 1 demonstrates how the

three major elementary biocuration tasks, i.e. document se-

lection, concept recognition and concept interaction identi-

fication, can be realized in Argo. The task is defined as the

identification of interactions signifying metabolic processes

in a selection of PubMed abstracts. It involves the annota-

tion of two types of concepts in the abstracts, namely,

chemical compounds and genes or gene products.

The illustrated workflow makes use of Kleio Search, a

special case of a data reader component that connects to a

Web service and fetches remote content matching a user-

defined query. The Web service behind this particular

Table 2. Text analysis components available in Argo that may be used in biocuration workflows to produce annotations

Component name Description

GENIA Sentence Splitter A sentence splitter trained on biomedical text (10)

GENIA Tagger Performs tokenization, part-of-speech and chunk tagging, and recognition of genes or gene products (e.g.,

proteins, DNA, RNA) (11)

GENIA Dependency Parser A dependency parser optimized for biomedical text (12)

Enju Parser Returns phrase and predicate-argument structures for general and biomedical text (13)

Anatomical Entity Tagger A machine learning-based anatomical entity mention recognizer (14)

NERsuite A named entity recognizer implemented on top of the NERsuite package.a Includes several models to choose

from.

Chemical Entity Recogniser A named entity recognizer optimized for chemical text (15). Includes several models to choose from.

OscarMER A refactored version (16) of OSCAR 3 (17), which recognizes chemical concepts (e.g. compounds, reactions)

using a maximum entropy model

Species Tagger A tagger for species names based on a dictionary look-up method (18)

CTD Linker Normalizes an action term to one of the types in the CTD interaction types ontology.

ChEBI Linker Normalizes a chemical compound name to an entry in the Chemical Entities of Biological Interest (ChEBI)

database.

UniProt Linker Normalizes a name of a gene or gene product to a UniProt entry.

EventMine A machine learning-based event extractor with models for GENIA, epigenetics, infectious diseases, pathway

and cancer genetics event types (19–21)

ahttp://nersuite.nlplab.org

Table 3. Utility components available in Argo that may be used in biocuration worfklows to support automatic processing

Component name Description

Manual Annotation Editor A user-interactive component that supports visualization and manipulation of annotations, allowing the user

to manually intervene in the processing of a workflow

SPARQL Annotation Editor Creates, removes and modifies annotations using a SPARQL query (22). May also be used for complex type

conversions.

Generic Listener An interface that allows a user to plug-in their own components running on a local machine (23)

Agreement Evaluator Analyses two or more input annotation efforts (coming from different branches in a workflow) and produces

a tab-separated file, reporting agreement rates between the inputs; may serve to compute inter-annotator

agreement

Reference Evaluator Compares automatically generated annotations against reference annotations and produces a tab-separated

file reporting evaluation results.
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component is a programmatic access point to the search

engine Kleio (www.nactem.ac.uk/Kleio), which indexes

PubMed abstracts and facilitates faceted search (24). The

parameters of the component are a query string and a

choice of ordering results by relevance or publication date.

Each retrieved PubMed abstract is segmented into sen-

tences and tokens by the GENIA Sentence Splitter and

GENIA Tagger components, respectively. The latter also

includes the recognition of several semantic types including

genes and gene products (as a single type). Instances of the

other concept type, namely chemicals, are identified by the

Chemical Entity Recognizer. The EventMine component

ingests the recognized concepts and finds interactions be-

tween them (if such exist). All the concept and interaction

recognizers use machine learning models to accomplish

their respective tasks. Additionally, Enju Parser and

GENIA Dependency Parser support the EventMine compo-

nent by producing a deep syntactic analysis of sentences.

The inclusion of SPARQL Annotation Editor in the work-

flow is needed for aligning annotation schemata between

the types of the relevant concepts and the types expected

by EventMine. The user-interactive manual annotation

editor allows annotators to inspect and correct (where ne-

cessary) the automatically generated annotations. Lastly,

the annotations are saved as XML Metadata Interchange

(XMI) files as well as widely adopted RDF graphs.

We emphasize that workflows in Argo are highly modu-

lar, allowing their customization by means of interchange-

able components. For instance, in the example workflow,

users may opt to replace the Kleio Search component with

a Document Reader, which will then allow them to work

with documents stored in their dedicated storage space

that comes with each user account. Yet another variation

involves using an XMI Reader that is capable of reading

the results of the processing of other workflows that fea-

tured an XMI Writer as their data consumer component.

Similarly, any of the syntactic and semantic analysis com-

ponents may be replaced by other suitable components

available in the library, as well as by users’ own solutions

that can be introduced into a workflow by the Generic

Listener component (described in Table 3).

Use case: annotation of metabolic processes

To validate the suitability of Argo for biocuration tasks,

we participated in the interactive track of the recently con-

cluded BioCreative IV workshop, whose aim was to assess

the state of the art in bridging text mining and biocuration.

One of the requirements imposed on participating systems

was that they had to feature a graphical user interface

accessible as a Web application.

Background

The curation task we proposed involved the annotation of

concepts relevant to metabolic processes. One of the core

disciplines of systems biology, metabolomics, the study of

organic and inorganic small molecules (i.e. metabolites)

(25), plays a central role in drug and biomarker discovery

(26), and facilitates the advancement of research focussing

on the understanding, prevention and treatment of diseases

(27). To date, biochemical databases storing information

on metabolites and relevant processes undergo purely man-

ual curation. In the KEGG PATHWAY (28), Reactome

(29) and Rhea (30) databases, biochemical reaction entries

are manually linked to scientific documents providing evi-

dence of the reactions. Even greater manual effort is

required in the population and maintenance of SABIO-RK

(31) and MetaCyc (32), which contain reaction informa-

tion manually extracted from published literature. The fact

that the upkeep of such databases has yet to be supported

by text mining validates the previously reported observa-

tion that the curation of metabolic pathways has received

little attention from the biomedical NLP community, com-

pared with that of signalling pathways (33). This gave

us the motivation to define a task that explores the semi-

automatic curation of metabolic processes, as part of our

participation in the BioCreative track. Having already

demonstrated the automatic linking of reactions to textual

evidence in previous work (34), we focussed our case study

on facilitating their automatic extraction from scientific

literature using Argo as the biocuration platform.

We have undertaken this case study on metabolic pro-

cess concept annotation with the following objectives: (i)

to measure the accuracy of automatic annotation by evalu-

ating the performance of the underlying text-mining com-

ponents in Argo against human curators, and (ii) to

quantify the feasibility of semi-automatic curation in Argo

by collecting feedback from the curators and by comparing

time spent on text-mining-assisted annotation against that

on purely manual annotation. The outcome of this study

was aimed at eventually facilitating the development of

methods for the semi-automatic curation of biochemical

reaction databases.

Curation task set-up

In designing the task, we follow the definition of metabolic

process from the chemical–gene interaction types ontology

(http://ctdbase.org/help/ixnQueryHelp.jsp#actionType) of

the Comparative Toxicogenomic Database (CTD) (35), i.e.

‘the biochemical alteration of a molecule’s structure,

excluding changes in expression, stability, folding,
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localization, splicing and transport’. Below is an example

of a metabolic process expressed in scientific text:

The known activity of cytochrome P450 46A1 (P450

46A1) is 24(S)-hydroxylation of cholesterol. This

reaction produces biologically active oxysterol, 24(S)-

hydroxycholesterol, and is also the first step in enzym-

atic degradation of cholesterol in the brain.

[Source: PubMed abstract 14640697]

Described in these two sentences is a metabolic process,

specifically, the 24(S)-hydroxylation of the compound

cholesterol by the enzyme cytochrome P450 46A1, result-

ing to the production of 24(S)-hydroxycholesterol. Based

on the concept types frequently involved in metabolic

processes, we defined the curation task as the annotation

of chemical compounds (CCs), genes or gene products

(GGPs) and expressions signifying metabolic processes

(triggers). Both CCs and GGPs may play the role of react-

ant (entity undergoing the alteration), product (entity into

which the reactant is changed) or modifier (entity driving

the alteration) in a metabolic process. The process itself is

organized around a trigger word, often in the form of a

verb, verb nominalization or adjective, e.g. generates,

hydroxylation, acetylated.

The curators were asked to demarcate the metabolic

process concepts and assign a corresponding semantic

label, i.e. any of CC, GGP or trigger. As this task aims to ul-

timately facilitate the semi-automatic curation of biochem-

ical reaction databases, it was desirable that the concepts

be linked with entries in relevant biochemical resources.

An additional requirement, therefore, was to assign to each

concept a unique identifier from the following three vocab-

ularies/ontologies: ChEBI (36) for CCs, UniProt (37) for

GGPs and the CTD chemical–gene interaction ontology

for trigger words.

To elucidate the specifications of the task and to foster

agreement among annotators, we prepared a set of annota-

tion guidelines describing the scope (i.e. what should

be considered for marking up) and span (i.e. how to

demarcate concepts within text) together with illustrative

examples. The annotation guidelines, as well as the instruc-

tions, for using Argo for this particular task were made

publicly available on Argo’s main website. They are

also included as Supplementary Materials for the reader’s

convenience.

Annotation process

We randomly selected a subset of 60 PubMed abstracts

from those that are tagged in the CTD as relevant to differ-

ent types of metabolic processes. To draw parallels be-

tween purely manual and semi-automatic curation, we

split the original data set into two equal parts and prepared

a total of three workflows:

1. Manual annotation: This workflow reads PubMed ab-

stracts and opens a Manual Annotation Editor for a cur-

ator to tag the entities of interest without any support

from automatic processing available in Argo. It takes a

list of PubMed abstract identifiers as input (by means of

the PubMed Abstract Reader) and uses the XMI Writer

to store the annotated documents in XMI format.

2. Automatic annotation: Purely automated and not

involving any manual intervention from the curators,

this workflow reads PubMed abstracts and performs

recognition and normalization of the entities of interest.

The objective of this workflow is to automatically ‘pre-

annotate’ the input abstracts for later manual inspec-

tion (which for evaluation purposes is not part of this

workflow). After fetching abstracts by means of the

PubMed Abstract Reader, the workflow proceeds to

the segmentation of the documents with the GENIA

Sentence Splitter. This is followed by tokenization,

part-of-speech and chunk tagging with the GENIA

Tagger, which additionally performs recognition of

GGPs. Chemical compounds and trigger words are

then recognized by the OscarMER component, which

is capable of recognizing six different types of chem-

ically relevant concepts, including chemical molecules

and reactions. An instance of the SPARQL Annotation

Editor was introduced into the workflow to facilitate

the transcription of the semantic types from the preced-

ing recognizers into a unifying, compact and simplified

annotation schema for future use by the curators.

Automatic normalization (i.e. assignment of external

resource identifiers) is then facilitated by the three

linker components (ChEBI Linker, UniProt Linker and

CTD Linker), which use the Jaro-Winkler string simi-

larity algorithm (38) to match recognized concepts

against entries in external databases/ontologies.

Finally, the XMI Writer component saves the anno-

tated abstracts in XMI format.

3. Manual correction: This workflow reads XMI files that

already contain annotations (coming from the second

automatic workflow) and opens a Manual Annotation

Editor for a curator to correct (remove, add, modify)

the automatically recognized annotations. The anno-

tated files are saved in XMI format by the XMI Writer.

Although the second and third workflows could be

combined into a single workflow, for the purposes of

evaluation they were defined separately. We made the

three workflows publicly available in Argo and accompa-

nied them with detailed instructions available on the Argo

website (see also Supplementary Materials).
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For each PubMed abstract, a set of annotated text spans

corresponding to GGPs, CCs and triggers were returned as

output. The annotations for each text span include the lo-

cation (i.e. document offsets), semantic label and the cor-

responding unique identifier from the relevant external

resource. The annotations have been made available in the

XMI, BioC and RDF formats with the aid of the various

serialization components available in Argo (see Table 1).

Curators

Together with the BioCreative track organizers, we re-

cruited four curators with expertise in the curation of bio-

chemical entities. One annotator was experienced in the

semantic annotation of the PubChem databases (39). Two

were scientific database curators for ChEBI, specializing in

cheminformatics and metabolism. The last one was a cur-

ator for the MetaCyc database who, however, withdrew

from the task during its early stages but managed to pro-

vide general feedback on the workbench.

Results

We analyse the curation task quantitatively by computing ef-

fectiveness and agreement metrics over the sets of annotations

produced by the curators, and qualitatively by reporting on

the received feedback from the curators and the organizers.

One curator annotated mentions of all three concept

types; the other two who specialize in ChEBI curation

opted to focus only on chemical compound annotation.

Consequently, we had at our disposal one set of abstracts

with annotations for CCs, GGPs and triggers and two sets

with only CC annotations.

Suitability of automatic processing

In evaluating Argo in terms of the performance of its auto-

matic processing, we compared the annotations generated

by the ‘Automatic annotation’ workflow on the 60

PubMed abstracts against the curators’ annotations drawn

from the outputs of the ‘Manual annotation’ and ‘Manual

correction’ workflows, i.e. the curators’ annotations were

treated like gold standard. A detailed breakdown on preci-

sion, recall and F-score for the different subsets and cur-

ators is given in Table 4. For GGPs and triggers (annotated

by a single curator), the micro-averaged F-scores are at the

level of 60 and 81%, respectively. For CCs, the F-score is

56% for one of the curators and rises to 74–75% for the

other two. This discrepancy can be explained by looking

into the scores for individual subsets. Whereas the per-

formance of the automatic workflow is comparable among

the three curators on the ‘manual annotation’ subset, it de-

viates significantly on the ‘manual correction” subset with

the F-score values as high as 95%. This indicates that the

presence of annotations affected the behaviour of the cur-

ators who gladly accepted most of the automatic

propositions.

Table 4 also shows the performance of the automatic

processing against the combined CC annotations (the only

category annotated by more than one curator). We report

on two ways for harmonizing the curators’ independent

annotations: by majority voting, in which an annotation is

retained only if at least two curators produced it, and by

obtaining the union of all annotations. Overall, the preci-

sion–recall trade-off appeared to work well for the auto-

matic processing, which achieved a higher F-score for the

majority voting, albeit marginally, when compared with

the individual scores.

Inter-annotator agreement

The pair-wise inter-annotator agreement for CCs ranged

between 67 and 84% in F-score with the two annotators

specializing in CC achieving the upper bound. Table 5

shows the inter-annotator agreement in detail. The agree-

ment rate on the first subset of documents varies slightly

Table 4. The performance of the automatic workflows compared against the annotations of human curators

Curator Category Manual annotation Manual correction All

P R F P R F P R F

Curator 1 Chemicals 47 67 55 48 71 57 47 69 56

GGPs 63 61 62 63 55 58 63 58 60

Triggers 93 55 69 98 88 93 96 71 81

Curator 2 Chemicals 39 60 47 93 97 95 67 83 74

Curator 3 Chemicals 40 67 50 91 98 95 66 86 75

Majority voting Chemicals 27 66 39 90 98 94 67 87 76

Union Chemicals 57 49 53 82 96 89 72 73 72

The results are split into the two subsets of documents used in the curation task. P—precision, R—recall, F—F-score. Reported values are in percentages.
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between the annotator pairs and shows fairly high level of

agreement (76–82%), whereas the rate on the second ‘cor-

rection’ subset clearly confirms that two of the curators

were mostly content with the automatic suggestions.

Reconstructions of chemical–gene interactions in

the CTD

We also analysed how well each of the curators as well as

the automatic workflow reconstruct chemical–gene inter-

actions that are stored in the CTD for each PubMed ab-

stract. Each chemical–gene interaction in the CTD consists

of the identifiers of the participants and the type of inter-

action. It must be noted, however, that the annotations

produced by the human annotators and our automatic an-

notation workflow are not directly comparable with the

CTD annotations for several reasons. While multiple in-

stances of the same concept are contained in our corpus to-

gether with their in-text locations, the CTD stores only a

per-document list of unique concepts without any location

information. Additionally, we had to use approximate

matching when mapping our GGPs and CCs to the identi-

fiers of genes and chemicals in the CTD. In contrast, the

interaction trigger words were mapped directly, as the task

required the curators to link such words to entries in the

CTD. Another source of incompatibility stems from the

fact that for each abstract in the CTD, the database holds

only identifiers of those chemicals and genes that directly

participate in interactions mentioned in an abstract.

Consequently, the list of curated CTD concepts might not

contain all of the concepts mentioned in a document. In

contrast, our task was designed to include the annotations

of all of the mentions of chemicals, genes or gene products

and metabolic process triggers. Table 6 summarizes the

results of this comparison.

As expected, the best results were obtained for trigger

words, as they directly corresponded to the entries in the

CTD. The only curator who produced trigger word anno-

tations scored at the level of 54% in F-score, which is

closely followed by the automatic workflow’s F-score at

the level of 51%. The biggest differences can be observed

among annotations of CCs where the aforementioned cur-

ator outperformed the other two as well as the automatic

workflow by a 10%-point margin. However, the F-scores

for the three curators are more balanced for the ‘manual

annotation’ subset of abstracts. This shows yet again, that

two of the curators could have been biased by the presence

of automatic annotations.

Curation time

The differences in the time spent on the task between the

purely manual and the text-mining-assisted curations

showed to be inconclusive. One of two curators who re-

ported their times recorded a time reduction by a third

with the text-mining-assisted set-up, whereas the other one

reported an increase by a fifth. This inconsistency may be

explained by the fact that the curators distributed their

work over a month period, which may have affected their

time keeping. We also note that the comparison baseline in

our evaluation set-up was already demanding. Both the

Table 6. The approximate and indirect mapping of human and automatic annotations to chemical–gene interactions in the CTD

Curator Category Manual annotation Manual correction All

P R F P R F P R F

Automatic workflow Chemicals 16 55 25 16 49 24 16 52 25

GGPs 14 37 21 14 34 19 14 36 20

Triggers 63 42 50 53 51 52 58 46 51

Curator 1 Chemicals 33 68 44 32 64 43 32 66 44

GGPs 20 40 26 18 39 24 19 39 25

Triggers 55 58 57 46 60 52 51 59 54

Curator 2 Chemicals 31 67 43 18 53 27 24 60 34

Curator 3 Chemicals 36 66 46 17 49 25 24 58 34

Majority voting Chemicals 35 67 46 18 52 27 25 60 35

Union Chemicals 26 68 38 19 66 30 22 67 34

The results are split into the two subsets of documents used in the curation task. P—precision, R—recall, F—F-score. Reported values are in percentages.

Table 5. The inter-annotator agreement

Curator Manual annotation Manual correction All

Curator 1 and 2 76 57 67

Curator 2 and 3 76 92 84

Curator 1 and 3 82 56 69

The results are split into the two subsets of documents used in the curation

task. Reported values are F-scores in percentages.
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manual and assisted curation configurations featured the

same manual annotation editor, which was virtually the

only interface between the curators and Argo. It is a set-up

that reaches far beyond the traditional curation process

involving manually extracting and transferring relevant in-

formation from papers to spreadsheets. It is also worth

noting that the time spent on automatic processing is only

a fraction of the total time of the curation task. The initia-

lization of resources, which is performed only once per the

entire batch of documents, takes less than a minute,

whereas the processing of a single document takes a few

seconds.

Qualitative analysis

The curators were also asked to provide feedback on vari-

ous aspects of the system in the form of a survey carried

out by the track organizers. The overall scores for experi-

ence, system rating and recommendation were high for

two of the curators who scored the system 12 and 14 out

of 15 and low for the other two, both rewarding only

5 points. Such polarized scores may be the result of the

amount of time the curators dedicated to learn the system.

The curators were asked to go through a series of tutorials

to familiarize themselves with Argo before proceeding to

the annotation task, which may have been neglected, e.g.

one of the curators admitted to proceeding to the task

without taking any training. We also decided to leave the

configuration of workflows to the curators themselves to

validate whether performing this task is suitable for users

with a presumably limited technical background. The ver-

satility and—inevitably—complexity of the system posed a

barrier to the full use of the workbench for two curators.

To ease the use of Argo for curators, we have developed

several new functionalities based on the received feedback.

The biggest single inconvenience for the curators appeared

to be the necessity of creating a workflow—albeit a simple

one—to view or edit already saved manual annotations.

We have tackled this problem by incorporating a docu-

ment editing functionality directly in the Documents panel:

users may now simply browse the documents in their space

and open a selected one in the Manual Annotation Editor.

We also observed that some annotations made by cur-

ators included leading or trailing white-space characters

(which were removed for the purpose of evaluation). To al-

leviate this issue, we introduced a feature in the Manual

Annotation Editor that adjusts annotation spans to auto-

matically exclude such characters. This, however, is made

optional, as other annotation tasks may allow annotation

boundaries to lie inside words. In fact, some of the annota-

tions made by the curators span only a fragment of chem-

ical expressions.

Other improvements included more convenient access

to annotation guidelines during manual annotation process

and several other graphical usability changes.

Comparison with other systems

In this section, we present a short review of available Web-

based biocuration platforms, conducted as a qualitative

comparison of Argo against the other systems that partici-

pated in the interactive track of the BioCreative IV

workshop.

Some of the participating systems, the CellFinder curation

pipeline (40), BioQRator (41), RLIMS-P (42) and Egas (43),

feature support for all the three broadly identified biocuration

tasks, i.e. document selection, biomedical concept annotation

and interaction annotation. The remaining systems are

focussed on only one or two tasks: document selection in the

case of SciKnowMine (44), concept annotation for

MarkerRIF (45) and tagtog (46) and both concept and inter-

action annotation for ODIN (47). In comparison, Argo facili-

tates all the three tasks by means of its rich library of

components and several improvements to the core system im-

plemented to address the feedback received from the curators.

For instance, the availability of the Kleio Search component

allows users to supply a search query for selecting only docu-

ments of particular relevance. If further triage is needed, users

may opt to save the search results in their storage space and

manually sieve the documents by viewing them in the built-in

annotation editor and deleting irrelevant items. Argo provides

even stronger support for the two latter biocuration tasks

with its wide range of available options for bioconcept recog-

nition and interaction extraction (shown in Table 2).

Most of the participating systems were tailor-made for

specific subject domains, therefore restricting their applic-

ability to other biocuration tasks. The CellFinder curator

and RLIMS-P systems are both tightly coupled with task-

specific text-mining pipelines, requiring significant effort in

adapting them to new curation projects. The named entity

recognition and event extraction tools used by the

CellFinder curator, for instance, were based on dictionaries

and statistical models focussed on cells and genes. Similarly,

RLIMS-P was developed as a rule-based system particularly

for extracting phosphorylation events involving proteins act-

ing as kinases, substrates and sites. Although both ODIN

and BioQRator are also closely tied to specific tools [i.e.

OntoGene (48) and PIE the Search (49), respectively], they

claim to be curation interfaces that can be customized via in-

tegration with other text-mining pipelines. Customization is

supported to a slightly greater extent by Egas and tagtog,

which allow for the creation of configurable projects with

custom annotation types. Likewise, SciKnowMine facilitates

text-mining-assisted document triage for any subject domain
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with its support for offline training of triage models on ad-

ministrator-specified data sets. This is also the case for semi-

automatic concept annotation in tagtog, in which models

can be developed based on custom dictionaries and user-

provided annotation input (i.e. in an active learning-like

manner). In terms of task and domain adaptability, Argo is

much more advanced in its flexibility of allowing annotation

project proponents to define workflows and select underly-

ing text-mining components according to the requirements

of a task at hand.

To a certain extent, some of the aforementioned biocu-

ration systems render support for interoperability with ex-

ternal tools. Driven by text-mining components in the

form of RESTful Web services, MarkerRIF and Egas can

be integrated with other tools implemented in the same

standard. BioQRator and Egas support the storage of

annotations in the BioC format, allowing other BioC-

compliant systems to read and process the resulting data.

In comparison, Argo advances interoperability to a much

greater extent by the availability of data serialization and

deserialization components supporting exchange format

standards such as XMI, RDF and BioC. Argo also features

RESTful versions of these components, which makes it

possible to deploy workflows as Web services.

Conclusions

Primarily a text-mining workbench, Argo features a num-

ber of capabilities that render the system suitable for per-

forming curation tasks. Given the nature of the system,

Argo is best fitted for tasks related to the extraction of in-

formation from data (such as relevant concept recognition

and concept interaction identification), but also exhibits

strong potential in supporting document triage, as demon-

strated by the use of a search engine reader component.

The curation task carried out for the purpose of evaluat-

ing the workbench showed that the introduction of auto-

matically generated annotations, which were meant to

support the manual curation effort, tend to influence the

decision of curators. Harmonized and impartial results

could be obtained by the active collaboration of all cur-

ators involved in an annotation effort, as well as the auto-

matic processing to speed up the task. Such active

collaboration is already possible in Argo and is realized by

means of the Manual Annotation Editor. The editor allows

several users to remotely work on the same document (or a

set of documents) and see each other’s changes in their

respective instances of the editor in real time.

Argo may be used by biocuration teams as a one-stop

solution without any additional tool-development efforts;

however, this type of use has its limitations. The current

state of Argo will appeal to teams that are happy with

working with their data through the functionality provided

by the Documents panel and the currently available com-

ponents facilitating document triage and curation result

serialization. Further integration with certain teams’ exist-

ing infrastructure (particularly databases) can be achieved

by the development of dedicated components that can be

included in Argo workflows by the use of the Generic

Listener component, which may be used to, for example,

save results in a specific remote database. This type of inte-

gration, however, does require some development effort.

To accelerate such efforts, a software development kit is

provided together with sample code.

Argo has a clear advantage over other systems in terms

of the flexibility of defining biocuration tasks. The versatil-

ity of the system, however, comes with a complexity that

impedes its usability when compared with other solutions.

The evaluation of the workbench by biocurators partici-

pating in the BioCreative IV challenge revealed that two of

the four curators struggled with the task when attempting

it without prior training. In contrast, the other two cur-

ators who underwent the training rated the system highly.

Drawing from the received feedback, we identified

areas of improvement. In particular, we have already ad-

dressed the issue of directly editing annotations in users’

documents without the need to build a workflow, thus

shifting the workflow-centric nature of Argo to a docu-

ment-centric one. We would also like to explore its already

available but underexploited resource sharing capabilities.

Specifically, we are planning to draw a clear distinction be-

tween capabilities designed for technical users who are

adept at building workflows, and users who have the

domain expertize needed for validating the results of the

processing of such workflows.
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