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Abstract

Background: This article describes capture of biological information using a hybrid ap-

proach that combines natural language processing to extract biological entities and

crowdsourcing with annotators recruited via Amazon Mechanical Turk to judge correct-

ness of candidate biological relations. These techniques were applied to extract gene–

mutation relations from biomedical abstracts with the goal of supporting production

scale capture of gene–mutation–disease findings as an open source resource for person-

alized medicine. Results: The hybrid system could be configured to provide good

performance for gene–mutation extraction (precision �82%; recall �70% against an

expert-generated gold standard) at a cost of $0.76 per abstract. This demonstrates that

crowd labor platforms such as Amazon Mechanical Turk can be used to recruit quality

annotators, even in an application requiring subject matter expertise; aggregated Turker

judgments for gene–mutation relations exceeded 90% accuracy. Over half of the preci-

sion errors were due to mismatches against the gold standard hidden from annotator

view (e.g. incorrect EntrezGene identifier or incorrect mutation position extracted), or in-

complete task instructions (e.g. the need to exclude nonhuman mutations). Conclusions:

The hybrid curation model provides a readily scalable cost-effective approach to
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curation, particularly if coupled with expert human review to filter precision errors. We

plan to generalize the framework and make it available as open source software.

Database URL: http://www.mitre.org/publications/technical-papers/hybrid-curation-of-

gene-mutation-relations-combining-automated

Background

The fields of translational medicine and personalized medi-

cine rely on coupling information about an individual’s

genotype (genetic make-up and genetic variations) with

their phenotype (physical characteristics and state of

health/disease). Recent advances in low-cost rapid genomic

sequencing methods now enable population studies linking

genotype and phenotype. Several large-scale research activ-

ities are underway, including the eMERGE Network (elec-

tronic Medical Records and Genomics, http://emerge.mc.

vanderbilt.edu/emerge-network), and the Personal Genome

Project (1). This approach is making it possible to identify

a patient’s genetic variations that are associated with a par-

ticular disease state or drug response. Similarly, new find-

ings in pharmacogenomics are enabling more precise

dosing, for example, for warfarin (2). However, to make it

possible to translate these associations into improved

patient care, it is critical to have ‘an authenticated, well-

annotated, curated, and freely accessible knowledge base

of genomic associations, risks, and warnings in machine-

readable form’ (3). The focus of this research was to ex-

plore ways to create such a comprehensive, up-to-date,

freely accessible knowledge base of genetic variations and

associated phenotypes.

The curation problem

There is an increasing volume of gene–mutation–disease in-

formation being published in the biomedical literature. We

estimate that there are >10 000 new articles published each

year that describe findings on the relation between genetic

mutations and phenotype or diseases. There are multiple

repositories for this information, including OMIM (4),

dbSNP (5), HGVbase (6), HGMD (7), PharmGKB (8) and

locus-specific databases (9). However, until recently, there

have been few publicly available curated resources that cap-

ture such findings. The recent creation of National Center

for Biotechnology Information’s (NCBI’s) ClinVar database

(10), launched in 2013, now provides a single public reposi-

tory for such information. As of December 2013, ClinVar

had>80 submitters and >60 000 variations submitted.

There are currently two main approaches to capture

computable genomic information: author-deposited data

and expert curation. Author-deposited data (such as found

in dbSNP or ClinVar) has the advantage in terms of cost

(because the cost is borne by the researcher) and expertise

(clearly the discovering researcher is in the best position to

ensure accurate recording of the information). However,

there are corresponding downsides: authors may not want

to take the time to record their findings in detail, and they

may not have the cross-disciplinary bioinformatics expert-

ise to link findings to the underlying biological reference

databases. For the capture of gene–mutation–disease rela-

tions, for example, the author must provide EntrezGene

identifiers, mutation position information based on a refer-

ence genome, and the appropriate Medical Subject

Headings (MeSH) or Unified Medical Language System

(UMLS) term for the disease or phenotype. In an experi-

ment to compare author-contributed findings with expert

curation in the MINT (Molecular INTeraction) database,

author recall on curating protein–protein interaction was

reported at 57% compared with curator recall of 87%,

measured against a curated gold standard (11).

Expert curation is the norm for reference biological

databases, such as for the Mouse Genome Informatics

(MGI) database (12) or TAIR (The Arabidopsis Informa-

tion Resource) (13); expert curation of findings from the

literature provides high-quality annotations, but through-

put (and therefore coverage) is limited by cost (14). There

are alternatives to these approaches, for example, auto-

mated capture of information through bioinformatics

methods. MGI applies automated annotation of gene–

protein function as a first pass, for cases where expert cur-

ation has not yet been done (these automated annotations

are labeled with a specific evidence category, to distinguish

them from the expert curated annotations). Another ap-

proach that is gaining acceptance is crowdsourcing or com-

munity-generated annotations (14, 15). These techniques

are being leveraged to collect data on drug interactions,

drug adverse events and other complex relations reported

in the literature. Other researchers (16) have experimented

with crowdsourcing to create gold standard datasets for

evaluation of biomedical curation tasks.

Scaling the curation process

The goal of this research has been to create a scalable cost-

effective curation process to capture complex information

from the literature and make it available to the research
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community in a timely fashion, at an acceptable level of ac-

curacy. We can posit throughput and cost goals; however, it

is more difficult to determine accuracy requirements, except

by comparison with existing curation efforts.

When depositing curated information into a database,

high precision is critical to avoid depositing incorrect infor-

mation. An early study on inter-curator agreement for

Gene Ontology (GO) curation (17) reported that expert

GO annotators achieved 91–100% precision, and at least

72% recall, micro-averaged over results from three cur-

ators. A more recent study of curation by the Comparative

Toxicogenomic Database (CTD) team (18) reported simi-

lar results on a complex curation task for disease–gene–

chemical relations from the literature: 91% of the inter-

actions extracted by CTD biocurators were judged by the

lead curator to be correct, with an average recall of 71%.

These results provide a target performance of at least 90%

precision at a recall of at least 70%. An alternate strategy

would have been to optimize a semi-automated workflow

for recall, followed by expert review to remove false posi-

tives. This approach is revisited in the Discussion section.

To achieve the goal of scalable, timely, cost-effective,

accurate curation, our targets for the hybrid curation

workflow were as follows:

• To provide accuracy comparable with expert curated

databases, namely, at least 90% precision with recall of

70% (17, 18);

• To keep up with the volume of literature (�10 000 ab-

stracts per year or 200 abstracts per week);

• To be affordable—we picked a cost of $1 per abstract as a

target for simple gene–mutation relations; full gene–muta-

tion–disease curation could be an order of magnitude

more complex, but even a cost of $10 per abstract for full

curation would be an affordable price to pay to make the

findings computable and reusable, compared with the cost

of publication for an open access article, often �$1000.

Approach—combining automated extraction
and curation

Our approach has been to combine automated extraction of

the relevant biological entities, namely genes and mutations,

with crowdsourcing to elicit human judgments on the cor-

rectness of associations between entities. The general strategy

was to have high recall on the automatic entity extraction,

followed by human judgment for all possible pairwise gene–-

mutation combinations, with the final goal of high precision

at the relation level, to support deposit of the extracted rela-

tions into an open source repository after expert review.

For this experiment, the genes were extracted using the

augmented GenNorm system (19) to identify each mention

of a gene and associate it with the appropriate EntrezGene

identifier. The mutations were extracted using the

Extractor of Mutations system (Extractor of Mutations,

EMU) (20). Each candidate gene–mutation pair in an ab-

stract was then presented as highlighted mentions in a

MEDLINE abstract and passed on to a crowd labor plat-

form, where workers were asked to judge whether the

highlighted gene was associated with the highlighted muta-

tion (Figure 1).

In this work, we made use of a crowdsourcing platform

called Amazon Mechanical Turk (MTurk). MTurk is a

web-based labor market for what Amazon calls Human

Intelligence Tasks (HITs). A typical HIT is a minimal prob-

lem instance that cannot be easily automated, such as cate-

gorizing a snippet of text or an image. Most HITs take a

worker (or Turker) only a short time (seconds) to com-

plete, and workers are paid on a piecework basis. In 2011,

Amazon reported that 500 000 Turkers from 190 countries

were registered on the service (21).

Methods

Overall experimental design

We applied this framework to extract gene–mutation rela-

tions from titles and abstracts of articles from PubMed and

evaluated the results by comparison with an expert-curated

gold standard of gene–mutation–disease relations. Building

on results from an earlier experiment (22), we refined the

framework and enriched the gold standard for easier

evaluation.

A schematic of the framework is shown in Figure 2. The

software combines multiple modules to support the follow-

ing functions: automated information extraction, using

the NCBI’s GenNorm and the University of Maryland

Baltimore County’s (UMBC’s) EMU; linkage of multiple

mentions of each unique gene and each mutation; display

of each candidate gene and mutation pair, highlighted in

context in the abstract; crowdsourced relation judgment

(via Amazon MTurk); and evaluation against a gold

standard.

In the automated extraction phase, for the titles and ab-

stracts of documents (in MEDLINE format), we identified

and normalized as stand-off annotations:

1. mentions of genes, associated with EntrezGene ids,

using NCBI’s GenNorm tool (this differs from the ini-

tial experiment, which relied on NCBI-provided gene

annotations in gene2pubmed), and

2. mentions of mutations, identified and encoded as wild

type, mutation type and position by a modified and

updated version of UMBC’s EMU tool (as in our initial

experiment).
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We then integrated the output of the entity extraction

tools and the source signal (the text of the MEDLINE ab-

stract), grouped the text mentions by concept identifier

into sets of unique mutations and genes and then took the

cross product of mutation and gene concepts within each

abstract, producing all potential gene–mutation pairs as

candidate relations.

In the crowdsourcing phase, we used human judgment

via the MTurk platform to filter the candidate relations

down to those that are supported by the text of the

abstract. We presented each concept pair as an MTurk

HIT, highlighting the gene and mutation mentions in

the context of the abstract (see Figure 1), and asked

workers who have passed an initial qualifying exam to

judge whether the candidate relation is accurate. For each

candidate relation, we obtained judgments from five

Turkers.

Finally, we evaluated the accuracy of the entity extrac-

tion and the relation judgments, as well as the combined

accuracy across the full pipeline. The Turkers’ relation

judgments were evaluated both individually and in aggre-

gate across each candidate according to a variety of aggre-

gation strategies. Each of these components is described in

further detail below.

Figure 1. HIT design for the gene–mutation task.

Figure 2. Schematic framework for hybrid curation.
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Data sources and gold standard

We used the curated gene–mutation–disease corpus

described in Doughty et al. (20) covering breast cancer and

prostate cancer, augmented by additional curation to in-

clude abstracts covering autism spectrum disorder.

Abstracts were downloaded from the PubMed search en-

gine using the MeSH terms ‘Mutation’ (for breast and

prostate cancer) or ‘Mutation AND Polymorphism/genetic’

(autism spectrum disorder). The downloaded abstracts

were then further filtered to include only those in which

the EMU mutation extraction tool identified at least one

mutation mention, resulting in a corpus of 810 abstracts.

Curators with domain expertise then annotated the 810

abstract corpus to create a gold standard. The curators

identified human gene mutations mentioned in each ab-

stract and whether those mutations were mentioned in

relation to one of the three diseases under study; the gold

standard included annotation for single nucleotide poly-

morphisms (SNPs) associated with disease in humans. All

gene–mutation–disease relations were marked as coding or

noncoding; all mutations that did not involve human genes

were marked with a special code; each mutation position

was specified in terms of nucleotide or protein position

within a reference gene. Although the initial curated data

set created at UMBC covered gene–mutation–disease rela-

tions, the focus of the experiments described here was on

the gene–mutation relations for SNPs within coding

regions of human genes.

At the outset, we split the corpus into three segments.

For the initial experiment, we used a subset of 250 ab-

stracts that had already been curated for genes in PubMed

because at that time we did not have access to an auto-

matic gene annotation tool. We then randomly split the

remaining abstracts into two sets of 275 abstracts, one of

which was used in the experiment described here. The final

set of 275 documents has been held in reserve for a future

experiment. The remaining 10 abstracts were used for de-

tailed debugging during development. Distributions for

genes and mutations are shown in Table 1. The differences

between the two data sets in Table 1 were most likely

owing to the way in which we chose the first set, which re-

sulted in a bias toward more recent articles, leaving older

articles with fewer mutations per article, in the second set

and third unused set.

Extraction of base entities (genes, mutations)

Mutations—extracted by EMU

To identify and standardize mutation mentions in the tar-

get documents, we used the EMU (20). EMU has a two-

step filter process to identify SNP mentions: first, the text

was searched for matches to a list of regular expressions,

and each match in the text was parsed leveraging the in-

ternal component structure of the regular expression that

identified it; second, the matches were filtered using a

different group of regular expressions as a stop-list.

Substrings identified as mutations had surface representa-

tions identifying them variously as nucleotide substitutions

(‘c.758C>T’), amino acid substitutions (‘Arg 117 His’) or

database identifiers (‘rs35490896’). EMU standardized

compositionally described mutation mentions (e.g.

‘c.758C>T’) by parsing to extract the values of a wild

type, a mutated type and an integer position for the muta-

tion. However, no standardization was performed for men-

tions that used semantic identifiers of SNPs (e.g.

‘rs35490896’). For cases where EMU detected pairs of mu-

tant and wild-type nucleic acids or amino acids, it searched

the local environment for positional information; for

example, the phrase ‘T to C at position 59’ produced the

triple (T,C,59) of type ‘nucleotide’.

We made several adaptations in our use of EMU in the

current experiment:

• The version of EMU used in these experiments (version

1.19) was capable of identifying various types of muta-

tions, but this work focused on SNPs in coding regions;

the processing therefore filtered out noncoding mutations

from EMU output by excluding mutations that had nega-

tive positional information or were explicitly stated to be

in introns or untranslated regions.

• EMU in its released versions identified only one mention

for each mutation concept within a document. The

downstream representation of candidate relations for

judgment by Turkers relied on identification of all men-

tions, to highlight them in context. Accordingly, we

modified EMU to report multiple mentions for each mu-

tation concept, with stand-off annotation indicating the

text position of each mention.

• EMU was packaged with a postprocess filter that com-

pares mutation–gene candidate pairs against a reference

genome to determine whether the wild type and position

Table 1. Corpus comparison for Experiment 1 vs. Experiment 2

Experiment #1 #2

Number of Abstracts 250 275

Number of HITS 1097 1078

Number of genes (gold standard) 279 246

Number of mutations (gold Standard) 586 452

Number of gene–mutation pairs (gold standard) 586 444

Gene–mutation pairs per abstract 2.3 1.6
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are credible. Our experiments were designed with the in-

tent of high recall in the entity extraction phase, so we

did not apply this postprocess.

Genes—extracted by GenNorm

In the initial experiment (22), we relied on gene metadata

present in the MEDLINE record (indexed by NCBI), and

found gene mentions (GMs) by projecting the indexed

genes into text using a database of gene names and simple

heuristic string matching. However, for the current experi-

ment, we used a modified version of the GenNorm gene

tagger that operated directly on the text.

GenNorm (19) is an algorithm for assigning NCBI

Gene identifiers to gene and proteins mentioned in biomed-

ical text; it was a high-performing system as evaluated in

the BioCreative III Gene Normalization task in 2010 (23,

24). GenNorm consists of three modules for (i) finding

GMs, (ii) identifying and assigning organism information

to GMs and (iii) normalizing mentions to NCBI Gene

identifiers.

For this study, the gene name lexicon used in the nor-

malization module was downloaded from the NCBI Gene

FTP site on 19 November 2012. Because this study only

focused on mutations in human genes, we modified the

species recognition module of GenNorm such that only

human genes were returned. Two additional steps were im-

plemented to optimize results for this study:

First, a second gene tagger was included. The original

GenNorm uses AIIA-GMT (25) for recognizing GMs from

a textual passage. To maximize recall, we added another

system, GeneTuKit (26), to the GM module of GenNorm.

Based on the benchmarking results on the BioCreative II

Gene Normalization task (27) test data, we observed �5%

increase in recall.

Second, an abbreviation resolution module was

included. Based on our error analysis of GM recognition

results, we found that certain mentions identified by the

GM module were not human genes or proteins. For ex-

ample, from the phrase ‘chloramphenicol acetyltransferase

(CAT)’, our system mistakenly recognized the abbreviation

‘CAT’ as a GM because it matched with the official symbol

of the human gene ‘CAT catalase’ (NCBI Gene ID: 847),

even though the associated full gene name ‘cloramphenicol

acetyltransferase’ does not refer to a human gene. To filter

such false positives, we applied a biomedical abbreviation

resolution tool, AB3P (28), which identifies pairs of long

and short forms from sentences. For example, given the

statement ‘Antagonists selective for estrogen receptor

alpha (ESR1)’, the tool would recognize the pair hestrogen

receptor alpha, ESR1i. Using the AB3P output, we were

able to validate the results of our normalization module as

follows: a short form (and its identifier) was kept in the

GenNorm output only if the whole or part of its long form

corresponded to a human gene.

Building gene–mutation candidates

The automatic extraction processes described above typic-

ally identified mentions of multiple genes and mutations in

each abstract, but we wished to show the human annota-

tors only one gene and one mutation at a time (albeit with

potentially multiple mentions of each). We automatically

grouped multiple mentions of the same gene in a single ab-

stract using the gene ID assigned by GenNorm. Similarly,

we grouped multiple mentions of the same mutation using

the standardized form produced by EMU, namely, a triple

of hposition, wild type, mutant typei, where the wild and

mutant types were either both nucleotides or both amino

acids. One abstract contained a reference to a mutation via

a dbSNP reference id (e.g. ‘rs1234’). We ignored this refer-

ence in calculating our results, as dbSNP references are al-

ready associated with a specific gene in the dbSNP

database. Finally, the cross product of all distinct genes

and mutations found in an abstract was formed, resulting

in 1078 distinct gene–mutation items for the annotators.

Turking

Just as in our earlier experiment (22), each item was pre-

sented to the Turkers with all the mentions of the gene

and mutation highlighted, to enable quicker annotation.

Figure 1 displays a screen shot of one such item as the

Turkers saw it. The Turker had to decide whether the high-

lighted gene and the highlighted mutation were described

in context as related to one another (‘Yes’ or ‘No’), with

an additional option for indicating that the annotations are

problematic in some way (‘Inconsistent annotation’). In

practice, this third option was rarely chosen (only 1.4% of

the responses).

Because Turkers are not individually vetted for any par-

ticular task, requesters use a variety of mechanisms to dis-

courage poor performers from participating. The simplest

approach is to require a specific minimum approval rating

on their previous work, whether for the same or other

requestors; in this study we required Turkers with at least

95% rating on previous tasks. We also made use of a task-

specific pretest or qualifier, consisting of five sample HITs

with known answers, that Turkers had to pass (with four

of five, or 80%, correct) to work on our items. This was

similar in form to the item shown in Figure 1, and was

composed of five distinct candidate gene–mutation rela-

tions (the test items for the Qualifier are shown in

Supplementary Appendix D). These were gleaned from our

initial experiment and were the five most predictive items
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of Turker performance in that experiment measured by lin-

ear correlation.

We also used a more dynamic measure of Turker effi-

cacy by injecting control items into the workflow.

Approximately 20% of the items that each Turker per-

formed were drawn from a separate set of 99 items that

were also predictive of Turker performance in our initial

experiment. These were the successive items in the correl-

ation ranking described above, chosen for a near-balance

of positive and negative.

Finally, we used a common technique for quality con-

trol, namely, redundancy. We requested that five distinct

Turkers complete each item, enabling voting and other

more sophisticated response aggregation strategies, as we

describe below.

Evaluation methodology

The combined machine–human workflow discussed in this

article produced various kinds of artifacts at a number of

distinct levels, and we were interested in evaluating these

separately and in different ways. The most obvious dimen-

sion was that of entities vs. relations, where the entities of

interest included genes and mutations, and the relation we

were after was the one that held between genes and muta-

tions. Another important dimension was that of surface

text vs. underlying concepts. In our case, the concepts were

represented by NCBI identifiers for genes, and the wild–

mutant position triples for mutations. The gene–mutation

relation was then simply represented by tuples of gene and

mutation identifiers. Table 2 shows these two dimensions

graphically.

The distinction between Displayed Surface Text and

Concepts is worth making to better understand the mis-

takes made in different parts of our processing pipeline. In

particular, the Turkers only saw the representation of

genes and mutations as highlighted in the text, and so

should have been evaluated on what they were shown

(Quadrant 3 in Table 2). Ultimately, we imagined this

workflow depositing gene–mutation relations into a data-

base in terms of the underlying concepts (Quadrant 4 in

Table 2), and it was equally important to evaluate the

efficacy of this process. However, the automated system

may have correctly recognized a gene and a mutation men-

tion in an abstract, but could still assign the wrong concept

ID to one or both. In this case, the Turkers may have cor-

rectly identified an instance of the relation, even though it

would ultimately be a mistake to deposit this relation into

a database. Thus, we wished to evaluate these two quad-

rants separately.

As shown in Table 2, Quadrant 1 corresponded to the

gene and mutation spans found by the automatic compo-

nents at the beginning of our pipeline. This quadrant could

be evaluated using metrics designed for mention-level tag-

ging, as done for the gene name task in the first two

BioCreative evaluations (29, 30), but we did not do so here

because it would have required the preparation of a special

set of annotations that included all mentions of genes and

all mentions of mutations, regardless of their association to

a mutation or disease.

Quadrant 2 represented the gene and mutation con-

cepts, and we were in fact interested in evaluating these be-

cause they formed the basis for our ultimate interest, the

relations between them. We wished to understand, for in-

stance, the degree to which errors in the entities affect

errors in the relation level. This evaluation corresponded

to the determination of whether a particular gene or muta-

tion concept was mentioned in an abstract, and we used

the UMBC gold standard discussed above for this.

However, as the gold standard was curated for gene muta-

tions with possible association to disease, if there were

genes mentioned in the abstract that were not associated

with a mutation or disease, they would not appear in the

gold standard. For these reasons, we focused on recall (and

not on precision) for Quadrant 2 results (see Table 3), as

failure to capture a gene or mutation meant that the

Turkers would never see the candidate relation to pass

judgment on it.

Quadrant 3 corresponded to the task performed by the

Turkers, namely, given sets of gene and mutation spans in

an abstract, to judge whether the context indicated that the

relation in question held. We could not use the UMBC

gold standard for this because it was expressed in terms of

gene and mutation concept IDs. We undertook several ex-

periments using staff from MITRE, UMBC and NCBI to

annotate subsets of the HITs shown to the Turkers,

independent of the gold standard, to provide a baseline

against which to compare the Turkers; this enabled us to

estimate Turker accuracy on this task; see Supplementary

Appendix A for the details of these experiments.

Finally, Quadrant 4 was the relation concept represen-

tation. This was the end product of the workflow, from

which the system would ideally deposit validated relations

into a database. We evaluated performance using the

Table 2. Dimensions of possible evaluation

Element of

analysis

Displayed surface text

(Turker view)

Concepts

(Database view)

Entities 1. Gene spans;

mutation spans

2. EntrezGene IDs;

mutation triple

Relations 3. Judgments on entity

spans in context

4. Tuple of

hgene ID, mutation triplei
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UMBC gold standard directly. If a hgene ID, mutation

triplei was present in the gold standard for a particular ab-

stract, we declared it to be correct, and otherwise it was in-

correct. This quadrant provided the main results of the

article, which are presented in the next section.

Results

Base entity extraction results

We measured how well the preprocessing captured the

relevant mutations and genes by comparing them against

the sets of mutations and genes that appeared in the gold

standard curated gene–mutation associations. Table 3

shows the actual number of entities in the 275 abstracts in

our dataset, the number of candidates identified by

GenNorm and EMU and the number that were correct.

From this we calculated precision and recall for the two

types of entities. (For the reasons discussed in the

Evaluation Methodology section, these numbers should be

seen as close approximations to actual precision and recall,

as there may have been a few mutations or genes not

included in the gold standard used for scoring.) Note that

recall was higher than precision in both cases—in our pipe-

line it was preferable to over-generate candidates, as we

relied on the Turkers to improve precision downstream.

End-to-end results

The experiment was posted to MTurk on 12 December

2012, comprising 1354 items, of which 20% were controls

drawn (with replacement) from the 99 items as described

above. Because we asked for five Turkers to respond to

each item, we received 6770 judgments overall, from 24

distinct Turkers. The most prolific Turker produced judg-

ments for all 1354 items, while the least prolific Turker

produced only one. Turkers were paid 7¢ per judgment,

for a total cost of $521.29, including Amazon’s overhead

charges. The last judgment was received almost exactly 11

days after posting. At >600 judgments per day, this was a

satisfactory throughput rate, although substantially slower

than the 36 h recorded for our first experiment (22), per-

haps because of the timing of the December holidays.

Concept relation accuracy

Table 4 shows the concept relation accuracy for the Turker

judgments (corresponding to Quadrant 4 from Table 2) for

both the initial experiment (Expt 1) and the current experi-

ment (Expt 2). The concept accuracies were evaluated

using the UMBC Gold Standard. The per-Turker accura-

cies were lower than the per-item accuracies owing to a

number of poor-performing Turkers who submitted only a

handful of judgments (seven Turkers submitted l<10 re-

sponses each). As we restrict our attention to those who

performed larger amounts of work, we can see increases in

performance. We also see that the results for Experiment 2

were lower than those for Experiment 1, despite use of a

qualifying exam in Experiment 2 and careful selection of

control items. These findings led to several detailed error

analyses presented in the Discussion section.

Aggregate results

One way to compensate for the poor-performing Turkers

is to aggregate judgments on the same item—this was the

main reason for requesting multiple judgments. There are a

variety of possible mechanisms for such combination, and

we explored several in previous work, with the most prom-

ising being the Naı̈ve Bayes algorithm (31). Control item

performance correlated roughly with test item performance

(see Supplementary Appendix B), so we used the former as

the basis for each Turker’s Bayes factor. In brief, each

Turker corresponded to a separate Naı̈ve Bayes feature,

with the Bayes factors calculated with respect to their ac-

curacy on the control items. The first line of Table 5

(85.3%) shows the accuracy resulting from combining all

five responses for each test item using Naı̈ve Bayes. By

comparing this with the ‘average response’ line of Table 4

(73.7%), we can see that aggregating provided a substan-

tial improvement, almost 12 points of accuracy.

Essentially, Naı̈ve Bayes has discovered the good

Table 3. Precision and recall scores for gene and mutation

identification

Element of

analysis

Gold

standard

Candidates Correct Precision Recall

Genes 246 582 222 0.381 0.902

Mutations 452 497 395 0.795 0.874

Gene–mutation

pairs

444 1078 374 0.347 0.842

Table 4. Concept relation accuracy for the initial experiment

vs. the current study

Individual Turker results

Experiment 1 % Experiment 2 %

Baseline system (all ‘NO’) 58.7 65.6

Average response 75.5 73.7

Average 10þ Turker 70.7 68.1

Average 100þ Turker 76.0 75.8

Best Turker 90.5 88.8

Naı̈ve Bayes aggregate 84.5 85.3
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performers and weighted their contributions substantially

more highly than the poor performers.

We incurred a substantial premium for this improve-

ment in performance, however, paying five times as much

as the single Turker case for the opportunity to aggregate

multiple responses. The remainder of Table 5 suggests the

aggregate performance we would get from asking for fewer

and fewer judgments per item. We simulated this by simply

removing the last Turker(s) to respond to each item. We

can see that even with only double redundancy (n¼ 2) we

gained a great deal using response aggregation (81.6%).

Results for ‘active management’ simulations

In addition to statically asking for a constant number of

Turkers per item, as shown in Table 5, we also simulated

managing the Turkers more dynamically. Based on control

item performance, we would ‘fire’ Turkers when they ap-

peared to show little promise. In particular, Turkers who

were performing below chance (50% for the control items)

were good candidates for early dismissal. We simulated

this after the fact in the results below, although in separate

work we have experimented with automatically blocking

poor Turkers dynamically while work is being performed.

We can see that the dynamic approach was almost as in-

expensive as two Turkers per item, and accuracy was actu-

ally higher than the five Turker case (86%). This is because

the Naı̈ve Bayes aggregation gave some nonzero weight

even to poor performers, while cutting those Turkers off

early allowed us to ignore their contributions entirely.

Turker surface accuracy

As explained in the preceding section, we wished to assess

the various parts of our pipeline separately. In particular,

we wanted to distinguish between errors made at the sur-

face judgment level by the Turkers (Quadrant 3) and errors

at the final concept level (Quadrant 4). We used the

UMBC gold standard to assess the latter, but this was in

terms of concept IDs, which were invisible to the Turkers.

To assess the Turker judgments directly, we would ideally

have used a gold standard that ignored whether the

concept IDs were correct. We made several attempts to

construct this, with varying degrees of success. Our best at-

tempt at a surface-level gold standard was accomplished

by performing the Turker task ourselves on a subset of the

items, notably those in which the aggregate Turker judg-

ment disagreed with the UMBC gold standard at the con-

cept level. This was done by three authors (J.A., L.H.,

R.K.); where all three authors agreed, we used this to

rescore the surface relation results, but otherwise left the

results as they were. Full details are provided in Supple-

mentary Appendix A. (Note that this arguably provided an

optimistic estimate, as it could only remove Turker-Gold

standard disagreements, not discover new ones).

Table 6 shows this estimate at surface accuracy, to-

gether with the concept accuracy from above for compari-

son. We also show several other figures of merit. We can

see that from the perspective of what they were asked to

do, the Turker aggregate performed well.

Surface and concept relation accuracy

Table 6 also shows the end-to-end concept relation accur-

acy for the Turker judgments (corresponding to Quadrant

4 from Table 2). The concept accuracies were evaluated

using the UMBC Gold Standard. HIT recall computed re-

call against the HITS corresponding to gold standard

entries; end-to-end recall computed recall against the entire

gold standard (including relations not extracted in the

automated processing).

Interannotator agreement

We explored interannotator agreement among the most

prolific Turkers. Because the MTurk platform allowed

Turkers to do as few or as many HITs as they liked, calcu-

lating interannotator agreement over all Turkers who par-

ticipated was not feasible. Thus, we calculated pairwise

agreement and pairwise Cohen’s Kappa (32) for the three

Turkers who did>1000 HITs. Pairwise raw agreement (%

of responses in common) and Cohen’s Kappa for each pair

of Turkers appears in Table 7.

Discussion

Comparing Turker performance in two

experiments

Following the completion of this second experiment, we

compared the concept relation accuracy for the Turker

judgments for both the initial experiment and the current

experiment, as shown in Table 4. To our surprise, despite

the more careful vetting of Turkers and more careful selec-

tion of control items, the concept accuracy of this second

Table 5. Concept accuracy using Naı̈ve Bayes aggregation,

varying number of Turkers

Number of

Turkers

5 4 3 2 1 Dynamic

Concept

accuracy

85.3% 84.2% 82.7% 81.6% 74.3% 86.0%

Cost $1.89 $1.51 $1.13 $0.75 $0.38 $0.97
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experiment was comparable with the first experiment

(84.5% for experiment 1 vs. 85.3% for experiment 2).

These findings led us to do several detailed error analyses.

Post hoc error analyses: false positives

Table 8 shows the gold standard vs. Turker judgments

under two sets of conditions: first, for the full set of HITs,

and in the adjacent column in parentheses, for a subset of

HITS (explained below). For the full set of HITS, there

were 137 false positives of 487 (HITs where the aggregate

Turker judgment was YES, but the gold standard said

NO), resulting in a precision of 71.9%, far below the 90%

precision that we deemed necessary for a production qual-

ity system.

On further analysis, we noticed that many of the false

positives resulted from mismatches between the HIT

shown to the Turker (the Quadrant 3 Turker view,

Table 2) and the concept level view of the gold standard

(the Quadrant 4, Table 2) that was not visible to the

Turkers.

Specifically there were a number of discrepancies owing

to an incorrect mutation position value. This happened

when EMU had to look for positional information that did

not occur as part of a standard type of mutation expres-

sion, as in ‘…T to C at position 59 resulting in substitution

of Pro for Ser’. Here EMU correctly identified Pro and Ser

as the mutant and wild-type amino acids, but picked up

the closest number as the position (‘59’) that was incor-

rect—it was the position at the nucleotide level, not at the

amino acid level. The position information that EMU

found in this way was not highlighted when displaying the

HIT; thus, the Turker may have seen a gene–mutation

relation that was correct at the surface level, even though

the underlying representation at the concept level did not

match the gold standard because of erroneous position in-

formation. The EMU output included a set of 120 muta-

tions with ‘non-local’ position information. Of these, 82 of

120 (68%) had incorrect positional information.

Based on this analysis, we simulated disallowing the

processing of nonlocal mutations within EMU by removing

the 226 HITS associated with the nonlocal mutations. We

then rescored; the revised results, shown in the columns

labeled ‘Loc Pos’ showed a HIT accuracy of 89.7%, with a

precision of 82.3% (false positive rate of 17.7%) and HIT

recall of 94.1% (false negative rate of 5.9%). However,

end-to-end recall decreased substantially, from 78.8 to

71.4% because of removal of a number of valid HITs.

Categorization of the remaining false positives

We next undertook a detailed analysis of all the HITs

where the aggregate Turker judgment differed from the

gold standard, after removing the problematic mutations

described above. We analyzed the remaining 68 false posi-

tives to identify other types of mismatches and information

hidden from the Turkers. We identified a number of types

of mismatch, including erroneous EntrezGene identifier

(21 occurrences), inclusion of nonhuman or noncoding

mutations (23 and 11 occurrences, respectively), missing

gold standard information (3 occurrences) and erroneous

Turker judgments (10 occurrences). The details of this ana-

lysis are provided in Supplementary Appendix C.

Overall, almost two-thirds of the false positives were

the result of errors hidden from the Turkers (wrong gene

concept identifier) or failure to give full instructions to

Turkers (to exclude nonhuman mutations). We concluded

from this analysis that the aggregate Turker judgments

were surprisingly good, especially if judged in terms of sur-

face relations. This was corroborated by our attempt to

measure Surface Relation Accuracy (Quadrant 3) as

described in Table 6. Based on these results, we estimated

that aggregate Turker judgments were >90% accurate.

Categorization of false negatives

Table 8 shows two recall figures. The first (higher) of these

was the ‘HIT Recall’; this was the recall in terms of only

those candidate relations that the Turkers were presented

with. The second (‘End-to-end recall’) measured the recall

of the entire hybrid process, including both omissions due

to faulty extraction of genes or mutations, as well as incor-

rect Turker judgments. There were relatively few false-

negative Turker judgments (on the order of 5–6%). The

larger problem occurred during candidate entity extrac-

tion, due to failure to extract gene identifiers or full muta-

tion information.

Table 6. Surface and concept aggregate performance

Surface level—

Quadrant 3

Concept level—

Quadrant 4

Accuracy 90.6 85.3

Precision 83.6 71.9

HIT recall 95.1 94.3

End-to-end recall 91.7 78.8

Table 7. Pairwise agreement and Kappa for each pair of most

prolific Turkers

A–B A–C B–C

% Agreement 0.630 0.680 0.731

Cohen’s Kappa 0.263 0.378 0.477
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Of the 94 missing concept triples in Table 8 for the

full set of HITs (444 gold standard triples—350 Turker

‘YES’ responses), 43 were due to incorrect extraction of

mutation position information and 37 were due to missing

stop codon or synonymous mutations (neither of which are

recognized by the version of EMU used for the

experiment).

Cost of curation

The ultimate goal of this research was to develop an accur-

ate, scalable, cost-effective method to capture gene–muta-

tion relations (and ultimately gene–mutation–disease

relations) in an open source repository. The initial results

of both experiments showed promise in terms of through-

put but fell short of the goal of 90% precision at >70% re-

call. However, when we revisited these results using only

mutations extracted with local position information, we

saw that the precision improved to 82.3% with a recall of

71.4% (Table 8). Figure 3 shows the cost-accuracy trade-

offs for this more limited set of mutations, with the opti-

mal trade-off of 89.9% accuracy at a cost of $0.76

achieved by simulating removal of any Turker whose per-

formance fell below 50% accuracy on the control items.

On the other hand, the system could be biased for high

recall with an expert curator inserted to review all judg-

ments before depositing these in a database. While this

would add some element of cost, it is much faster to review

relations than to tag them de novo. The expert could use a

version of the same interface, along with an explicit visual-

ization of the concept level information, specifically the

EntrezGene ID, gene symbol and gene name, also represen-

tation of the wild type and mutant type amino acid or nu-

cleotide and its position.

These issues point to the need for further experimenta-

tion. Open issues include the following:

• Exploration of alternative mutation extraction and gene

normalization tools. For example, a recent paper by

Jimeno Yepes and Verspoor (33) compared open source

tools for automatic extraction of mutations, including

(20, 34–38). Their results suggest that a combination of

tools could yield higher performance, which could lead

to improvements in both precision and recall.

• The adaptation of the current interface for use by expert

curators, including explicit representation of concept

level output;

• The cost of expert review to validate entries before

archiving, with a workflow optimized for recall;

• The cost of capturing more complex relations, e.g.

gene–mutation–disease;

• The ability to recruit and retain vetted Turkers to per-

form these tasks;

• The ability to curate full text articles, as opposed to ab-

stracts. This latter is particularly important, as abstracts

contain only a subset of genetic variants; the full text

contains a much richer set of variants, and the supple-

mentary material contains even more (39). However, the

longer the text segment, the more challenging it becomes

to show a useful context to the Turker for relation

judgment.

Conclusions

Overall, we concluded that the hybrid curation approach

was extremely promising: it met our goals in terms of cost

Figure 3. Concept accuracy for static and dynamic Turker pools, remov-

ing mutations with nonlocal positions.

Table 8. Turker aggregate judgment vs. gold standard

Naı̈ve Bayes

aggregate score

GoldStd YES GoldStd NO Total Percent Concept

level Eval
All HITs Local Pos All HITs Local Pos All HITs Local Pos All HITs Local Pos

Turker YES 350 (317) 137 (68) 487 (385) 71.9 (82.3) Precision

Turker NO 21 (20) 570 (447) 591 (467) 94.3 (94.1) HIT recall

Turker Total 371 (337) 707 (515) 1078 (852) 85.3 (89.7) Accuracy

TOTAL GOLD 444 (444) 78.8 (71.4) E2E recall
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and turnaround, but fell somewhat short on quality, with

accuracy of just <90%, end-to-end recall at an acceptable

71%, but precision still below the target of 90%.

Precision was hurt by discrepancies between instruc-

tions and aims of experts preparing the gold standard and

the (rather simplified) instructions given to the Turkers. To

mitigate this, we could explore several options. The first

would be to do Turking in two stages: a first stage would

be to judge the correctness of the mutation, and a second

stage could judge the correctness of the gene–mutation re-

lation. An alternative option would be to experiment with

exposing more explicit mutation information to the

Turkers, and asking them to also validate the correctness

of the mutation.

If we wished to extend this approach to disease–gene–

mutation curation, we would need to adopt a similar

approach, to break the problem down into smaller sub-

components that could be separately judged; our early

experiments on curation of the three-way disease–gene–

mutation relations suggested that this task would be cogni-

tively too complex, with too many ways for a relation to

be incorrect.

Overall, we were pleasantly surprised that we were able

to recruit Turkers with sufficient ability to handle this

complex domain; and even though we were not able to

measure Turker surface judgments directly, we estimated

that the surface accuracy of the aggregate judgments was

around 90%.

Finally, we were encouraged by the rapid turnaround:

in the initial experiment, 250 abstracts in 36 h; in the se-

cond experiment, 275 abstracts in 11 days over the

December holidays. Even more encouraging, if we were to

adopt an approach of only paying ‘good’ Turkers, we

could achieve 90% accuracy at a cost of only $0.76 per ab-

stract—well below our target of $1 per abstract.
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