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Abstract

Background: This article describes capture of biological information using a hybrid ap-
proach that combines natural language processing to extract biological entities and
crowdsourcing with annotators recruited via Amazon Mechanical Turk to judge correct-
ness of candidate biological relations. These techniques were applied to extract gene-
mutation relations from biomedical abstracts with the goal of supporting production
scale capture of gene—-mutation—-disease findings as an open source resource for person-
alized medicine. Results: The hybrid system could be configured to provide good
performance for gene—-mutation extraction (precision ~82%; recall ~70% against an
expert-generated gold standard) at a cost of $0.76 per abstract. This demonstrates that
crowd labor platforms such as Amazon Mechanical Turk can be used to recruit quality
annotators, even in an application requiring subject matter expertise; aggregated Turker
judgments for gene—-mutation relations exceeded 90% accuracy. Over half of the preci-
sion errors were due to mismatches against the gold standard hidden from annotator
view (e.g. incorrect EntrezGene identifier or incorrect mutation position extracted), or in-
complete task instructions (e.g. the need to exclude nonhuman mutations). Conclusions:
The hybrid curation model provides a readily scalable cost-effective approach to
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curation, particularly if coupled with expert human review to filter precision errors. We
plan to generalize the framework and make it available as open source software.
Database URL: http://www.mitre.org/publications/technical-papers/hybrid-curation-of-

gene-mutation-relations-combining-automated

Background

The fields of translational medicine and personalized medi-
cine rely on coupling information about an individual’s
genotype (genetic make-up and genetic variations) with
their phenotype (physical characteristics and state of
health/disease). Recent advances in low-cost rapid genomic
sequencing methods now enable population studies linking
genotype and phenotype. Several large-scale research activ-
ities are underway, including the eMERGE Network (elec-
tronic Medical Records and Genomics, http://emerge.mc.
vanderbilt.edu/emerge-network), and the Personal Genome
Project (1). This approach is making it possible to identify
a patient’s genetic variations that are associated with a par-
ticular disease state or drug response. Similarly, new find-
ings in pharmacogenomics are enabling more precise
dosing, for example, for warfarin (2). However, to make it
possible to translate these associations into improved
patient care, it is critical to have ‘an authenticated, well-
annotated, curated, and freely accessible knowledge base
of genomic associations, risks, and warnings in machine-
readable form’ (3). The focus of this research was to ex-
plore ways to create such a comprehensive, up-to-date,
freely accessible knowledge base of genetic variations and
associated phenotypes.

The curation problem

There is an increasing volume of gene-mutation—disease in-
formation being published in the biomedical literature. We
estimate that there are >10 000 new articles published each
year that describe findings on the relation between genetic
mutations and phenotype or diseases. There are multiple
repositories for this information, including OMIM (4),
dbSNP (5), HGVbase (6), HGMD (7), PharmGKB (8) and
locus-specific databases (9). However, until recently, there
have been few publicly available curated resources that cap-
ture such findings. The recent creation of National Center
for Biotechnology Information’s (NCBI’s) ClinVar database
(10), launched in 2013, now provides a single public reposi-
tory for such information. As of December 2013, ClinVar
had >80 submitters and >60 000 variations submitted.
There are currently two main approaches to capture
computable genomic information: author-deposited data
and expert curation. Author-deposited data (such as found

in dbSNP or ClinVar) has the advantage in terms of cost
(because the cost is borne by the researcher) and expertise
(clearly the discovering researcher is in the best position to
ensure accurate recording of the information). However,
there are corresponding downsides: authors may not want
to take the time to record their findings in detail, and they
may not have the cross-disciplinary bioinformatics expert-
ise to link findings to the underlying biological reference
databases. For the capture of gene-mutation—disease rela-
tions, for example, the author must provide EntrezGene
identifiers, mutation position information based on a refer-
ence genome, and the appropriate Medical Subject
Headings (MeSH) or Unified Medical Language System
(UMLS) term for the disease or phenotype. In an experi-
ment to compare author-contributed findings with expert
curation in the MINT (Molecular INTeraction) database,
author recall on curating protein—protein interaction was
reported at 57% compared with curator recall of 87%,
measured against a curated gold standard (11).

Expert curation is the norm for reference biological
databases, such as for the Mouse Genome Informatics
(MGI) database (12) or TAIR (The Arabidopsis Informa-
tion Resource) (13); expert curation of findings from the
literature provides high-quality annotations, but through-
put (and therefore coverage) is limited by cost (14). There
are alternatives to these approaches, for example, auto-
mated capture of information through bioinformatics
methods. MGI applies automated annotation of gene—
protein function as a first pass, for cases where expert cur-
ation has not yet been done (these automated annotations
are labeled with a specific evidence category, to distinguish
them from the expert curated annotations). Another ap-
proach that is gaining acceptance is crowdsourcing or com-
munity-generated annotations (14, 15). These techniques
are being leveraged to collect data on drug interactions,
drug adverse events and other complex relations reported
in the literature. Other researchers (16) have experimented
with crowdsourcing to create gold standard datasets for
evaluation of biomedical curation tasks.

Scaling the curation process

The goal of this research has been to create a scalable cost-
effective curation process to capture complex information
from the literature and make it available to the research
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community in a timely fashion, at an acceptable level of ac-
curacy. We can posit throughput and cost goals; however, it
is more difficult to determine accuracy requirements, except
by comparison with existing curation efforts.

When depositing curated information into a database,
high precision is critical to avoid depositing incorrect infor-
mation. An early study on inter-curator agreement for
Gene Ontology (GO) curation (17) reported that expert
GO annotators achieved 91-100% precision, and at least
72% recall, micro-averaged over results from three cur-
ators. A more recent study of curation by the Comparative
Toxicogenomic Database (CTD) team (18) reported simi-
lar results on a complex curation task for disease—gene—
chemical relations from the literature: 91% of the inter-
actions extracted by CTD biocurators were judged by the
lead curator to be correct, with an average recall of 71%.
These results provide a target performance of at least 90%
precision at a recall of at least 70%. An alternate strategy
would have been to optimize a semi-automated workflow
for recall, followed by expert review to remove false posi-
tives. This approach is revisited in the Discussion section.

To achieve the goal of scalable, timely, cost-effective,
accurate curation, our targets for the hybrid curation
workflow were as follows:

* To provide accuracy comparable with expert curated
databases, namely, at least 90% precision with recall of
70% (17, 18);

* To keep up with the volume of literature (~10000 ab-
stracts per year or 200 abstracts per week);

* To be affordable—we picked a cost of $1 per abstract as a
target for simple gene—mutation relations; full gene-muta-
tion—disease curation could be an order of magnitude
more complex, but even a cost of $10 per abstract for full
curation would be an affordable price to pay to make the
findings computable and reusable, compared with the cost
of publication for an open access article, often >$1000.

Approach—combining automated extraction
and curation

Our approach has been to combine automated extraction of
the relevant biological entities, namely genes and mutations,
with crowdsourcing to elicit human judgments on the cor-
rectness of associations between entities. The general strategy
was to have high recall on the automatic entity extraction,
followed by human judgment for all possible pairwise gene—-
mutation combinations, with the final goal of high precision
at the relation level, to support deposit of the extracted rela-
tions into an open source repository after expert review.

For this experiment, the genes were extracted using the
augmented GenNorm system (19) to identify each mention

of a gene and associate it with the appropriate EntrezGene
identifier. The mutations were extracted using the
Extractor of Mutations system (Extractor of Mutations,
EMU) (20). Each candidate gene-mutation pair in an ab-
stract was then presented as highlighted mentions in a
MEDLINE abstract and passed on to a crowd labor plat-
form, where workers were asked to judge whether the
highlighted gene was associated with the highlighted muta-
tion (Figure 1).

In this work, we made use of a crowdsourcing platform
called Amazon Mechanical Turk (MTurk). MTurk is a
web-based labor market for what Amazon calls Human
Intelligence Tasks (HITs). A typical HIT is a minimal prob-
lem instance that cannot be easily automated, such as cate-
gorizing a snippet of text or an image. Most HITs take a
worker (or Turker) only a short time (seconds) to com-
plete, and workers are paid on a piecework basis. In 2011,
Amazon reported that 500 000 Turkers from 190 countries
were registered on the service (21).

Methods

Overall experimental design

We applied this framework to extract gene-mutation rela-
tions from titles and abstracts of articles from PubMed and
evaluated the results by comparison with an expert-curated
gold standard of gene-mutation—disease relations. Building
on results from an earlier experiment (22), we refined the
framework and enriched the gold standard for easier
evaluation.

A schematic of the framework is shown in Figure 2. The
software combines multiple modules to support the follow-
ing functions: automated information extraction, using
the NCBI’'s GenNorm and the University of Maryland
Baltimore County’s (UMBC’s) EMU; linkage of multiple
mentions of each unique gene and each mutation; display
of each candidate gene and mutation pair, highlighted in
context in the abstract; crowdsourced relation judgment
(via Amazon MTurk); and evaluation against a gold
standard.

In the automated extraction phase, for the titles and ab-
stracts of documents (in MEDLINE format), we identified
and normalized as stand-off annotations:

1. mentions of genes, associated with EntrezGene ids,
using NCBI’s GenNorm tool (this differs from the ini-
tial experiment, which relied on NCBI-provided gene
annotations in gene2pubmed), and

2. mentions of mutations, identified and encoded as wild
type, mutation type and position by a modified and
updated version of UMBC’s EMU tool (as in our initial
experiment).
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Figure 2. Schematic framework for hybrid curation.

We then integrated the output of the entity extraction
tools and the source signal (the text of the MEDLINE ab-
stract), grouped the text mentions by concept identifier
into sets of unique mutations and genes and then took the
cross product of mutation and gene concepts within each
abstract, producing all potential gene-mutation pairs as
candidate relations.

In the crowdsourcing phase, we used human judgment
via the MTurk platform to filter the candidate relations
down to those that are supported by the text of the
abstract. We presented each concept pair as an MTurk
HIT, highlighting the gene and mutation mentions in

| e

the context of the abstract (see Figure 1), and asked
workers who have passed an initial qualifying exam to
judge whether the candidate relation is accurate. For each
candidate relation, we obtained judgments from five
Turkers.

Finally, we evaluated the accuracy of the entity extrac-
tion and the relation judgments, as well as the combined
accuracy across the full pipeline. The Turkers’ relation
judgments were evaluated both individually and in aggre-
gate across each candidate according to a variety of aggre-
gation strategies. Each of these components is described in
further detail below.
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Data sources and gold standard

We used the curated gene-mutation—disease corpus
described in Doughty et al. (20) covering breast cancer and
prostate cancer, augmented by additional curation to in-
clude abstracts covering autism spectrum disorder.
Abstracts were downloaded from the PubMed search en-
gine using the MeSH terms ‘Mutation’ (for breast and
prostate cancer) or ‘Mutation AND Polymorphism/genetic’
(autism spectrum disorder). The downloaded abstracts
were then further filtered to include only those in which
the EMU mutation extraction tool identified at least one
mutation mention, resulting in a corpus of 810 abstracts.

Curators with domain expertise then annotated the 810
abstract corpus to create a gold standard. The curators
identified human gene mutations mentioned in each ab-
stract and whether those mutations were mentioned in
relation to one of the three diseases under study; the gold
standard included annotation for single nucleotide poly-
morphisms (SNPs) associated with disease in humans. All
gene—mutation—disease relations were marked as coding or
noncoding; all mutations that did not involve human genes
were marked with a special code; each mutation position
was specified in terms of nucleotide or protein position
within a reference gene. Although the initial curated data
set created at UMBC covered gene-mutation—disease rela-
tions, the focus of the experiments described here was on
the gene-mutation relations for SNPs within coding
regions of human genes.

At the outset, we split the corpus into three segments.
For the initial experiment, we used a subset of 250 ab-
stracts that had already been curated for genes in PubMed
because at that time we did not have access to an auto-
matic gene annotation tool. We then randomly split the
remaining abstracts into two sets of 275 abstracts, one of
which was used in the experiment described here. The final
set of 275 documents has been held in reserve for a future
experiment. The remaining 10 abstracts were used for de-
tailed debugging during development. Distributions for
genes and mutations are shown in Table 1. The differences
between the two data sets in Table 1 were most likely
owing to the way in which we chose the first set, which re-
sulted in a bias toward more recent articles, leaving older
articles with fewer mutations per article, in the second set
and third unused set.

Extraction of base entities (genes, mutations)

Mutations—extracted by EMU

To identify and standardize mutation mentions in the tar-
get documents, we used the EMU (20). EMU has a two-
step filter process to identify SNP mentions: first, the text

Table 1. Corpus comparison for Experiment 1 vs. Experiment 2

Experiment #1 #2
Number of Abstracts 250 275
Number of HITS 1097 1078
Number of genes (gold standard) 279 246
Number of mutations (gold Standard) 586 452
Number of gene-mutation pairs (gold standard) 586 444
Gene-mutation pairs per abstract 2.3 1.6

was searched for matches to a list of regular expressions,
and each match in the text was parsed leveraging the in-
ternal component structure of the regular expression that
identified it; second, the matches were filtered using a
different group of regular expressions as a stop-list.
Substrings identified as mutations had surface representa-
tions identifying them variously as nucleotide substitutions
(‘c.758C>T"), amino acid substitutions (‘Arg 117 His’) or
database identifiers (‘rs35490896’). EMU standardized
compositionally described mutation mentions (e.g.
‘c.758C>T’) by parsing to extract the values of a wild
type, a mutated type and an integer position for the muta-
tion. However, no standardization was performed for men-
tions that used semantic identifiers of SNPs (e.g.
‘rs35490896°). For cases where EMU detected pairs of mu-
tant and wild-type nucleic acids or amino acids, it searched
the local environment for positional information; for
example, the phrase ‘T to C at position 59° produced the
triple (T,C,59) of type ‘nucleotide’.

We made several adaptations in our use of EMU in the

current experiment:

* The version of EMU used in these experiments (version
1.19) was capable of identifying various types of muta-
tions, but this work focused on SNPs in coding regions;
the processing therefore filtered out noncoding mutations
from EMU output by excluding mutations that had nega-
tive positional information or were explicitly stated to be
in introns or untranslated regions.

* EMU in its released versions identified only one mention
for each mutation concept within a document. The
downstream representation of candidate relations for
judgment by Turkers relied on identification of all men-
tions, to highlight them in context. Accordingly, we
modified EMU to report multiple mentions for each mu-
tation concept, with stand-off annotation indicating the
text position of each mention.

* EMU was packaged with a postprocess filter that com-
pares mutation—gene candidate pairs against a reference
genome to determine whether the wild type and position
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are credible. Our experiments were designed with the in-
tent of high recall in the entity extraction phase, so we
did not apply this postprocess.

Genes—extracted by GenNorm

In the initial experiment (22), we relied on gene metadata
present in the MEDLINE record (indexed by NCBI), and
found gene mentions (GMs) by projecting the indexed
genes into text using a database of gene names and simple
heuristic string matching. However, for the current experi-
ment, we used a modified version of the GenNorm gene
tagger that operated directly on the text.

GenNorm (19) is an algorithm for assigning NCBI
Gene identifiers to gene and proteins mentioned in biomed-
ical text; it was a high-performing system as evaluated in
the BioCreative III Gene Normalization task in 2010 (23,
24). GenNorm consists of three modules for (i) finding
GMs, (ii) identifying and assigning organism information
to GMs and (iii) normalizing mentions to NCBI Gene
identifiers.

For this study, the gene name lexicon used in the nor-
malization module was downloaded from the NCBI Gene
FTP site on 19 November 2012. Because this study only
focused on mutations in human genes, we modified the
species recognition module of GenNorm such that only
human genes were returned. Two additional steps were im-
plemented to optimize results for this study:

First, a second gene tagger was included. The original
GenNorm uses AITA-GMT (25) for recognizing GMs from
a textual passage. To maximize recall, we added another
system, GeneTuKit (26), to the GM module of GenNorm.
Based on the benchmarking results on the BioCreative II
Gene Normalization task (27) test data, we observed ~5%
increase in recall.

Second, an abbreviation resolution module was
included. Based on our error analysis of GM recognition
results, we found that certain mentions identified by the
GM module were not human genes or proteins. For ex-
ample, from the phrase ‘chloramphenicol acetyltransferase
(CAT)’, our system mistakenly recognized the abbreviation
‘CAT’ as a GM because it matched with the official symbol
of the human gene ‘CAT catalase’ (NCBI Gene ID: 847),
even though the associated full gene name ‘cloramphenicol
acetyltransferase’ does not refer to a human gene. To filter
such false positives, we applied a biomedical abbreviation
resolution tool, AB3P (28), which identifies pairs of long
and short forms from sentences. For example, given the
statement ‘Antagonists selective for estrogen receptor
alpha (ESR1)’, the tool would recognize the pair (estrogen
receptor alpha, ESR1). Using the AB3P output, we were
able to validate the results of our normalization module as
follows: a short form (and its identifier) was kept in the

GenNorm output only if the whole or part of its long form
corresponded to a human gene.

Building gene-mutation candidates

The automatic extraction processes described above typic-
ally identified mentions of multiple genes and mutations in
each abstract, but we wished to show the human annota-
tors only one gene and one mutation at a time (albeit with
potentially multiple mentions of each). We automatically
grouped multiple mentions of the same gene in a single ab-
stract using the gene ID assigned by GenNorm. Similarly,
we grouped multiple mentions of the same mutation using
the standardized form produced by EMU, namely, a triple
of {position, wild type, mutant type), where the wild and
mutant types were either both nucleotides or both amino
acids. One abstract contained a reference to a mutation via
a dbSNP reference id (e.g. ‘rs1234°). We ignored this refer-
ence in calculating our results, as dbSNP references are al-
ready associated with a specific gene in the dbSNP
database. Finally, the cross product of all distinct genes
and mutations found in an abstract was formed, resulting
in 1078 distinct gene—mutation items for the annotators.

Turking

Just as in our earlier experiment (22), each item was pre-
sented to the Turkers with all the mentions of the gene
and mutation highlighted, to enable quicker annotation.
Figure 1 displays a screen shot of one such item as the
Turkers saw it. The Turker had to decide whether the high-
lighted gene and the highlighted mutation were described
in context as related to one another (‘Yes’ or ‘No’), with
an additional option for indicating that the annotations are
problematic in some way (‘Inconsistent annotation’). In
practice, this third option was rarely chosen (only 1.4% of
the responses).

Because Turkers are not individually vetted for any par-
ticular task, requesters use a variety of mechanisms to dis-
courage poor performers from participating. The simplest
approach is to require a specific minimum approval rating
on their previous work, whether for the same or other
requestors; in this study we required Turkers with at least
95% rating on previous tasks. We also made use of a task-
specific pretest or qualifier, consisting of five sample HITs
with known answers, that Turkers had to pass (with four
of five, or 80%, correct) to work on our items. This was
similar in form to the item shown in Figure 1, and was
composed of five distinct candidate gene-mutation rela-
tions (the test items for the Qualifier are shown in
Supplementary Appendix D). These were gleaned from our
initial experiment and were the five most predictive items
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of Turker performance in that experiment measured by lin-
ear correlation.

We also used a more dynamic measure of Turker effi-
cacy by injecting control items into the workflow.
Approximately 20% of the items that each Turker per-
formed were drawn from a separate set of 99 items that
were also predictive of Turker performance in our initial
experiment. These were the successive items in the correl-
ation ranking described above, chosen for a near-balance
of positive and negative.

Finally, we used a common technique for quality con-
trol, namely, redundancy. We requested that five distinct
Turkers complete each item, enabling voting and other
more sophisticated response aggregation strategies, as we
describe below.

Evaluation methodology

The combined machine~human workflow discussed in this
article produced various kinds of artifacts at a number of
distinct levels, and we were interested in evaluating these
separately and in different ways. The most obvious dimen-
sion was that of entities vs. relations, where the entities of
interest included genes and mutations, and the relation we
were after was the one that held between genes and muta-
tions. Another important dimension was that of surface
text vs. underlying concepts. In our case, the concepts were
represented by NCBI identifiers for genes, and the wild-
mutant position triples for mutations. The gene-mutation
relation was then simply represented by tuples of gene and
mutation identifiers. Table 2 shows these two dimensions
graphically.

The distinction between Displayed Surface Text and
Concepts is worth making to better understand the mis-
takes made in different parts of our processing pipeline. In
particular, the Turkers only saw the representation of
genes and mutations as highlighted in the text, and so
should have been evaluated on what they were shown
(Quadrant 3 in Table 2). Ultimately, we imagined this
workflow depositing gene-mutation relations into a data-
base in terms of the underlying concepts (Quadrant 4 in
Table 2), and it was equally important to evaluate the

Table 2. Dimensions of possible evaluation

Element of  Displayed surface text ~ Concepts

analysis (Turker view) (Database view)

2. EntrezGene IDs;
mutation triple

Entities 1. Gene spans;
mutation spans
Relations 3. Judgments on entity 4. Tuple of

spans in context (gene ID, mutation triple)

efficacy of this process. However, the automated system
may have correctly recognized a gene and a mutation men-
tion in an abstract, but could still assign the wrong concept
ID to one or both. In this case, the Turkers may have cor-
rectly identified an instance of the relation, even though it
would ultimately be a mistake to deposit this relation into
a database. Thus, we wished to evaluate these two quad-
rants separately.

As shown in Table 2, Quadrant 1 corresponded to the
gene and mutation spans found by the automatic compo-
nents at the beginning of our pipeline. This quadrant could
be evaluated using metrics designed for mention-level tag-
ging, as done for the gene name task in the first two
BioCreative evaluations (29, 30), but we did not do so here
because it would have required the preparation of a special
set of annotations that included all mentions of genes and
all mentions of mutations, regardless of their association to
a mutation or disease.

Quadrant 2 represented the gene and mutation con-
cepts, and we were in fact interested in evaluating these be-
cause they formed the basis for our ultimate interest, the
relations between them. We wished to understand, for in-
stance, the degree to which errors in the entities affect
errors in the relation level. This evaluation corresponded
to the determination of whether a particular gene or muta-
tion concept was mentioned in an abstract, and we used
the UMBC gold standard discussed above for this.
However, as the gold standard was curated for gene muta-
tions with possible association to disease, if there were
genes mentioned in the abstract that were not associated
with a mutation or disease, they would not appear in the
gold standard. For these reasons, we focused on recall (and
not on precision) for Quadrant 2 results (see Table 3), as
failure to capture a gene or mutation meant that the
Turkers would never see the candidate relation to pass
judgment on it.

Quadrant 3 corresponded to the task perfor