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Abstract

CanvasDB is an infrastructure for management and analysis of genetic variants from

massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a

local database, designed to handle very large datasets, to allow for rapid analysis using

simple commands in R. Functional annotations are included in the system, making it

suitable for direct identification of disease-causing mutations in human exome- (WES) or

whole-genome sequencing (WGS) projects. The system has a built-in filtering function

implemented to simultaneously take into account variant calls from all individual sam-

ples. This enables advanced comparative analysis of variant distribution between groups

of samples, including detection of candidate causative mutations within family structures

and genome-wide association by sequencing. In most cases, these analyses are exe-

cuted within just a matter of seconds, even when there are several hundreds of samples

and millions of variants in the database. We demonstrate the scalability of canvasDB

by importing the individual variant calls from all 1092 individuals present in the 1000

Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results

show that canvasDB makes it possible to perform advanced analyses of large-scale WGS

projects on a local server.

Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB

Introduction

As the capacity and accuracy of massively parallel sequenc-

ing (MPS) technologies continue to improve, they are

becoming an affordable alternative to other molecular

genetics techniques for a wide range of studies in human

and medical genetics. Already today, high-throughput

DNA sequencing is an established method to screen for dis-

ease-causing mutations (1, 2). Increasingly, MPS is also
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being used to investigate the genetic variation in different

population cohorts (3–6) and to gain knowledge of our

evolutionary history (7–9). With all these new and exciting

possibilities, the number of human DNA sequences that

will become available is likely to grow dramatically over

the coming years. Moreover, the steadily decreasing cost

per sample for DNA sequencing will make it possible also

for smaller institutions and research groups to produce

sequence data for large numbers of individuals.

High-throughput DNA sequencing can be performed

either by generating data for the entire genome [whole-

genome sequencing (WGS)], or by selectively targeting the

regions of interest. At present, whole-exome sequencing

(WES) is routinely being used to investigate the protein

coding part of the human genome. The main benefit of

WES is that many samples can be multiplexed in a single

sequencing run, thereby reducing the cost. However, the

methods for capturing the exome are not perfect, and some

parts of the coding sequences are typically missed in WES.

One way around this problem is to instead perform WGS,

which has the additional benefit that it yields much more

information about the genome compared with targeted

approaches (10). WGS studies are likely to become more

common in the future given that the throughput of the

MPS instruments continue to increase, thereby driving

down the cost per base of sequencing.

There is a need for development of streamlined bio-

informatics analysis pipelines to keep up with the

production rate of the DNA sequencers. Many human

re-sequencing projects are in the scale of several hundreds

or thousands of samples (4, 9, 11), and management of the

data and extraction of the genetic variants of interest from

such datasets can be a major challenge. Analysis of genetic

variants from high-throughput experiments typically in-

volves a number of different filtering strategies. Many

of the filtering tasks are straightforward, while others

are more complicated. A relatively uncomplicated type of

filtering is to detect all SNPs and indels that are present

only in one or a few individuals, but absent from the popu-

lation as a whole. This type of filtering is common when

searching for rare disease-causing mutations (see (12) and

references within). An example of a more complex analysis

is to identify variants that occur with a high frequency in

a large group of samples, while it is present at a low fre-

quency in another group. Such group-based filtering ana-

lyses are fundamental for many types of studies, such as

when screening for genetic differences between population

cohorts or doing sequence-based genome-wide association

studies (SEQ-GWAS).

The typical approach for filtering of SNP and indel data

is to start from a file containing all variants detected by

sequencing and to apply successive filters, thereby reducing

the original list of variants into a manageable subset

of candidate variants. These filters are usually applied to

remove false positive variants, common SNPs/indels from

databases like dbSNP (13), and variants having no effect

on the amino acid sequence. Although such filtering

strategies might successfully pin down the disease-causing

variant, the analysis workflow is far from optimal. Each

filtering step takes time and usually produces temporary

files to be used as input to the subsequent step. This implies

that the analysis process becomes cumbersome and pos-

sibly error-prone, at least for larger projects or when some

of the filtering steps need to be rerun using different

parameters. Another drawback is that the approach with

subsequent filtering steps is not suitable for more complex

types of analyses, such as filtering based on differences in

allele frequencies between groups of samples (e.g. between

cases and controls in an association study of a complex

disease).

Here we present canvasDB (CANdidate Variant

Analysis System and Data Base), a database-oriented sys-

tem that allows for efficient management and analysis of

genetic variants from high-throughput sequencing projects

using R (14). The system can be installed on a local com-

puter or server, and does not rely on an external computer

or ‘cloud’, which means that all generated genetic data

stays in-house and does not need to be transferred to an

outside location.

Methods

Database structure

The canvasDB MySQL database contains tables for sam-

ple information, run information, SNPs, indels and variant

annotations. SNPs and indels are loaded into distinct tables

for each sample, where information about homo- or heter-

ozygozity, read depth for the alleles and quality of variant

calls are stored. A fundamental part of the system is that

we have constructed SNP and indel summary tables to

allow for extremely rapid filtering of variants between

groups of samples. These two tables hold information

about all the variants that have been loaded into the sys-

tem: chromosome, position, alternative allele, the samples

in which the variant is found, dbSNP rs-id (if any), func-

tional effect of variant (nonsynonymous, frameshift, splic-

ing etc), and various scores for conservation and predicted

consequence on protein function. Having all this informa-

tion stored in two indexed MySQL tables enables much

of the filtering analyses to be performed by simple table

lookups in MySQL, which are executed very rapidly. It is

crucial that summary tables are updated whenever new

variants are added or removed from the database, and this
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is ensured by our built-in R functions for adding and

removing samples.

File formats for variant call data

CanvasDB system has an internal format for variant calls,

but can also handle other common file formats, like .vcf,

.txt and .gff files. The system is platform independent, and

in our current installation, we have stored data from the

SOLiD, Illumina and Ion Proton systems. All variant call

data are first parsed into the internal canvasDB format.

This makes it easy to incorporate new file formats into the

system by writing functions that converts the input file into

a canvasDB formatted file. For a more detailed description

of the file format, see supplementary information.

Adding new samples

The easiest way to add new samples into canvasDB is to

construct a text file from a predefined template (see supple-

mentary information), where each row corresponds to a

sample. Each row in this file contains some brief informa-

tion about the sample and how the sequencing experiment

was carried out, and also file paths to the SNP and indel

raw data files. By calling a batch import function from R,

all samples in the text file are imported into canvasDB.

If any of the samples already exist in the database (i.e. has

an identical sample id), they are not imported.

When new data are imported, all SNPs and indels that

are being added into the system are first annotated with

information from refSeq (15) and dbSNP (13), as well as

SIFT (16), Polyphen2 (17), PhyloP (18), LRT (19),

MutationTaster (20) and GERP (21) from dbNSFP (22).

In our current configuration, RefSeq annotations are per-

formed by the ANNOVAR software (23). All other SNP

and indel annotations are taken from pre-installed annota-

tion tables in the database. The annotation is only per-

formed once for each variant that is added to the system,

and the resulting information is stored in the SNP and indel

summary tables. In this way, we can rapidly populate the

database with large quantities of data. On our local server

(see hardware specifications below), it takes about three

hours to populate the database with 428 WES samples

(27.6 million variants in total). The entire 1000 Genomes

data (1092 samples, 4.44 billion variants) was annotated

and imported in <96 h.

Writing analysis functions

Communication between the database and R is

done through RMySQL(cran.r-project.org/web/packages/

RMySQL/index.html). Any custom MySQL queries can be

executed in this way, and the results are returned into R.

We have implemented R functions for some specific tasks,

i.e. performing filtering between samples, populating the

database with sample and variant data and generating

statistics. These built-in functions have been optimized

for so that complex analyses can rapidly be performed

on large datasets. However, there is also a possibility to

add new R functions and thereby develop new types of

analyses of the data in the database. Because the data are

directly returned into R, all packages and functions in

Bioconductor (24) can be integrated with the system.

Evaluating filtering performance of canvasDB

For evaluation, we implemented a naı̈ve filtering analysis

function and compared the performance with our more

advanced strategy where SNP and indel summary tables

are used. We then tested both methods in a situation

where the task was to detect all variants that are common

between two individuals in the WES database, while absent

from all other samples. In the naı̈ve approach, we simply

joined the two database tables holding variants from

two individuals to identify all shared variants. We then

looped through all remaining samples in the database to

exclude any of these shared variants that were also de-

tected in any of the other samples. All these tests were per-

formed using a newly installed database and using the

‘SQL_NO_CACHE’ option. This implies that the MySQL

cache, which could potentially speed up some of these

queries, was not used in these evaluations.

Installation for exome-seq data

Our local installation for WES data used in this manuscript

consisted of 428 exomes sequenced on the SOLiD and

Ion Proton systems. In total there were 26 428 294 SNPs

and 1 164 644 indels in the database and new datasets are

continuously being added. There is a mix of samples in the

database, with some individuals being affected by various

diseases, while others are healthy controls.

Installation for the 1000 Genomes Project

To set up a canvasDB installation consisting of variants

from the 1000 Genomes Project (11), compressed VCF-

files containing all individual genotypes split on chromo-

somes was downloaded from the 1000Genomes ftp

site (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20110521/). These VCF files contain SNPs and indels

for 1092 individuals from 14 different populations; ASW

(n¼ 61), CEU (n¼ 85), CHB (n¼ 97), CHS (n¼ 100),

CLM (n¼ 60), FIN (n¼ 93), GBR (n¼ 89), IBS (n¼ 14),
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JPT (n¼ 89), LWK (n¼ 97), MXL (n¼66), PUR (n¼ 55),

TSI (n¼ 98) and YRI (n¼88). From the VCF files we then

constructed 1092 SNP files and 1092 indel files, one for

each individual, and loaded all data into inhouseDB.

In total, there are 4 041 538 891 SNPs and 399 636 723

indels in this installation, and the size of the whole data-

base is 354 GB.

Hardware and software

The canvasDB installations and analyses in this manuscript

were performed on an Ubuntu 12.04 (precise) 64-bit sys-

tem, with 12 CPUs and 36 Gb RAM, and MySQL version

5.5.29 and R version 3.0.0.

Results

Overview of the canvasDB system

The canvasDB system consists of a MySQL database,

which is installed on a local computer or server and ac-

cessed through an interface in R (14). The database can

store all SNP and indel calls from thousands of samples,

along with functional annotation of the variants and,

optionally, additional information about samples and

sequencing runs. An overview of the system is shown in

Figure 1; see Methods for more details.

The database has been designed in such a way that it

allows for an extremely rapid filtering of variants between

groups of samples. A fundamental part of this design is the

SNP and indel summary tables that store information

about all variants imported into the system and keep track

of all samples in which they have been detected. Using this

approach we are able to store all relevant information

for filtering in two large MySQL tables, which are indexed

by the database engine for efficient searches. Moreover, R

functions and MySQL queries have been optimized to en-

able fast insert of data and rapid filtering analyses.

Compared with naı̈ve analysis approaches, our solution

can reduce the execution time of different filterings by

several orders of magnitude. More details about the sum-

mary table database structures and how the system makes

use of these tables for rapid variant filtering are given in

Supplementary Tables S1 and S2 and in a separate section

of the supplementary information.

To set up a new installation of canvasDB, a new empty

database is created on a local server. The database is then

ready to be populated with SNP and indel data, and this

is done through a function call from R. The system has an

internal file format for variant calls, but other common file

Figure 1. Overview of the canvasDB system. The figure shows a schematic view of the workflow how variant data are imported, stored and analyzed

within the canvasDB system. (A, B) Variant calls for SNP are added to the system using a function call in R; different file formats are supported.

(C) All new variants that are not already stored within the system are annotated against databases like dbSNP, RefSeq, SIFT, etc. (D) The variant data,

annotations and information about the samples are stored in MySQL database tables, in a way that allows for rapid comparative analyses of variants

between samples. (E) Analysis on the variants within the canvasDB system is performed through functions in R, using the RMySQL package.

(F) Using pre-defined or custom analysis functions in R/Bioconductor, it is possible to generate lists of candidate disease-causing mutations, or

any other types of analysis results, statistics or graphical plots based on the variant data in the database.

Page 4 of 10 Database, Vol. 2014, Article ID bau098

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bau098/2635246 by guest on 21 M

ay 2024

R Core Team, 2013)
to 
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bau098/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bau098/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bau098/-/DC1


types (e.g. VCF) are also supported. Multiple samples can

be imported into the system in a batch mode and variants

are automatically annotated with rs-ids from dbSNP (13),

effect of variants on refSeq genes (15) and with various

scores for conservation and predicted consequences on

protein function through dbNSFP (22). In our current in-

stallation, we use ANNOVAR (23) along with hg19 anno-

tation tables (downloaded from ANNOVAR) for refSeq

annotations, while all the other annotations are done

through local database tables. When the samples have been

imported into canvasDB the data can be analyzed using

simple commands in R.

CanvasDB is suitable both for WES and WGS

We created two separate installations of canvasDB to test

the performance in different situations (see Figure 2). The

first installation contains the results from 428 locally

sequenced WES samples (see Methods), while the other

contains all SNP and indel variants detected from the pilot

phase of the 1000 Genomes Project (11). As shown

in Figure 2, the 1000 Genomes dataset is extremely large,

and to our knowledge it is the largest publicly available

collection of SNPs and indels from whole human genome

sequencing (WGS). Although the �28 million variants

from the 428 samples in our WES database is also a very

large dataset, it is barely visible when compared with

the 1000 Genomes data, which includes >4.4 billion vari-

ants from 1092 individuals (see Figure 2). We therefore

consider the 1000 Genomes data as an ideal test data set

to evaluate the scalability and performance of canvasDB

for storage and analysis of the data from large-scale WGS

projects. The whole process of importing the 1000

Genomes data into the system, including functional

annotations of all variants, was completed within four

days.

CanvasDB has a powerful filtering tool

We designed the canvasDB system to efficiently execute all

types of filtering tasks. The filtering is done by a function

in R, which extracts data directly from the SNP and indel

summary tables. For most filtering tasks, the execution

takes only a few seconds, even when there are several hun-

dreds of samples in the system and millions of variants in

the summary tables. To make the filtering flexible, the user

divides the samples into three distinct groups, named

‘in-’, ‘discard-’ and ‘filter-’ groups (see Figure 3A). The

‘in-group’ contains the individuals among which we are

looking for a shared variant. The ‘filter-group’ can be seen

as negative control samples, i.e. those where the same vari-

ant should not occur. The ‘discard-group’ contains such

samples that are not included in the analysis.

With this grouping of samples we can perform filtering

analyses for many different purposes, as illustrated by the

examples in Figure 3B–E. By having a single individual in

the ‘in-group’ and all others in the ‘filter-group’, we can

identify variants that are unique for that individual. This

approach is useful when screening for de novo mutations

occurring in a child of a sequenced mother-father-child trio

(Figure 3B). Because the ‘filter-group’ consists of all other

samples including the parents, the filtering at the same

time removes inherited variants from the parents and false

positives (due to the sequencing technology) that appear

in multiple samples. Also, in the filtering we can directly

select for nonsynonymous, stop-gain or splice-site muta-

tions that are not present in dbSNP (or dbSNPcommon),

thereby reducing the list of candidate variants even further.

Figure 2. Datasets used for testing the performance of canvasDB. The figure shows the number of individuals (x-axis) and number of variants (y-axis)

in the 1000 Genomes data and 428 locally produced WES samples. The 1000 Genomes samples are colored in different shades of gray for popula-

tions on different continents. The WES samples are colored in red. All samples have been ordered for each of the datasets with the individuals having

the highest number of variants furthest to the left.
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Another filtering scenario is to detect disease-causing vari-

ants among members of a family, where some individuals

are affected while others may be healthy carriers. In the

examples in Figure 3C and D, we have all the affected

individuals in the ‘in-group’ and all unrelated samples in

the ‘filter-group’. The related individuals who could be

healthy carriers are placed in the ‘discard-group’, as we are

uncertain whether or not they carry the mutation, and they

would influence the filtering results if included in any of

the other groups.

A more complex type of analysis is to detect variants

that differ in allele frequencies between groups of samples.

Such filterings are useful when searching for genetic vari-

ants that are more common in one population compared

with another, or in a group of patients compared to

healthy controls. In Figure 3D we show an example where

two groups of samples, g1 and g2, are compared. The

filtering function allows us to screen for variants that occur

with high frequency among individuals in g1, while at

the same time having a low frequency in g2. In practice,

we can do this by assigning the ‘in-group’ as g1 and the

‘filter-group’ as g2, and specifying a minimum frequency

for g1 and a maximum frequency for g2 in the filtering.

These types of group-based filterings can be cumbersome

and computationally very demanding for other types of

analysis strategies, but with the canvasDB it can be exe-

cuted using one single R command.

Performance of canvasDB filtering analyses

To evaluate the efficiency of using summary tables on

filtering performance, we compared the execution time of

our canvasDB filtering implementation with a simplistic

method where variants are analyzed from separate data-

base tables (see Methods for implementation details).

For this comparison, we measured the execution time of a

simple filtering query as a function of the size of the data-

base. The task was to detect SNPs that exclusively occur in

two randomly selected individuals from our WES database

(see Figure 2 and Methods). As seen in Figure 4, the execu-

tion time for the simplistic method increases linearly with

the size of the database, and the analyses take >500 s when

the database contains >400 samples. In contrast, the per-

formance of our strategy with summary tables is independ-

ent of the number of samples in database, and all of these

filtering analyses are completed within 15 s. The scalability

of the filtering function implies that a there is essentially

no limitation of the number of samples that can be

analyzed in the system.

Figure 3. Schematic representation of the variant filtering function.

(A) All individuals in the database are divided into three distinct groups;

the ‘in-group’ (to the left, in red), ‘discard-group’ (in the middle, orange)

and ‘filter-group’ (to the right, blue). The function then returns all SNPs

or indels in the system that are detected in at least X% of the ‘in-group’

and at the same time at most Y% of the ‘filter-group’. Individuals in the

‘discard-group’ are excluded from the analysis. With this filtering func-

tion, it is possible to perform many different types of filtering, as shown

in the examples below. (B) Filtering to detect a de novo mutation in a

child of a sequenced mother–father–child trio. (C) Detection of a domin-

ant variant in a family. (D) Detection of a recessive variant in a family.

In this case, family members that may be healthy carriers are put in the

‘discard-group’. (E) Detection of variants that occur with frequency of

at least X% in one group of samples (‘in-group’, g1) and at least Y% in

all other samples (‘filter-group’, g2).

Figure 4. Summary tables speed up the variant filtering. The graphs

show the execution times for a simple filtering query (y-axis) as a func-

tion of the number of WES samples in the database (x-axis). The task

was to detect all variants that were shared by two individuals in the

WES database, while absent from all other individuals. The blue

line shows the performance of a naı̈ve method that does not use the

summary tables for filtering. When summary tables are used the execu-

tion time can be dramatically reduced, at least for larger database sizes,

as indicated by the red line.
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For more complicated filtering analyses, such as the

ones illustrated in Figure 3D and E, the simplistic method

without the use of summary tables is no longer practically

feasible. However, the canvasDB filtering is very powerful

also in these situations. In Figure 5A, we show execution

times for WES analyses where we are looking for poten-

tially damaging SNP mutations (i.e. nonsynonymous,

stop-gain, stop-loss or splice site) that are shared between

1, 2, 3, 4 and 5 individuals while they may be present in

the ‘filter-group’ at frequencies ranging from 0% up to

5%. In all these cases, the analysis was complete within

20 s. Moreover, and perhaps a little counter-intuitive, the

filtering becomes more rapid as the number of samples in

the ‘in-group’ increases from 1 to 5. The likely explanation

for this behavior is that the number of shared candidate

variants decreases as the ‘in-group’ grows, thereby speed-

ing up the analysis. Another important observation is that

the execution time increases only marginally when allow-

ing higher frequencies of samples in the ‘filter-group’ to

carry the mutation. We also performed a similar analysis

for the WGS data from the 1000 Genomes project, and

in this case the execution times were at most 80 s (see

Figure 5B). These filtering results for the 1000Genomes

project data show that our system is capable of detecting

candidate disease causing mutations from large-scale WGS

projects in just a matter of seconds.

Detection of a disease-causing mutation

A recent example that illustrates the usefulness of

canvasDB for a WES project was the identification of the

causative mutation for Welander Distal Myopathy

(WDM) (25). WDM is an autosomal dominant disorder

characterized by distal limb weakness, which was previ-

ously associated by linkage analysis to a region on chromo-

some 2 (26). To identify the causative variant, WES

was performed on two unrelated individuals, using

SOLiD5500 sequencing, and the variant calling results

were imported in canvasDB. The analysis was then per-

formed as illustrated in Figure 3C, having the two affected

individuals in the ‘in-group’. All other samples in the data-

base were assigned to the ‘filter-group’, and we allowed

at most one of the ‘filter-group’ samples to carry the

mutation.

The result of the analysis was a list of candidate vari-

ants that satisfied the filtering conditions. A total of 13

SNP- and 2 indel-candidates were found, and the SNPs

obtained in this filtering are shown in Table 1. Of these,

2 SNPs were identified in the linkage region on chromo-

some 2, located in ARHGAP25 and TIA1, both of them

heterozygous and nonsynonymous, and therefore strong

candidates for causing WDM. Experimental validation

confirmed that TIA1 was the causative mutation for

WDM (25, 27). This example demonstrate that canvasDB

is a very efficient tool for clinical sequencing, and as illus-

trated by Figure 3, it can be applied to many other types

of genetic analyses. Moreover, the system can handle

large numbers of samples and becomes more powerful as

the database grows, as a large ‘filter-group’ increases

the efficiency of the filtering analyses in removing poly-

morphisms and technical artifacts specific to individual

sequencing technologies.

Figure 5. Filtering performance for WES and WGS datasets. Each bar in the plots shows the average execution time for 10 filterings with randomly

selected individuals in the ‘in-group’. The five different groups of bars in each of the panels show the results when 1, 2, 3, 4 and 5 individuals are pre-

sent in the ‘in-group’, respectively. The different shades of gray corresponds to results where at most 0%, 1%, 2%, 3%, 4% and 5% of the individuals

in the ‘filter-group’ were allowed to carry the variant. (A) Results for filterings in the WES database. (B) Results for filterings in the 1000 Genomes

WGS database.
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Re-analyzing data from the 1000 genomes project

Once the data from the 1000 Genomes Project has been

stored in a local canvasDB installation, it can be re-

analyzed in many different ways. We first attempted to

extract population-specific variants for each of the 14

populations. For these analyses, we performed filterings as

outlined in Figure 3E, requiring the variant to be present in

at least 10% of the individuals in the population of interest

(corresponding to group g1 in Figure 3E) and at most 1%

among all other individuals (group g2). A summary of the

results and execution times is shown in Table 2. The time

required for these group-based filterings is <1 h for most

of the populations, with a few exceptions that take up to

around 20 h. This variation was directly correlated to the

number of detected population-specific variants, so that

the filterings resulting in the highest number of candidate

SNPs (e.g. for LWK, YRI and IBS) also required the longest

execution time (Table 2). Genome-wide screenings for gen-

etic differences between large groups of samples are com-

putationally very demanding, and the fact that data from

the 1000 Genomes Project can be re-analyzed in a matter

of hours demonstrates that canvasDB is scalable to whole

genomes and has a very powerful filtering tool.

It is straightforward to add on new functionality for

analyzing data stored in canvasDB, and here we give an

example how the 1000 Genomes data can be used to inves-

tigate a specific genomic region. The region encompasses

the FADS1 and FADS2 genes, where we previously de-

tected a human specific haplotype (haplotype D) that leads

to increased levels of omega-3 and omega-6 polyunsatur-

ated fatty-acids (28). By writing a function in R that makes

use of the biomaRt Bioconductor package (29) as well as

built in functions from R, we were able to extract positions

for genomic features, to combine those with the 1000

Genomes variants from the database, and to produce a

plot to visualize the data across the region (see Figure 6).

Consistent with our previous observations, haplotype D is

more common in the African populations compared with

other continents (28). This example for the FADS region

demonstrates how the canvasDB can be used in conjunc-

tion with R/Bioconductor to annotate and visualize the

genetic variant calls stored in the database. However, this

is just one very specific example and there are countless

other types of analyses that could be performed using the

wide range of bioinformatics tools and packages available

from R/Biocounductor.

Discussion

CanvasDB is a software designed to handle extremely large

sets of genetic variant data. In comparison with many

freely available alternatives (30, 31), and commercial solu-

tions, canvasDB has a unique capacity for storing variants

from large-scale whole genome projects in a single data-

base and has integrated the functionality to perform cus-

tomized filtering analyses. The recently published the

GEMINI framework (32) has similar aims and functions as

canvasDB. However, one distinctive difference between

the two systems is that GEMINI loads a single VCF con-

taining multiple samples into a database and currently

lacks the functionality to load additional samples into an

existing database. Thus GEMINI is suited mainly for pro-

jects consisting of a fixed number of samples that can be

collected and summarized into a single VCF file, while

Table 1. Candidate SNP variants for Welander Distal

Myopathy (WDM)

Pos Snp137 Class Gene

chr1:16535487 rs143314517 Nonsynonymous ARHGEF19

chr2:69049697 rs199643431 Nonsynonymous ARHGAP25

chr2:70439862 Nonsynonymous TIA1

chr3:10082028 rs186545410 Intronic FANCD2

chr5:114916295 rs201468090 Nonsynonymous TICAM2

chr7:70240520 rs145296947 Intronic AUTS2

chr8:113655825 Intronic CSMD3

chr10:24833705 rs1888656 Intronic KIAA1217

chr19:1356844 rs118122389 Intronic MUM1

chr19:1370741 rs199763366 Synonymous MUM1

chr19:32131143 Intergenic

chr22:45937910 Intronic FBLN1

chrX:68424972 Intergenic

Table 2. Results of population-based filtering on

1000Genomes WGS data

Population Population-specific SNPsa Execution

time
Stopgain Nonsyn. Splicing Other

GBR 0 10 0 1328 30 m

FIN 5 116 1 20 425 40 m

CHS 2 105 1 19 979 40 m

PUR 0 25 0 6674 39 m

CLM 0 72 0 13 019 43 m

IBS 4 262 1 45 648 4 h 17 m

CEU 0 4 0 842 58 m

YRI 14 1118 14 296 746 13 h 26 m

CHB 0 58 0 10 302 33 m

JPT 3 260 1 43 658 59 m

LWK 12 1256 7 358 884 20 h 25 m

ASW 1 133 1 35 914 49 m

MXL 6 223 4 39 226 59 m

TSI 0 3 1 1620 29 m

aPopulation-specific SNPs are required to be present in at least 10% of the

individuals in the population, and at most 1% of all other individuals.
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other projects where new samples are being continuously

added to the existing database are more difficult to handle

in this way. CanvasDB is on the other hand specifically

designed for recalculating the summary tables as new sam-

ples are added. In developing canvasDB, we have focused

on optimizing the performance and functionality for users

having some basic computational background, rather than

developing graphical user interfaces to make the system ac-

cessible to users from the bio/medical field. We believe that

for those who know how to execute simple commands in

R, canvasDB will considerably reduce the time for analysis

compared with most other systems. The integration with R

also makes it possible to use external R/Bioconductor

packages (14, 24), or to easily add custom functions or

plug-ins for further analyses.

It is possible to set up the database on a central server

and store data from a large number of research groups, but

in its present configuration canvasDB does not support

users to log in and access only their own data. Therefore,

different research groups might prefer to have their own

installation, giving them complete control and exclusive

access to their data. Having the data stored locally also

avoids any debate concerning ethical issues or integrity

related questions that could arise from transferring and

analyzing sensitive genetic information from human sub-

jects on external servers or ‘clouds’.

Theoretically, there is no limit to the number of samples

or variants that can be imported into canvasDB. However,

extremely large datasets require hardware with sufficient

RAM and disk space. Moreover, MySQL may need to be

re-configured as the number of samples and variants in the

database increase. Here we have demonstrated the scalabil-

ity of canvasDB by importing >4.4 billion variants from

WGS of 1092 samples. There is no technical reason why it

should not be possible to host tens of thousands of samples

within the system, at least for WES experiments, which

normally gives output files with a size about 1–2% as com-

pared with WGS.

CanvasDB is a general software framework that can be

used for other types of human sequencing experiments

than those described in this manuscript, and also for non-

human species. Data from any sample can be imported, as

long as the variants in the database have been detected by

mapping against a well-defined reference sequence. This

implies that a similar database system could be generated

for any organism with a known reference sequence.

Another application of canvasDB is as a storage system of

the results from clinical sequencing of specific gene panels.

This would generate a local database for clinical research

and for evaluation of the clinical diagnostic results. It is

even possible to import variant calls from RNA-sequencing

datasets into the system, together with the variant calls

from genomic DNA. Such information combined can be

useful for example when studying imprinting, allele-

specific expression or RNA editing.

In summary, we believe the canvasDB infrastructure

is ideal for research groups or institutions in need of an

efficient and flexible system for management and analysis

of the large-scale genetic data generated by MPS

technologies.

Figure 6. Visualization of 10 000 Genomes data in a specific region. The colored lines show the Minor Allele Frequencies (MAF) in different 1000

Genomes populations for 28 SNPs on a haplotype, denoted haplotype D, over the FADS region on chromosome 11. At the top are the transcript

isoforms of FADS1 and FADS2. Red vertical lines mark the genomic positions of the 28 SNPs on haplotype D. Haplotype frequency varies between

populations having ancestry on different continents, with lowest MAF seen in populations with African ancestry and highest MAF in American

populations.
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Availability

CanvasDB is freely available to personal, academic and

nonprofit use only. The software is available from: https://

github.com/UppsalaGenomeCenter/CanvasDB

Supplementary Data

Supplementary data are available at Database Online.
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