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Abstract

Motivation: We examine the task of temporal relation classification for the clinical

domain. Our approach to this task departs from existing ones in that it is (i) ‘knowledge-

rich’, employing sophisticated knowledge derived from discourse relations as well as

both domain-independent and domain-dependent semantic relations, and (ii) ‘hybrid’,

combining the strengths of rule-based and learning-based approaches. Evaluation

results on the i2b2 Clinical Temporal Relations Challenge corpus show that our approach

yields a 17–24% and 8–14% relative reduction in error over a state-of-the-art learning-

based baseline system when gold-standard and automatically identified temporal rela-

tions are used, respectively.

Database URL: http://www.hlt.utdallas.edu/~jld082000/temporal-relations/

Introduction

Temporal relation classification, one of the most important

temporal information extraction (IE) tasks, involves clas-

sifying a given event–event pair or event–time pair in a text

as one of a set of predefined temporal relations. The cre-

ation of the TimeBank corpus (1), as well as the organiza-

tion of the TempEval-1 (2) and TempEval-2 (3) evaluation

exercises, has facilitated the evaluation of temporal rela-

tion classification systems for the news domain.

Our goal in this article is to advance the state of the art

in temporal relation classification. Although virtually all

previous work on this task has focused on the news do-

main, we work with a relatively unexplored domain, the

‘clinical domain’, using the i2b2 Clinical Temporal

Relations Challenge corpus (henceforth the i2b2 corpus).1

To date, this corpus is only accessible to and has only been

experimented on by the participants of the Challenge

(henceforth the shared task).

Our work differs from existing work with respect to

both the ‘complexity’ of the task we are addressing and the

‘approach’ we adopt. Regarding task complexity, rather

than focus on ‘three’ temporal relations as in the shared

task (see the Corpus section for more information), we

address an arguably more challenging version of the task

where we consider all the 12 relations originally defined in

the i2b2 corpus.

Our approach to temporal relation classification can be

distinguished from existing approaches, including those

VC The Author(s) 2014. Published by Oxford University Press. Page 1 of 20
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2014, 1–20

doi: 10.1093/database/bau109

Original article

 by guest on N
ovem

ber 22, 2016
http://database.oxfordjournals.org/

D
ow

nloaded from
 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bau109/2635427 by guest on 21 M

ay 2024

http://www.hlt.utdallas.edu/~jld082000/temporal-relations/ 
-
-
[16],
[24]
[25]
ve
paper
While
Section 2
http://www.oxfordjournals.org/
http://database.oxfordjournals.org/


developed for the news domain and the clinical domain, in

that it involves a large-scale expansion of the linguistic fea-

tures made available to the classification system. Existing

approaches have relied primarily on morpho-syntactic fea-

tures, as well as a few semantic features extracted from

WordNet synsets and VerbOcean’s (4) semantic relations.

On the other hand, we propose not only novel lexical and

grammatical features, but also sophisticated features

involving semantics and discourse. Most notably, we pro-

pose (i) discourse features encoding Penn Discourse

TreeBank (PDTB) style (5) discourse relations and

(ii) semantic features encoding a variety of semantic rela-

tions extracted from general-purpose lexical databases

such as Propbank and the Merriam-Webster dictionary

and (iii) semantic features encoding different types of se-

mantic relations specifically designed for the medical

domain.

We employ a system architecture in which we combine

a learning-based approach and a rule-based approach. Our

motivation behind adopting a hybrid approach stems from

our hypothesis that better decision rules can be formed by

leveraging human insights to combine the available linguis-

tic features than by using fully automatic machine learning

methods.

We evaluate our knowledge-rich, hybrid approach to

temporal relation classification in two settings. In the first

setting, we assume that we are given event–event and

event–time pairs that are known to belong to one of the 12

predefined temporal relations in the i2b2 corpus, and

hence the task is to label each pair with one of these 12 re-

lation types. To make things more challenging, however,

we assume in the second setting that we are given event–-

event and event–time pairs that ‘may’ or ‘may not’ belong

to one of the 12 relation types. Hence, the task in this set-

ting involves both ‘identifying’ and ‘classifying’ temporal

relations. For this task, we first employ a ‘relation identifi-

cation’ system to determine whether a pair has a relation,

and then use the same ‘relation classification’ system as the

one in the first setting to classify all and only those pairs

that are determined to have a relation by the identification

system. Conducting experiments with both settings can en-

able us to determine how much performance deterioration

can be attributed to ‘identifying’ rather than ‘classifying’

temporal relations.

Experiments on the i2b2 corpus show the effectiveness

of our approach: under the first and the second settings,

it yields a 17–24% and 8–14% relative error reduction, re-

spectively, over a state-of-the-art learning-based baseline

system.

Further, we map the 12-class classification results of our

system back to their broader 3-class counterparts, and in-

turn verify that our system improves on the state-of-the-art

3-class classification results reported in the 2012 i2b2

challenge.

To our knowledge, we are the first to (i) report results

for the 12-class temporal relation classification task on the

i2b2 corpus; (ii) successfully employ automatically com-

puted predicate–argument relations, medical semantic

relations and PDTB-style discourse relations to improve

performance on this task and (iii) show that a hybrid ap-

proach to this task can yield better results than either a

rule-based or learning-based approach. In addition, we

release the complete set of rules that we mined from the

i2b2 corpus and used in our rule-based approach,2 hoping

that our insights into how features can be combined as de-

cision rules can benefit researchers interested in this task.

Corpus

For evaluation, we use the i2b2 corpus, which consists of

310 de-identified discharge summaries pre-partitioned into

a training set (190 summaries) and a test set (120 summa-

ries). Each summary is composed of two sections. The first

section was created when the patient was admitted and re-

ports History of Present Illness (i.e. her clinical history).

The second section was created when the patient was dis-

charged from the hospital and reports Hospital Course.

In each summary, the ‘events’, ‘times’ and their ‘temporal

relations’ are marked up. An event can be a verb phrase

(VP), an adjective phrase, a noun phrase or sometimes an

adverb that semantically refers to clinically relevant pa-

tient-related actions, contains various attributes, including

the ‘type’ of event (see Table 1 for a listing of the six types

of events), ‘polarity’ and ‘modality’. A time expression has

a type attribute, which specifies whether it is a date, time,

duration or frequency, and its value is normalized based on

TIMEX3. A temporal relation can be an ‘anchor’ relation,

which anchors an event to a time expression (as in

Sentence (1)), or an ‘order’ relation, which orders two

events (as in Sentence (2)).

1. He was ready for discharge home on postoperative

day 3.

2. She has not complained of any fever.

Table 1. List of event types in the i2b2 corpus

Event type Example

Test CT scan

Problem the tumor

Treatment Operation

Clinical departments ICU

Evidential information Complained

Clinically relevant occurrence Discharge
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Each temporal relation has a type. For example, the

relation defined on ‘discharge’ and ‘postoperative day 3’ in

(1) has type Simultaneous, whereas the relation defined on

‘complained’ and ‘fever’ in (2) has type Overlap_After. A

temporal relation is defined on an ‘ordered’ pair: in (2), the

pair (complained, fever) has type Overlap_After, whereas

the pair (fever, complained) has type Before_Overlap.

Twelve relation types are defined and used to annotate

the temporal relations in the i2b2 corpus. Table 2 provides

a brief description of these relation types and the relevant

statistics.

As mentioned in the Introduction section, our approach

will be evaluated in two settings: in the first setting, we em-

ploy gold-standard temporal relations, and in the second

one, we employ automatically identified temporal rela-

tions. In both settings, we follow the i2b2 temporal

Challenge TLINK track and assume that gold events and

time expressions are given.

Unlike the shared task, which focuses on three broad re-

lation types (Overlap0, Before0, After0), our system develop-

ment focuses on the 12 relation types originally used to

annotate the i2b2 corpus. Note that the three broad rela-

tion types are created by merging ‘similar’ relation types as

follows: (i) Overlap0 is composed of Overlap, Simultaneous

and During; (ii) Before0 is composed of Before,

Before_Overlap and Ended_By and (iii) After’ is composed

of After and Begun_By. Each instance from the remaining

four relations is merged into one of the three broad relation

types by inverting the order of its elements. For example,

if a relation instance (e1, e2) is annotated as Ends, it is

first replaced with the instance (e2, e1) with class

Ended_By and then re-labeled as Before0. Thus, classifiers

developed for the shared task are only presented with test

instances belonging to one of the three broad relation

types. On the other hand, our 12-class task is arguably

more challenging, since our system has to distinguish not

only a relation type from its inverse, but also between

‘similar’ relation types.

Baseline Temporal Relation Classifier

Since the best-performing systems for temporal relation

classification for both the news and clinical domains are

learning-based, we will employ a learning-based system as

our baseline. Below we describe how we train this baseline.

Without loss of generality, assume that (e1,e2) is an

event–event/event–time pair such that (i) e1 precedes e2 in

the associated text and (ii) (e1,e2) belongs to one of the 12

i2b2 temporal relation types. We create one training in-

stance for each event–event/event–time pair in a training

document that satisfies the two conditions above, labeling

it with the relation type that exists between e1 and e2.

To build a strong baseline, we represent each instance

using 167 features modeled after the top-performing tem-

poral relation classification systems on TimeBank (e.g.

6–8) and the i2b2 corpus (e.g. 9, 10), as well as those in

the TempEval shared tasks (e.g. 11–14). These features can

be divided into six categories, as described below.

Lexical (17 features). Word unigrams, bigrams and tri-

grams formed from the context within a window of two

words surrounding e1/e2, the strings and the head words

of e1 and e2, and whether e1 and e2 have the same string.

Grammatical (133 features). The POS tags of the head

words of e1 and e2, the POS tags of the five tokens pre-

ceding and following e1 and e2, the POS bigram formed

from the head word of e1/e2 and its preceding token, the

POS tag pair formed from the head words of e1 and e2,

the prepositional lexeme of the prepositional phrase (PP)

Table 2. The 12 temporal relation types in the i2b2 corpus

Id Relation Description Total (%) E–E E–T

1 Simultaneous e1 and e2 happen at the same time or are temporally indistinguishable 4589 (32.5) 3551 1038

2 Overlap e1 and e2 have overlaps in their occurrences but do not happen at the same time 5681 (40.2) 4713 968

3 Before e1 happens before e2 in time 1572 (11.1) 1439 133

4 After e1 happens after e2 in time 577 (4.1) 497 80

5 Before_Overlap e1 happens prior to and continues at the time of e2 506 (3.6) 473 33

6 Overlap_After e1 overlaps with and happens after e2 begins 1642 (11.6) 1584 58

7 During e1 persists throughout duration e2 386 (2.7) 220 166

8 During_Inv e2 persists throughout duration e1 640 (4.5) 522 118

9 Begins e1 marks the beginning of e2 782 (5.5) 591 191

10 Begun_By e2 marks the beginning of e1 204 (1.4) 65 139

11 Ends e1 marks the end of e2 318 (2.3) 197 121

12 Ended_By e2 marks the end of e1 434 (3.1) 293 141

Each relation type is defined on an ordered pair (e1,e2), where e1 and e2 can each be an event or a time. The ‘Total’ and ‘%’ columns show the number and

percentage of instances annotated with the corresponding relation type in the corpus, respectively, and the ‘E–E’ and ‘E–T’ columns show the breakdown by the

number of event–event pairs and event–time pairs.
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if e1/e2 is headed by a PP, the prepositional lexeme of the

PP if e1/e2 is governed by a PP, the POS of the head of the

VP if e1/e2 is governed by a VP, whether e1 syntactically

dominates e2 (6), the shortest path from e1 to e2 in the

associated syntactic parse tree, and four binary features

as in D’Souza and Ng (7) encoding the grammatical roles

of e1/e2 in their participating dependency relations of

which there are 25 unique types automatically extracted

from this dataset. We obtain POS tags, parse trees and

dependency trees using the Stanford CoreNLP tool.3

Entity attributes (8 features). The type, modality and po-

larity of e1 and e2 if they are events (if one of them is a

time expression, then its modality and polarity attributes

will have the value NULL), pairwise features formed by

pairing up the type and modality attribute values of e1/e2.

Distance (2 features). The distance between e1 and e2 in

number of tokens, whether e1 and e2 in the same sentence.

Semantic (4 features). The subordinating temporal role

token of e1/e2 if it appears within a temporal semantic

role argument (12), and the first WordNet synset to

which e1/e2 belongs.

Section creation time (SCT) related (3 features). The tem-

poral relation type between e1/e2 and the creation time of

the section in which it appears [its value can be one of the

3 relation types (i.e. Before, After or Overlap) or NULL if

no relation exists], and whether e1 and e2 have different

relation types with the SCT.

Training specialized classifiers

After creating the training instances, we can train a tem-

poral relation classifier on them using an off-the-shelf

learner and use the resulting classifier to classify the test in-

stances. However, Tang et al. (9), the best performer in the

shared task, showed that performance can be improved by

training four specialized classifiers rather than just one for

classifying all temporal relation instances. Specifically,

they trained two intra-sentence classifiers, one for classify-

ing event–event pairs and the other event–time pairs. They

also trained two inter-sentence classifiers, one for classify-

ing coreferent event pairs and the other for classifying

event pairs in neighboring sentences.

Since Tang et al.’s (9) approach looked promising, we

integrated their four specialized classifiers into our ma-

chine learning framework in order to build a strong base-

line. Below we describe Tang et al.’s method for creating

instances for training and testing each of the four special-

ized classifiers.

Training and applying an intra-sentence event–event classi-

fier. A naive way to create training/test instances would

be to create one training/test instance from each pair of

events. This, however, would create a training set with a

skewed class distribution, as the negative (i.e. No-

Relation) instances will significantly outnumber the in-

stances that belong to one of the 12 relation types shown

in Table 2. To address this problem, positive and negative

training instances were created as follows. A positive in-

stance was created from each event pair in which one of

the 12 relation types exists, labeling the instance with the

pertaining relation type. In addition, negative instances

were created from two events only if (i) they were adja-

cent to each other (i.e. there was no intervening event);

and (ii) no relation existed between them. During testing,

test instances were created in the same way as the nega-

tive training instances.

Training and applying an intra-sentence event–time classi-

fier. Training and test instances were created in the same

way as in the event–event classifier.

Training and applying an inter-sentence classifier for

events in adjacent sentences. The difficulty of temporal

relation classification tends to increase with the distance

between the elements in an event–event or event–time

pair. Consequently, Tang et al. (9) considered event–-

event pairs only if the two elements involved in a pair are

one sentence apart, ignoring event–time pairs entirely

since very few of them have a temporal relation.

As mentioned before, one method for creating instances

for training and testing would be to create one instance for

each event–event/event–time pair. This method, however,

skews the class distribution of the resulting dataset.

Consequently, the following method was employed for

creating training and test instances. A positive training

instance was created from every event–event/event–time

pair whose elements (1) had a temporal relation and

(2) occurred in adjacent sentences, and by assigning a class

value that was the relation type. In addition, a negative

training instance was created from each pair of main events

that appeared in adjacent sentences, where the main events

of a sentence were simply the first and last events of a sen-

tence. Test instances were created in the same way as the

negative training instances.

Training and applying an inter-sentence coreferent event

classifier. Unlike the previous classifier, this second inter-

sentence classifier places no restriction on how far apart

two events are. However, it handles only a subset of the

inter-sentence temporal relations, namely those that are

coreferent. The reason for this restriction is that it is in-

tuitively easier to determine the relation type for two cor-

eferent events, since they tend to overlap with each other.

A natural question is: how were two events posited as

being coreferent? If two events had matching head words,

they were naively grouped as coreferent.
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Next, we describe how the instances for training and

testing this inter-sentence coreferent event classifier were

created. One training instance was created as a positive

instance from every coreferent event pair in which a tem-

poral relation exists, labeling it with the corresponding

relation type. We could similarly create one negative train-

ing instance from every coreferent event pair that does

not have any temporal relation. However, to reduce class

skewness, following along Tang et al.’s method, negative

training instances were created only from those coreferent

event pairs where the two elements corresponded to main

events. Test instances were created in the same way as the

negative training instances.

In our experiments, we trained each of these four classi-

fiers using SVMmulticlass (15). We tuned the regularization

parameter, C, on the 20% of the training data that we

reserved for development, and set the remaining learning

parameters to their default values.4

Our hybrid approach

In this section, we describe our hybrid learning-based and

rule-based approach to temporal relation classification.

The Six types of new features section describes our novel

features, which will be used to augment the baseline fea-

ture set (see the Baseline temporal relation classifier sec-

tion) to train each of the four specialized classifiers

mentioned above. The Manual rule creation section out-

lines our manual rule creation process. The Combining

rules and machine learning section discusses how we com-

bine our hand-crafted rules and the learned classifiers.

Six types of new features

Pairwise features

Recall that some of the features in the baseline feature

set are computed based on either e1 or e2 but not both.

Since our task is to predict the ‘relation’ between them,

we hypothesize that ‘pairwise’ features, which are com-

puted based on both elements, could better capture their

relationship.

Specifically, we introduce pairwise versions of the head

word feature and the two prepositional lexeme-based fea-

tures in the baseline. In addition, we create one quadruple-

wise feature by pairing up the type and modality attribute

values of e1 with those of e2. Next, we create two ‘trace’

features, one based on prepositions and the other on verbs,

since prepositions and verb tense have been shown to play

an important role in temporal relation classification. The

‘preposition trace’ feature is computed by (i) collecting

the list of prepositions along the path from e1/e2 to the root

of its syntactic parse tree and (ii) concatenating the result-

ing lists computed from e1 and e2. The ‘verb trace’ feature

is computed in a similar manner, except that we collect

the POS tags of the verbs appearing in the corresponding

paths.

Webster relations

Some events are not connected by a dependency relation

but by a ‘lexical’ relation. We hypothesize that some lex-

ical relations could be useful for temporal relation classifi-

cation. Consider the following example:

(4) Her amylase was mildly elevated but has been down

since then.

In this sentence, the two events, mildly elevated and

down, are connected by an antonym relation. Statistically

speaking, if (i) two events are in two clauses connected by

the coordinating conjunction but, (ii) one is an antonym of

the other and (iii) there is a temporal relation between

them, then not only can we infer that they do not have any

temporal overlap, but also it is likely that they have an

asynchronous relation such as Before or After.

Given the potential usefulness of lexical relations for

temporal relation classification, we create features based

on four types of lexical relations present in Webster’s

online thesaurus,5 namely synonyms, related-words, near-

antonyms and antonyms. Specifically, for each event e

appearing in the i2b2 corpus, we first use the head word of

e to retrieve four lists, which are the lists corresponding to

the synonyms, related words, near-antonyms and ant-

onyms of e. Then, given a training/test instance involving

e1 and e2, we create eight binary features: whether e1

appears in e2’s list of synonyms/related words/near-

antonyms/antonyms, and whether e2 appears in e1’s list of

synonyms/related words/near-antonyms/antonyms.

WordNet relations

Previous uses of WordNet for temporal relation classifica-

tion are limited to synsets (e.g. 12). We hypothesize that

other WordNet lexical relations could also be useful for

the task. Specifically, we employ four types of WordNet

relations, namely hypernyms, hyponyms, troponyms and

similar, to create eight binary features for temporal rela-

tion classification. These eight features are created from

the four WordNet relations in the same way as the eight

features were created from the four Webster relations men-

tioned above.

Predicate–argument relations

So far we have exploited lexical and dependency relations

for temporal relation classification. We hypothesize

Original article Page 5 of 20
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that semantic relations, in particular predicate–argument

relations, could be useful for the task.

Consider the following example:

(5) She was discharged to rehab.

Using SENNA (16), a PropBank-style semantic role la-

beler, we know that the CLINICAL_DEPARTMENT

event rehab is the A4 argument of the OCCURRENCE

event discharged. Recall that A4 is the end/destination

point. Hence, we can infer that there is a Begins relation

between the OCCURRENCE event and the CLINICAL_

DEPARTMENT event since the OCCURRENCE event

begins at the end point.

Given the potential usefulness of relations between a

predicate and its ‘numbered’ arguments (e.g. A0, A1,. . .)

for temporal relation classification, we create one binary

feature for each pairing of a numbered argument and a

predicate, setting its value to 1 if according to SENNA e1

and e2 are in the predicate–argument relation specified by

the pair.

To create additional features from predicate–argument

relations, consider another PropBank-style predicate–

argument relation type, cause. Assuming that e2 is in e1’s

cause argument, we can infer that e2 occurs Before e1, since

intuitively the cause of an action precedes the action.

Consequently, we create additional features for tem-

poral relation classification based on four types of predi-

cate–argument relations provided by SENNA, namely

directional, manner, temporal and cause. Specifically, we

create four binary features that encode whether argument

e2 is related to predicate e1 through the four types of rela-

tions, and another four binary features that encode

whether argument e1 is related to predicate e2 through the

four types of relations.

Discourse relations

Rhetorical relations such as causation, elaboration and en-

ablement could aid in tracking the temporal progression of

the discourse (17). Hence, unlike syntactic dependencies

and predicate–argument relations through which we can

identify ‘intra-sentential’ temporal relations, discourse

relations can potentially be exploited to discover both

‘inter-sentential’ and ‘intra-sentential’ temporal relations.

However, no recent work has attempted to use discourse

relations for temporal relation classification. In this subsec-

tion, we examine whether we can improve a temporal rela-

tion identifier via explicit and implicit PDTB-style

discourse relations automatically extracted by Lin et al.’s

(18) end-to-end discourse parser.

Let us first review PDTB-style discourse relations. Each

relation is represented by a triple (Arg1, sense, Arg2),

where Arg1 and Arg2 are its two arguments and sense is its

sense/type. A discourse relation can be explicit or implicit.

An explicit relation is triggered by a discourse connective.

On the other hand, an implicit relation is not triggered

by a discourse connective, and may exist only between

two consecutive sentences. Generally, implicit relations

are much harder to identify than their explicit

counterparts.

Next, to motivate why discourse relations can be useful

for temporal relation classification, we use two examples

(see Table 3), one involving an implicit relation (Example

(6)) and the other an explicit relation (Example (7)). For

convenience, both sentences are also annotated using

Lin et al.’s (18) discourse parser, which marks up the two

arguments with the _Arg1 and _Arg2 tags and outputs the

relation sense next to the beginning of Arg2.

In (6), we aim to determine the temporal relation be-

tween two PROBLEM events, hypotension and sepsis. The

parser determines that a RESTATEMENT implicit relation

exists between the two sentences. Intuitively, two tempor-

ally linked PROBLEM events within different discourse

units connected by the RESTATEMENT relation implies

some sort of synchronicity in their temporal relation. This

means that the relation type is likely to be Overlap or

Simultaneous. In this case, we can rule out Simultaneous:

by definition, two non-coreferent events of the same type

(e.g. hypotension and sepsis) cannot have a Simultaneous

relation.

In (7), we aim to determine the relation between the

TREATMENT event operation and the OCCURRENCE

event benign convalescence. The parser determines that a

ASYNCHRONOUS explicit relation triggered by there-

after exists between the two sentences, which in turn

suggests that the two events are likely to have an asyn-

chronous temporal relation such as Before or After. By

considering just the discourse connective thereafter, we can

infer that the correct temporal relation is Before.

Table 3. Examples illustrating the usefulness of discourse relations for temporal relation classification

(6) {_Arg1 # Hypotension: per referral form. _Arg1} {_Arg2_RESTATEMENT Initially concern for sepsis in the setting of fevers and

high blood count. _Arg2}

(7) {_Arg1 At operation, there was no gross adenopathy, and it was felt that the tumor was completely excised. _Arg1} {_Arg2 The

patient {_Conn_ASYNCHRONOUS thereafter _Conn} had a benign convalescence._Arg2}

The two arguments of each discourse relation, Arg1 and Arg2, are enclosed in curly brackets, and the sense of the relation is annotated.
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Given the potential usefulness of discourse relations for

temporal relation classification, we create four features

based on discourse relations. In the first feature, if e1 is in

Arg1, e2 is in Arg2 and Arg1 and Arg2 possess an explicit

relation with sense s, then its feature value is s; otherwise

its value is NULL. In the second feature, if e2 is in Arg1,

e1 is in Arg2 and Arg1 and Arg2 possess an explicit rela-

tion with sense s, then its feature value is s; otherwise

its value is NULL. The third and fourth features are com-

puted in the same way as the first two features, except

that they are computed over implicit rather than explicit

relations.

Medical semantic relations

So far we have discussed two types of semantic relations:

predicate–argument relations derived from PropBank and

domain-independent relations derived from WordNet and

Webster. These domain-independent semantic relations are

by no means sufficient for classifying the temporal rela-

tions between events in the medical domain (henceforth

‘medical semantic relations’). For example, recall from

Table 1 that two of the event types are PROBLEM and

TREATMENT. It is not uncommon for PROBLEM and

TREATMENT events to be denoted by medical names that

do not appear in WordNet and Webster, so these general-

purpose dictionaries may not provide any information

about such events. Moreover, predicate–argument rela-

tions may not be useful for determining the temporal rela-

tion between a PROBLEM event and a TREATMENT

event either, since a PROBLEM event is rarely an argu-

ment of a TREATMENT event and vice versa.

On the other hand, we hypothesize that medical seman-

tic relations could sometimes provide useful information

for temporal relation classification for cases that cannot be

handled by domain-independent relations. Consider the

following example:

(8) In the Amanda the patient’s pain resolved with NTG

and morphine.

In Sentence (8), a medical semantic relation of type

‘treatment improves medical problem’ (TrIP) exists be-

tween PROBLEM event ‘the patient’s pain’ and

TREATMENT event ‘NTG’. Since the treatment improves

the problem, we can infer that NTG is Ended_By the pa-

tient’s pain. Note that no semantic relations can be ex-

tracted between these two events from WordNet and

Webster, since NTG does not exist in these dictionaries.

Predicate–argument information could be useful, but

only if we combine the information from two predicate–

argument relations, the relation between ‘resolve’ and ‘the

patient’s pain’ and the relation between ‘resolve’ and

‘NTG’. On the other hand, medical semantic relations take

into account the two events as well as the governing verb

‘at the same time’, thus providing us with information that

cannot be directly inferred from predicate–argument

relations.

Since there does not exist publicly available database

that provides medical semantic relations, we develop a sys-

tem for classifying such relations with the ultimate goal of

employing them for temporal relation classification. Given

that a corpus annotated with medical semantic relations

exists, we adopt a corpus-based approach to building a

medical semantic relation classification system. In the rest

of this subsection, we introduce this corpus and describe

our approach to medical semantic relation classification.

2010 i2b2/VA challenge corpus. In 2010, i2b2 together

with VA Salt Lake City Health Care System organized a

community-wide shared task (19) that had as one of its

subtasks to automatically classify TREATMENT events

with PROBLEM events, TEST events with PROBLEM

events and event pairs each of type PROBLEM into one of

a set of predefined semantic medical relations. To facilitate

system development and evaluation, the shared task organ-

izers provided annotated data. This corpus now available

to the general research community comprises 426 de-iden-

tified discharge summaries pre-partitioned into a training

set (170 summaries) and a test set (256 summaries). It is

worth noting that while the corpora used in the 2010 and

2012 i2b2 Challenges both comprise discharge summaries,

they are distinct from each other.

In each summary in the 2010 corpus, the events and

their ‘medical semantic relations’ are marked up. Unlike

the 2012 Challenge, which considers six event types, the

2010 Challenge only considers three of these six types,

namely TEST, PROBLEM and TREATMENT. In other

words, the only semantic relations annotated are those that

exist between events belonging to these three event types.

In addition, unlike the 2012 Challenge, only intra-senten-

tial semantic relations are annotated. There is one type of

annotation that exist in the 2010 corpus but not the 2012

corpus, however: in addition to its type, a PROBLEM

event has a second attribute, ‘assertion’, which conveys

whether the problem was present, absent or possible in the

patient, conditionally present in the patient under certain

circumstances, hypothetically present in the patient at

some future point, or mentioned in the patient report but

associated with someone other than the patient. We will

make use of this attribute in building our semantic relation

classification system.

Eleven types of relations are annotated in the 2010

i2b2 corpus. A brief description of these relation types

and the relevant statistics are provided in Table 4. As we

can see from the table, the 11 relation types can be
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organized under five broader functional categories:

(i) causal—wherein an event effects a change in another

event; (ii) indicative—wherein an event indicates another

event; (iii) demonstrative—wherein an event shows the

existence or truth of another event by giving proof or evi-

dence; (iv) generally informative—general information

about the paired events and (v) no relations. Note that

while there are 11 relation types, 3 of them denote the ab-

sence of a semantic relation between the corresponding

events. The purpose of having ‘no relations’ is to ensure

that every pair of TEST/PROBLEM/TREATMENT event

is annotated, whether or not a semantic relation exists be-

tween them.

Each semantic relation defined on an event–pair

has the following characteristics: (i) has a type; (ii) is

defined only on intra-sentence TREATMENT–

PROBLEM, TEST–PROBLEM and PROBLEM–

PROBLEM events pairs and (iii) is commutative in nature,

in other words, a relation applicable to event pair (e1typeX,

e2typeY), is also applicable when the pair is reversed

(e2typeY, e1typeX).

Additional motivating examples. At the beginning of this

subsection, we have provided an example illustrating why

TrCP (a type of causal relations) could be useful for tem-

poral relation classification. Below we use four examples

to illustrate why the remaining four broader categories

of semantic relation types shown in Table 4, including

‘no relations’, may also be useful for temporal relation

classification.

(9) Patient returns from the nursing home with fever,

leukocytosis and azotemia.

(10) Residual deficits include right side facial droop from

previous stroke and anterior aphasia with word find-

ing difficulties.

(11) The patient had bone marrow biopsy, August, 2003,

for persistent pancytopenia.

(12) Her creatinine continued to increase, likely due to her

worsening liver failure.

First, consider Sentence (9), which shows that the ab-

sence of a medical semantic relation between two events

could also be useful for temporal relation classification.

In this sentence, the two PROBLEM events ‘fever’ and

‘leukocytosis’ are part of a comma-separated series.

Intuitively, the most likely temporal relations between

them are Overlap and Simultaneous. Given they are not

related to each other (via any medical semantic relation),

it is unlikely that they occur simultaneously. Hence, we

can infer that the two events Overlap in time.

Sentence (10) shows why ‘indicative relations’ could be

useful for temporal relation classification. In this sentence,

there is a prepositional dependency triggered by the prep-

osition with between the two PROBLEM events, ‘anterior

Table 4. The 11 unique relation types for medical semantic relation classification

Id Relation Example Total (%)

A Causal relations

1 TrIP: Treatment improves medical problem Her pain resolved after surgery 203 (0.6)

2 TrWP: Treatment worsens medical problem Treated with Zofran with no relief 133 (0.4)

3 TrCP: Treatment causes medical problem Transdermal nitroglycerin caused headache 526 (1.8)

B Indicative relation

4 PIP: Medical problem indicates medical problem With a moderate-sized, dense, fixed inferior defect indi-

cative of scar

2202 (7.5)

C Demonstrative relation

5 TeRP: Test reveals medical problem A postoperative MRI revealed no remarkable findings 3051 (10.4)

D Generally information relations

6 TrAP: Treatment is administered for medical problem start on Decadron 4 mg q6 to prevent swelling 2613 (8.9)

7 TrNAP: Treatment is not administered because of med-

ical problem

His Avandia was discontinued secondary to the side ef-

fect profile

174 (0.6)

8 TeCP: Test conducted to investigate medical problem An ultrasound was done to rule out cholestasis 504 (1.7)

E No relations

9 NTrP: No relation between treatment and problem With sutures intact and no erythema or purulence noted 4462 (15.2)

10 NTeP: No relation between test and problem Through the stay his laboratories remained normal and

his pain controlled

2964 (10.1)

11 NPP: No relation between paired medical problems He is somewhat cantankerous and demanding of the

nurses

12503 (42.6)

Each relation type is defined on an ordered pair where concepts in the pair are as specified by the relation. The ‘Total’ and ‘%’ columns show the number and

percentage of instances annotated with the corresponding relation type over all 426 reports, respectively.
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aphasia’ and ‘word finding difficulties’. Intuitively, the

most likely temporal relations between them are Overlap

and Simultaneous. Since there is a PIP relation between

them (i.e. ‘aphasia’ indicates ‘word finding difficulties’), it

is likely that the two problems occur simultaneously. Also

note that the knowledge of aphasia indicating word finding

difficulties in people is domain-specific, and hence such

knowledge cannot be obtained from an open-domain lex-

ical resource.

Sentence (11) shows why generally informative rela-

tions could be useful for temporal relation classification. In

this sentence, there is a TeCP relation between the TEST

event ‘bone marrow biopsy’ and the PROBLEM event

‘persistent pancytopenia’, meaning that bone marrow bi-

opsy is conducted to investigate persistent pancytopenia.

Intuitively, for a test conducted to investigate a problem,

the problem should already be present. In other words,

we can infer that a TEST conducted to investigate a

PROBLEM overlaps with but happens after the

PROBLEM, so there is a temporal Overlap_After relation

between the events.

Sentence (12) shows why ‘demonstrative relations’

could be useful for temporal relation classification. In this

sentence, the presence of the phrase ‘due to’ allows us to

infer that the temporal relation between TEST event ‘Her

creatinine’ and PROBLEM event ‘her worsening liver fail-

ure’ is either After or Overlap_After. Making use of the

fact that there is a TeRP relation between the TEST and

the PROBLEM (i.e. the TEST reveals the PROBLEM), the

PROBLEM continues to exist after the TEST. Hence, we

can infer that the correct temporal relation between them

is Overlap_After.

Medical semantic relation classification. In this subsection,

we describe our corpus-based approach to medical seman-

tic relation classification. We adopt an ‘ensemble’ ap-

proach, where a classification decision is made by

combining the output of multiple classifiers. Our decision

to employ an ensemble approach is motivated by the fol-

lowing observations. First, the best-performing system (20)

employs an Support Vector Machine (SVM) classifier

trained on a set of ‘flat features’ (i.e. features that are either

discrete- or real-valued). More recently, however, Zhu

et al. (21) have obtained better results by employing a tree

kernel-based approach. We hypothesize that classification

performance can be further improved by combining these

and other classifiers. Specifically, in addition to training

SVM classifiers that employ flat features (as in Rink et al.

(20)) and structured features (as in Zhu et al.’s tree kernel-

based approach), we include in our ensemble a k-nearest-

neighbor classifier. Below we describe the implementation

details of these three classifiers.

(1) SVM classifier with flat features

We create training instances for the flat-feature SVM clas-

sifier as follows. First, we form training instances between

every pair of (PROBLEM, TEST and TREATMENT)

events in the training documents, labeling an instance with

its relation type. Since the instances belonging to the three

‘no relation’ classes significantly outnumber those belong-

ing to the remaining eight classes, we reduce data skewness

by downsampling instances belonging to the three ‘no rela-

tion’ classes.6

Each instance is represented using 37 feature types mod-

eled according to Rink et al.’s (20) features. These 37 fea-

ture types can be broadly divided into five categories:

Context (13 groups). The words, the POS tags, the bigrams,

the string of words, the sequence of phrase chunk types

and the concept types used between e1 and e2; the word

preceding e1/e2; any of the three words succeeding e1/e2;

the predicates associated with both concepts and a fea-

ture that indicates whether a conjunction regular expres-

sion matched the string of words between e1 and e2.

Similarity (5 groups). We find the concept pairs in the

training set that are most similar to the (e1,e2) pair (i.e. its

nearest neighbors), and create features that encode the

statistics collected from these nearest neighbors. To find

the nearest neighbors, we (1) represent each pair in the

training set as a sequence; (2) define the number of near-

est neighbors to use and (3) define a similarity metric to

compute the similarity of two sequences.

Following Rink et al. (20), we employ five methods to

represent a pair. The five methods are: (i) as a sequence of

POS tags for the entire sentence containing the pair; (ii) as

a phrase chunk sequence between the two events; (iii) as a

word lemma sequence beginning the two words before the

first event, up to and including the second word following

the second event in the pair; (iv) as an event type sequence

for all the events found in the sentence containing the pair

and (v) as a shortest dependency path sequence connecting

the two events. Table 5 shows an example of these five

ways of generating sequences from the TEST event ‘her

exam’ and PROBLEM event ‘her hyperreflexia’ in the sen-

tence ‘Postop, her exam only improved slightly in her

Table 5. Examples of the five ways of sequence generation

Generation

method

Sequence

(1) RB VB, teste1 RB VBD RB IN probleme2

(2) ADVP VP ADVP PP

(3) postop, teste1 only improve slightly in probleme2

(4) teste1 probleme2

(5) teste1—nsubj!prep/pobj—probleme2

Original article Page 9 of 20

 by guest on N
ovem

ber 22, 2016
http://database.oxfordjournals.org/

D
ow

nloaded from
 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bau109/2635427 by guest on 21 M

ay 2024

,
``
''
.,
Semantic Relation Classification 
[18]
.,
[28]
[18])
&apos;s
[i] 
C
Flat Features
,
",0,0,2
",0,0,2
",0,0,2
",0,0,2
&apos;s [18]
,
;
.,
;
[18],
1
2
3
4
;
5
http://database.oxfordjournals.org/


hyperreflexia’. Note that for better generalization, the two

events are replaced with their event type (i.e. her exam and

her hyperreflexia are replaced with teste1 and probleme2,

respectively) before sequence generation. We use the

Levenshtein distance (22) as the similarity metric.

After finding the nearest neighbors for each of the five

methods of sequence representation, we create features as

follows. For each method, we compute the percentage of

nearest neighbors belonging to each of the 11 relation

types, and then create 11 features whose values are these

11 numbers.

Single concept (11 groups). Any word lemma from e1/e2;

any word used to describe e1/e2; the event type for e1/e2;

the string of words in e1/e2; the concatenation of asser-

tion types for both concepts and the sentiment category

(i.e. positive or negative) of e1/e2 obtained from the

General Inquirer lexicon (23).

Wikipedia (6 groups). Six features are computed based on

the Wikipedia articles, their categories and the links be-

tween them. The first feature encodes whether neither e1

nor e2 contains any substring that may be matched

against the title of an article. The second feature encodes

whether the links between the articles retrieved based on

the two events are absent. The next two features encode

whether a link exists from the article pertaining to e1 (e2)

to the article pertaining to e2 (e1). The fifth feature en-

codes whether there are links between the articles per-

taining to both concepts. The last feature encodes

whether both concepts have the same concept type ac-

cording to their Wikipedia categories.

Vicinity (2 groups). The concatenation of the type of e1

and the type of the closest event preceding e1; and the

concatenation of the type of e2 and the type of the closest

event succeeding e2.

After creating the training instances, we train a 11-class

classifier on them using SVMmulticlass (15). We set C, the

regularization parameter, to 10 000, since preliminary ex-

periments indicate that preferring generalization to overfit-

ting (by setting C to a small value) tends to yield poorer

classification performance. The remaining learning param-

eters are set to their default values. We then use it to make

predictions on the test instances, which are generated in

the same way as the training instances.

(2) SVM classifier with structured features

Within this framework, each instance is represented

using a single structured feature computed from the parse

tree of the sentence containing the event pair. Since pub-

licly available SVM learners capable of handling structured

features can only make binary predictions, we train

11 SVM classifiers, one for representing each semantic

relation, where in each classifier’s training data, a positive

instance is one whose class value matches the semantic re-

lation class value of the classifier, and a negative instance is

one with other class values applicable to the given event

pair. To reduce data skewness, we determine the optimal

ratio of positive to negative instances on held-out develop-

ment data, which is composed of 30 randomly chosen

training documents.7 We set C, the regularization param-

eter, to 100 based on the development data.

While we want to use a parse tree directly as a feature

for representing an instance, we do not want to use the en-

tire parse tree as a feature. Specifically, while using the en-

tire parse tree enables a richer representation of the

syntactic context of the two events than using a ‘partial’

parse tree, the increased complexity of the tree also makes

it more difficult for the SVM learner to make

generalizations.

To strike a better balance between having a rich repre-

sentation of the context and improving the learner’s ability

to generalize, we extract a subtree from a parse tree and

use it as the value of the structured feature of an instance.

Specifically, given two events in an instance, and the asso-

ciated syntactic parse tree T, we retain as our subtree the

portion of T that covers (i) all the nodes lying on the short-

est path between the two entities and (ii) all the immediate

children of these nodes that are not the leaves of T.

This subtree is known as a ‘simple expansion tree’, and

was first used by Yang et al. (24) as a structured feature for

the pronoun resolution task. Note that some of the flat fea-

tures, including the event type attribute, are not encoded in

the simple expansion tree. Hence, we encode these attri-

bute values in the tree as follows: we replace the non-ter-

minal symbol of the tree node that spans each of the two

entities under consideration with its event attribute values.

To better understand how a simple expansion tree is com-

puted, we show in Figure 1 the simple expansion tree cre-

ated for the relation TeRP between TEST event ‘evaluated’

Figure 1. Example of a simple expansion tree.
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and PROBLEM event ‘desaturate’. Note that all and only

those terminal and non-terminal nodes that are circled or

squared are part of the tree.8

After training the 11 tree kernel-based semantic relation

classifiers, we can apply them to classify a test instance.

The class value of an instance is determined based on the

classifier with the maximum classification confidence,

where the classification value of an instance is its signed

distance from the SVM hyperplane.

(3) K-nearest neighbor classifier

Recall that we employed five ways to represent an event

pair when creating the nearest-neighbor features in our

flat-feature classifier. In the process, we observed that

the nearest neighbors obtained using the third way of se-

quence generation (where we represent a pair as a sequence

of word lemmas) are quite indicative of the correct seman-

tic relation class. Motivated by this observation, we em-

ploy as the third classifier in our ensemble a K-nearest-

neighbor classifier, where each event pair is represented

using the third way of sequence generation. Like before,

we employ the Levenshtein distance metric to measure

similarity. Unlike before, however, we set the number of

nearest neighbors to 1.

(4) The ensemble

Given a test instance, we determine its medical semantic re-

lation type by combining the outputs of the ‘flat-feature’

classifier, the ‘structured-feature’ classifier and the

‘K-nearest-neighbor’ classifier as follows.

First, we derive from the output of each classifier an

11-element probability vector, which encodes the probabil-

ity that the given test instance belongs to each of the 11

relation types. Specifically, for the flat-feature classifier

and the structured-feature classifier, the SVM outputs a

confidence value for each class. To obtain the probability

vector for each of these classifiers, we first normalize the

confidence value associated with each class so that it falls

within the [0,1] range, and then normalize the resulting

values so that they sum to 1. For the k-nearest-neighbor

classifier, we generate the probability vector by tallying

the votes of the 200 nearest neighbors. Note that we give

a higher weight to the vote cast by the nearest neighbor.

More specifically, we assign a weight of 0.5 to the vote cast

by the nearest neighbor, and a weight of 0.5/199 to the

vote cast by each of the remaining 199 nearest neighbors.

Next, we combine the three probability vectors as follows:

Ccombined ¼ 0:4� Ptree þ 0:5� Pflat þ 0:1� Pknn; (1)

where the three combination weights are determined using

held-out development data. The class that we assign to the

test instance is simply the class having the maximum value

according to Ccombined.

Evaluating semantic relation classification. To get an idea

of how well our ensemble approach to medical semantic

relation classification is and whether the ensemble indeed

performs better than the three classifiers it relies on.

Following the 2010 i2b2/VA evaluation scheme, a seman-

tic relation classification system is evaluated on all but the

‘no relation’ types. In other words, even if the classifier

classifies an instance correctly into any of the relations

NTrP, NTeP and NPP they are not counted.

Dataset. As mentioned before, we use the 170 training

documents from the 2010 i2b2/VA corpus for classifier

training, and reserve the 256 test documents for evaluat-

ing system performance.

Evaluation metrics. Results are reported in terms of micro

F-score (see Sebastiani (25) for its definitions).

Results and discussion. Table 6 shows the medical seman-

tic relation classification results. Again, results are com-

puted over all but the no relation types. The first column

corresponds to the type of the classifier, and the second

column shows the micro F-score for each classifier.

The best performing system is the ensemble system,

which achieves a micro F-score of 66.9%. This translates

to a relative error reduction of 10–18% over the tree-

feature classifier, 8–14% over the knn classifier and 14%

over the flat-features classifier.9

Using medical semantic relations for temporal relation

classification. Given the potential usefulness of medical

semantic relations for temporal relation classification, as

demonstrated earlier through Examples (8)–(12), we create

features for temporal relation classification based on these

semantic relations. One feature encodes the relation type

predicted by our ensemble-based medical semantic relation

classification system. The remaining features come from

the 36 feature groups that we used for medical semantic re-

lation classification. Note that these features are only

applicable to inter-sentential TREATMENT–PROBLEM,

TEST–PROBLEM and PROBLEM–PROBLEM event

pairs, since our semantic relation classifiers were trained

on these three types of event pairs.

Table 6. Semantic relation classification results

Classifiers F score

1 Tree 59.6

2 Knn 61.4

3 Flat 61.6

4 Ensemble 66.9
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Manual rule creation

As noted before, we adopt a hybrid learning-based and

rule-based approach to temporal relation classification.

Hence, in addition to training a temporal relation classi-

fier, we manually design a set of rules in which each rule

returns a temporal relation type for a given test instance.

We hypothesize that a rule-based approach can comple-

ment a purely learning-based approach, since a human can

combine the available features into rules using common-

sense knowledge that may not be accessible to a learning

algorithm.

The design of the rules is partly based on intuition and

partly data driven: we first use our intuition to come up

with a rule and then manually refine it based on the obser-

vations we made on the i2b2 training documents. Note

that the test documents are reserved for evaluating final

system performance. We order these rules in decreasing

order of accuracy, where the accuracy of a rule is defined

as the number of times the rule yields the correct temporal

relation type divided by the number of times it is applied,

as measured on the training documents. A new instance is

classified using the first applicable rule in the ruleset.

Some of these rules were shown in the Six types of new

features section when we motivated each feature type with

examples as well as in Appendix A. Our final ruleset can

be accessed via a web link (see Footnote 2).

Combining rules and machine learning

We investigate two ways to combine the hand-crafted rules

and the machine-learned classifiers.

In the first method, we employ all of the rules as add-

itional features for training each of the four specialized

classifiers. The value of each such feature is the temporal

relation type predicted by the corresponding rule.

The second method can be viewed as an extension

of the first one. Given a test instance, we first apply to

it the ruleset composed only of rules that are at least 75%

accurate. If none of the rules is applicable, we classify it

using one of the four classifiers employed in the first

method.10

Evaluation: the first setting

Experimental setup

In this section, we will conduct experiments under the first

setting, where we assume we are given gold-standard tem-

poral relations (i.e. each instance belongs to one of the 12

relations).

Dataset. As mentioned before, we use the 190 training

documents from the i2b2 corpus for classifier training

and manual rule development and reserve the 120 test

documents for evaluating system performance.

Evaluation metrics. We employ micro F-score (Fmi) and

macro F-score (Fma) to evaluate our 12-class temporal

relations classifier.11

Results and discussion

Table 7 shows the results for our 12-class temporal rela-

tion classification task when the experiments are con-

ducted under the first setting (see the Introduction section),

where gold-standard temporal relations are used. The five

columns of the results tables correspond to five different

system architectures. The ‘Features’ column corresponds

to a purely learning-based system where the results are

obtained simply by training a temporal relation classifier

using the available features. The next two columns corres-

pond to two purely rule-based systems, differing by

whether all rules are used regardless of their accuracy or

whether only high-accuracy rules (i.e. those that are at

least 75% accurate) are used. The rightmost two columns

correspond to the two ways of combining rules and

Table 7. 12-Class micro and macro F scores of classifying gold-standard temporal relations as features are added incrementally

to the baseline

Features All rules All rules with

accuracy �0.75

Featuresþ rules

as features

Rulesþ featuresþ
rules as features

Feature type Fmi Fma Fmi Fma Fmi Fma Fmi Fma Fmi Fma

1 Baseline 55.4 50.9 – – – – – – – –

2 þPairwise 55.5 51.2 40.0 31.9 16.2 23.3 57.4 53.1 58.1 53.0

3 þWordNet 55.6 51.1 40.0 31.9 16.2 23.3 57.2 53.0 57.9 52.9

4 þWebster 55.8 51.3 40.0 31.9 16.2 23.3 57.3 53.0 58.0 52.9

5 þPropBank 55.8 51.3 45.4 44.7 21.3 34.7 57.6 53.1 59.7 57.7

6 þDiscourse 56.2 51.5 47.3 47.8 24.0 39.2 57.9 53.2 61.1 60.7

7 þMedical relations 56.6 53.0 47.7 49.6 26.2 39.8 57.7 54.4 62.9 62.5

The strongest results are boldfaced.
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machine learning described in the Combining rules and

machine learning section.

On the other hand, the rows of the tables differ in terms

of what features are available to a system. In row 1, only

the baseline features are available. In the subsequent rows,

the six types of features discussed in the Our hybrid

approach section are added incrementally to the baseline

feature set. So, the last row corresponds to the case where

all feature types are used.

A point merits clarification. It may not be immediately

clear how to interpret the results under, for instance, the

‘All Rules’ column. In other words, it may not be clear

what it means to add the six types of features incrementally

to a rule-based system. Recall that one of our goals is to

compare a purely learning-based system with a purely rule-

based system, since we hypothesized that humans may be

better at combining the available features to form rules

than a learning algorithm. To facilitate this comparison,

all and only those features that are available to a learning-

based system in a given row can be used in hand-crafting

the rules of the rule-based system in the same row. The

other columns involving the use of rules can be interpreted

similarly.

The best-performing system architecture is the hybrid

architecture where high-accuracy rules are first applied

and then the learned classifier is used to classify those

cases that cannot be handled by the rules (see the rightmost

column of Table 7). When all the features are used in com-

bination with this architecture, the system achieves a

micro F-score of 62.9% and a macro F-score of 62.5%.

This translates to a relative error reduction of 17–24% in

comparison to the baseline result shown in row 1.

Regarding the usefulness of each of the seven types of fea-

tures in this best-performing architecture, we found that

adding pairwise features, predicate–argument relations,

discourse relations and medical semantic relations signifi-

cantly improves both micro and macro F-scores.12 The de-

pendency, WordNet and Webster relations are not

useful.13

Among the remaining four architectures, the version of

the rule-based system where only the high-accuracy rules

are used performs the worst, owing to the low coverage

of the ruleset. Comparing the ‘Features’ system and the

‘All Rules’ system, we see that ‘All Rules’ is always signifi-

cantly worse than ‘Features’. These results suggest that

overall, the machine learner is better at combining the

available knowledge sources than the human for temporal

relation classification. The question, however, is: does the

machine learner make mistakes on different instances than

the human? By comparing the results of the two feature-

based systems, ‘Features’ and ‘FeaturesþRules as

Features’, we can infer that the answer is yes. Since the

latter is significantly better than the former, the incorpor-

ation of the hand-crafted rules into the feature set is benefi-

cial for the learner. In other words, the use of rules as

features helps fix some of the mistakes made by the

learner.

Temporal relation identification

In the previous section, we evaluated our approach under

the first setting, where we assume we are given only in-

stances that belong to one of the 12 relation types. Recall

from the introduction that we make the task more chal-

lenging by also evaluating our approach under a second

setting, where we assume the instances we are given may

or may not belong to one of the 12 relation types. For the

second setting, we adopt a ‘pipeline’ system architecture

where we first employ a relation ‘identification’ system to

determine whether a test instance possesses a temporal re-

lation. We then use the relation ‘classification’ system

described in the Our hybrid approach section to classify

only those instances the relation identification system

determined possessed a temporal relation. The rest of this

section describes our temporal relation identification

system.

Given the success of our hybrid approach to relation

classification, we employ a hybrid approach to relation

identification. Specifically, given a test instance i, we first

apply a set of hand-crafted rules to determine whether i

has a relation. If i cannot be classified by any of the rules,

we employ a learned identifier to determine whether i has

a relation.

Two questions naturally arise. First, how can we design

the hand-crafted rules? Second, how can we train a classi-

fier for identifying relations? We answer these two ques-

tions in the next two paragraphs.

We design the hand-crafted identification rules as fol-

lows. As positive rules (i.e. rules that determine that an in-

stance has a relation), we simply use all the rules that we

hand-crafted for relation classification in the Manual rule

creation section. To design ‘negative’ rules (i.e. rules that

determine that an instance has no relation), we employ the

same data-driven procedure that was used to design the re-

lation classification rules (see the Manual rule creation

section).

Next, we describe how to train a classifier for identify-

ing temporal relations. We employ a natural way of creat-

ing training instances: we use all event–event and

event–time pairs in the training set that have a relation as

positive instances, and the remaining ones as negative in-

stances. As before, rather than training just one classifier

for identifying temporal relations, we train four specialized

classifiers for identifying relations using the same division
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that we described in the Training specialized classifiers sec-

tion. It is worth mentioning, however, that the negative in-

stances significantly outnumber the positive ones, since

most pairs do not have a relation. But since training on a

dataset with a skewed class distribution may adversely af-

fect the performance of a classifier, for each of the four

specialized classifiers, we employ simple pruning heuristics

to prune the negative training instances before training the

classifier.14

The remaining question is: what features should we

use to represent each training/test instance? We experi-

mented with three options. The simplest option is to employ

the same features that we used to train our classifiers for

relation classification in the Our hybrid approach section.

Note that many of these features are extracted from

syntactic parse trees. Since it is not clear whether these

features have adequately encoded all the useful information

that we can possibly extract from a parse tree, perhaps

the simpler thing to do, which we consider in our

second option, is to employ just the syntactic parse tree

containing the two entities involved in an instance.15 Recall

that advanced machine learning algorithms such as SVMs

have enabled a parse tree to be used as a ‘structured’ feature

(i.e. a feature whose value is a linear or hierarchical struc-

ture, as opposed to a ‘flat’ feature, which has a discrete or

real value), owing to their ability to employ ‘kernels’ to effi-

ciently compute the similarity between two potentially com-

plex structures. In particular, given two parse trees,

we compute their similarity using a convolution tree

kernel (26).

As in medical semantic relation classification, we

employ a simple extraction tree as a structured feature to

represent an instance for temporal relation identification.

Recall that a simple expansion tree is the portion of

a parse tree that covers (i) all the nodes lying on the

shortest path between the two entities and (ii) all the imme-

diate children of these nodes that are not the leaves of T.

Some of the flat features employed in the first option,

including the event attributes (i.e. type, polarity and

modality) and the time attribute (i.e. type), are not encoded

in the tree. As a result, we encode these attribute values in

the tree as follows: we replace the parent node of each en-

tity under consideration with its event/time attribute

values.

Given that we employ flat features in our first option and

a tree feature in our second option, a natural third option is

to combine the flat and tree features to train a classifier. To

compute the similarity between two instances containing

both flat and tree features, we first compute the similarity of

their flat features using a linear kernel and the similarity of

their tree features using a tree kernel, and then combine

these two kernels using a composite kernel.16

After training the four specialized classifiers, we can

apply them to classify whether a test instance has a relation

or not. By default, any instance whose classification value

is at least 0 is classified as having a relation; otherwise, it is

classified as having no relation. Note that the classification

value of an instance is simply its signed distance from the

SVM hyperplane.

Since we are using the relation identification system

to filter the no relation instances prior to relation classi-

fication, the performance of the downstream relation classi-

fication system depends to a large extent on the

performance of the identification system. If the identifica-

tion system misclassifies many positive instances (as nega-

tive), it will harm the recall of the classification system; on

the other hand, if it misclassifies many negative instances (as

positive), it will harm the precision of the classification

system.

Ideally, we want to optimize the performance of the

identification classifier such that when it is used in combin-

ation with the ‘classification system’, the F-score of the

classification system is maximized. However, the identifica-

tion classifier is trained to maximize classification accuracy

on identification. To maximize the F-score of the classifica-

tion system instead, we propose to adjust the ‘classification

threshold’ (i.e. the threshold that determines whether an

instance should be classified as positive or not). Recall that

currently we employ a classification threshold of 0, meaning

that all and only those instances whose classification value

is 0 or above are classified as positive. By adjusting this

threshold, we can potentially vary the F-score of the

classification system. Specifically, by lowering the threshold,

more instances will be classified as positive, potentially

improving the recall of the classification system. By the

same token, increasing the threshold could improve its

precision.

Given this observation, we tune the classification

threshold to maximize the F-score of the classification sys-

tem on the development set, which is composed of 20% of

the training data. In other words, we first train both the

classifiers for relation identification and classification on

the remaining 80% of the training data. Then we obtain

relation classification results on the development set by

varying the classification thresholds applied to the relation

identification classifiers (each of the four specialized identi-

fication classifiers will have its classification threshold

tuned independently of the others).17 The thresholds that

yield the best relation classification F-score on the develop-

ment set are applied to obtain relation classification results

on the test data.

Since our results are reported in terms of both micro and

macro F-scores, we obtain thresholds that maximize macro

F and those that maximize micro F separately.
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Evaluation: the second setting

Next, we conduct experiments under the second setting,

where we obtain temporal relation classification results

using automatically identified temporal relations.

Results, expressed in terms of micro and macro F, are

shown in Table 8, where the rows and columns can be in-

terpreted in the same manner as those in Table 7. As ex-

pected, the results obtained using automatically identified

relations are significantly lower than those obtained using

gold-standard temporal relations. Nevertheless, the same

conclusions that we drew from the results in Table 7 are

also applicable to the results in Table 8. It is worth men-

tioning, however, that the best-performing system is still

the ‘Rulesþ featuresþ rules as features’ architecture when

used in combination with all the feature types, achieving a

micro F-score of 31.7% and a macro F-score of 39.4%.

This translates to a significant relative error reduction of

8–14% in comparison to the baseline.

Evaluation: the I2B2 setting

Experimental setup

Finally, by mapping each of the 12 classes from our classi-

fier’s output in the second setting to their respective three

class counterparts, we obtained 3-class classification re-

sults as per the 2012 i2b2 shared task.

Dataset. For classifier evaluation, test data annotations are

taken from the dataset used in the shared task. These

data comprise the same set of events, time expressions

and the same temporally related event–event and event–-

time pairs, but with the relation annotations taken from

the three class set instead.

Evaluation metrics. The precision (P), recall (R) and

F-score (F) reported in this article are computed using the

i2b2 shared task evaluation script. We use the default

scoring scheme, where precision is defined as the total

number of system output TLINKs that can be verified in

the gold standard closure divided by the total number of

system output TLINKs, and recall is the total number of

gold standard output TLINKs that can be verified in the

system closure divided by the total number of gold stand-

ard output TLINKs.

Results and discussion

Results, reported in terms of precision, recall and F-score,

are shown in Table 9. The rows and columns of the table

can be interpreted in the same manner as Tables 7 and 8

wherein rows correspond to features used by the system

and the columns reflect the different system architectures.

It is noteworthy that even in this three-class setting, there

are incremental improvements in classification perform-

ance on adding the new features, thus in turn showing that

the features apart from being useful to the task of temporal

relation classification are effective even at different granu-

larities of the relations. Also, identical to the 12-class set-

ting, the best performing system in this setting is the

‘Rulesþ featuresþ rules as features’ hybrid system when

all features are available to it. It achieves an F-score of

70.2. The best performer in the shared task, Tang et al. (9),

reported an F-score of 69.3. Thus, even as a three-class

classifier, our feature-rich hybrid system shows improve-

ment over the state-of-the-art. In addition, we experimen-

tally verify the complexity of the 12-class task versus the

three-class task by comparing their respective Fmi scores

using the same formula used for computing the scores re-

ported in Tables 7 and 8. In the three-class setting, the best

system achieves an Fmi score of 50.7; from Table 8 we see

that the Fmi score of the same system as a 12-class classifier

is much lower, 31.7. This tells us that the classifier makes

more classification errors as a fine-grained classifier than

when used for classifying the three broad relation types,

thus in turn verifying that task complexity increases with

finer granularity of the relations.

Table 8. 12-class micro and macro F-scores of classifying automatically identified temporal relations as features are added incre-

mentally to the baseline

Features All rules All rules with

accuracy � 0.75

Featuresþ rules

as features

Rulesþ featuresþ
rules as features

Feature type Fmi Fma Fmi Fma Fmi Fma Fmi Fma Fmi Fma

1 Baseline 26.2 30.1 – – – – – – – –

2 þPairwise 26.5 30.6 17.1 18.9 9.9 14.3 26.7 31.4 27.7 33.0

3 þWordNet 26.5 30.7 17.2 18.9 9.9 14.3 26.6 31.2 27.6 32.9

4 þWebster 26.5 30.7 17.2 19.0 9.9 14.3 26.7 31.2 27.6 32.9

5 þPropBank 26.5 30.8 21.2 29.3 15.4 24.4 26.8 31.3 29.1 36.7

6 þDiscourse 26.6 30.8 21.9 30.5 18.8 29.6 26.8 31.3 30.0 38.8

7 þMedical relations 26.7 30.9 22.9 33.6 22.3 32.2 27.2 31.5 31.7 39.4

The strongest results are boldfaced.
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Error analysis

To gain additional insights into the errors made by the

12-class relation classification system and the relation

identification system, we perform an error analysis of each

of them.

Relation classifications errors

We constructed the confusion matrix based on the gold

standard and predicted relation types on the test set, and

found that there are three types of confusions that account

for nearly 72% of the classification errors. Below we illus-

trate each of these three types of confusions with examples.

Simultaneous confused as overlap. This is the most fre-

quent source of confusion, accounting for 30.8% of the

errors. The following example illustrates this confusion:

04-24 PICC Bld Cx: pseudomonas Diaz to zosyn, cipro,

cefepime, Tardugno—staph epi- Gray to vanc

In this sentence, the treatments ‘zosyn’, ‘ciporo’, ‘cefe-

pime’ and ‘Tardugno’ are all given at the same time, and

therefore are temporally Simultaneous. However, there are

many cases where events separated by commas are over-

lapping rather than simultaneous. Determining whether

the relation should be Simultaneous or Overlap requires an

understanding of the nature of the events and cannot sim-

ply be inferred based on syntactic patterns. This poses a

challenge to the relation identification system.

Recall that the i2b2 organizers grouped Overlap and

Simultaneous under the same broad relation type. The fact

that almost a third of our relation classification errors

were related to confusion between Overlap and

Simultaneous seems to be consistent with the notion that

merging them was a wise decision. As Pustejovsky and

Stubbs (27) point out, categorization results may lead a

human annotator to re-think her annotation model. In this

case, our error analysis seems to support the redesigned

model (i.e. with Overlap and Simultaneous combined).

Before confused as overlap. This is the second most fre-

quent source of confusion, accounting for 21.5% of the

errors. The following example illustrates this confusion:

She [called 911] and he was [brought] to Hahnemann

General Hospital Lydia.

In this sentence, OCCURRENCE event ‘called 911’ is

temporally Before OCCURRENCE event ‘brought’, but

the relation is misclassified as Overlap. This source of con-

fusion arises from the presence of the coordinating con-

junction ‘and’, which frequently appears together with the

Overlap relation. In this example, understanding that

called 911 took place before bought requires world know-

ledge, which might be acquired via narrative chains (28).

After confused as overlap. This is the third most frequent

source of confusion, accounting for 19.5% of the errors.

The following example illustrates this confusion:

Also, a repeat outpatient [CT colonoscopy] with [better

preparation] should be considered.

In this sentence, TEST event ‘CT colonoscopy’ is proposed

After OCCURRENCE event ‘better preparation’ in the gold

standard, but the relation is misclassified as Overlap. The dif-

ficulty in correctly classifying this relation as After arises

from the fact that an OCCURRENCE event can be anything

that is clinically relevant to the patient’s timeline apart from

the other defined attributes, and hence it can take on various

temporal roles depending on whether it is in an adverbial

phrase, an adjectival phrase, a noun phrase or a VP.

Intuitively, when an event happens ‘with’ another event,

they generally tend to have temporal synchronicity, and in

such cases entity attribute information may not be so im-

portant. However, if there isn’t temporal synchronicity (as

in the above sentence), then we will need to rely on

Table 9. 3-Class precision, recall and f-measure of classifying automatically identified temporal relations as features are added

incrementally to the baseline

Features All rules All rules with

accuracy �0.75

Featuresþ rules

as Features

Rulesþ featuresþ
rules as features

Feature type P R F P R F P R F P R F P R F

1 Baseline 75.1 62.9 68.5 – – – – – – – – – – – –

2 þPairwise 79.7 60.6 68.9 62.1 57.0 59.4 91.0 37.4 53.0 79.6 61.0 69.1 76.7 62.3 68.7

3 þWordNet 79.7 60.7 68.9 62.9 59.3 61.0 90.8 38.3 53.8 79.7 61.1 69.1 76.7 62.4 68.8

4 þWebster 79.7 60.7 68.9 62.9 59.3 61.0 90.8 38.3 53.8 79.7 61.1 69.1 76.7 62.4 68.8

5 þPropBank 79.8 60.7 69.0 63.3 61.3 62.3 90.8 40.2 55.8 79.6 61.3 69.2 77.2 63.1 69.4

6 þDiscourse 79.5 60.9 69.0 61.9 62.9 62.4 88.8 41.7 56.7 79.7 61.2 69.2 75.9 64.4 69.7

7 þMedical relations 78.6 61.6 69.1 62.2 63.3 62.7 88.2 45.0 59.6 79.8 61.7 69.6 76.1 65.1 70.2

The strongest results are boldfaced.
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information reflected by entity attributes, especially type.

More specifically, to classify the relation type correctly, we

will need to narrow the scope of OCCURRENCE events

by including more event types that are clinically relevant to

the current set of event types. These event types might in-

clude CONDITION instead of OCCURRENCE for

phrases such as ‘doing well’, ‘improving’, etc., or PREP for

events that are not TREATMENTS but are necessary as a

step before the TREATMENT, as in the above sentence.

Relation identification errors

For relation identification, we will perform a qualitative

analysis, since it is harder to perform the kind of quantita-

tive analysis that we did for relation classification.

One common source of errors involves cases whose re-

lation type may be difficult even for humans to determine.

Consider, for example, events listed as a sequence, as

shown in the sentence below:

[CXR], [LP], [UA] and [abdominal CT] showed no sign

of infection.

Here, the sequence of TESTS paired consecutively as

CXR and LP, LP and UA, and UA and abdominal CT are

unannotated in the dataset with a relation, but the identifi-

cation classifier classifies them as having a relation.

Note that for sentences like this where the patient’s past

history of problems is listed, it can sometimes be difficult

even for a human to determine the exact temporal relation

type between the events, as a mixture of temporal relations

such as Overlap, Before, After, etc. can exist. When a case

appears temporally undeterministic to a human annotator,

she may choose to leave them unannotated. In other

words, even though these cases are counted as errors made

by our identification system, they probably shouldn’t be.

Another common source of errors involves coreferent

events that appear in different sentences. Recall that we

naively posit two events that have the same head as core-

ferent, and train a classifier to determine whether there is a

relation between two such events. We noticed that this

classifier classifies all instances as having a relation.

However, there are many same-head events that do not

have a temporal relation. To address this problem, we will

need to employ a coreference classifier to determine

whether two same-head events are coreferent.

The third common source of errors stems from the fact

that not all temporal relations in the dataset are annotated.

Consider the two sentences below:

ESRD on HD—Pt has [ESRD] secondary to [her DM]

and is on HD.

Pt is now [transferred] to the FICU for [further care].

In the first sentence, the PROBLEM event pair ESRD

and her DM, which should have relation type

Overlap_After, are not annotated as having a relation in

the dataset, but our identification classifier determines that

it does. In the second sentence, the OCCURRENCE event

‘transferred’ and the TREATMENT event ‘further care’,

which should have relation type Before, is not annotated

as having a relation in the dataset, but our identification

classifier determines that they do. As in the first type of

errors discussed above, even though these cases are

counted as errors made by our identification system, they

probably shouldn’t be.

Overall, this qualitative analysis reveals that the error

rate of our relation identification system is to some extent

inflated owing to the incompleteness of the gold standard

annotations. Although the performance of our relation

classification system significantly degrades when gold

standard temporal relations are replaced by their automat-

ically identified counterparts, we speculate that the degrad-

ation will not be as abrupt as what we currently see given a

better-prepared set of gold standard annotations.

Conclusions

We have investigated a knowledge-rich, hybrid approach

to the 12-class temporal relation classification task for the

clinical domain. Results on the i2b2 corpus show that

when evaluated on gold standard and automatically identi-

fied temporal relations, our approach achieves a relative

error reduction of 17–24% and 8–14%, respectively, over

a state-of-the-art learning-based baseline.

Notes

1. See https://www.i2b2.org/ for more information.

2. Downloadable from http://www.hlt.utdallas.edu/�jld082000/

temporal-relations.

3. http://nlp.stanford.edu/software/corenlp.shtml.

4. To reduce the number of parameter tuning experiments, we find

the C value that works best with the baseline classifiers and use it

to train all the remaining relation classifiers in our experiments.

5. http://www.merriam-webster.com.

6. We downsample the instances belonging to the three ‘no relation’

classes by ensuring that (i) the ratio of the number of

TREATMENT–PROBLEM instances to the number of ‘no

relation’ instances is 0.06; (ii) the ratio of the number of

TEST–PROBLEM instances to the number of ‘no relation’ in-

stances is 0.03 and (iii) the ratio of the number of

PROBLEM–PROBLEM instances to the number of ‘no relation’

instances is 0.5. These ratios are selected using held-out develop-

ment data composed of 30 randomly chosen training documents.

7. For each classifier, following the order of the relations listed in

Table 4, the optimal positive-to-negative instance ratios are 0.2,

0.2, 0.06, 0.2, 0.5, 1, 1, 0.3, 0.06, 0.06 and 0.09, respectively.

8. Recall that PROBLEM events have a second attribute, assertion.

The value PRESENT in the node above ‘desaturate’ is its asser-

tion value.
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9. Since the dataset available to the general research community

which we are using contains a subset of the documents from the

dataset that was available to the shared task participants (871

discharge summaries pre-partitioned as 394 training documents

and 477 test documents), we were unable to compare our system

performance with any other.

10. The classifier that is being used for classifying a test instance

depends on the test instance. For example, if the test instance is

formed from two events that appear in the same sentence in the

corresponding text, the intra-sentence event–event classifier

will be used.

11. Note that under the first setting, micro F is equivalent to accur-

acy (the percentage of correctly classified test instances), since

gold standard relations are used.

12. All the statistical significance tests in this article are conducted

using the paired t-test (P<0.05).

13. A closer examination of the results reveals why the lexical rela-

tions extracted from WordNet and Webster are not useful. We

observed that the set of verbs used to refer to events in the dis-

charge reports (e.g. ‘present’, ‘admit’, ‘discharge’ and ‘com-

plain’) is fairly limited. This has made it comparatively easier

to learn the temporal relations between the events they repre-

sent directly from the training data (e.g. a patient has to be

‘admitted’ first before being ‘discharged’), rendering the

WordNet and Webster relations less useful.

14. For the complete list of pruning heuristics, see http://www.hlt.

utdallas.edu/�jld082000/temporal-relations.

15. If the two entities involved appear in different sentences, we

create a parse tree by connecting the roots of the two parse

trees in which the two entities appear to a pseudo root node.

16. In preliminary experiments on the development data, the se-

cond option yields marginally better results than the others. So

the results we report in the next section are based on identifica-

tion classifiers trained using the second option.

17. We attempted thresholds from�1.0 to 1.0 in steps of 0.1.
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Appendix A

Below we show 10 of our hand-crafted rules. To under-

stand how to interpret these rules, let us take Rule1 as an

example. Rule1 says that if TREATMENT event1 and

PROBLEM event2 have a semantic medical relation TrAP,

there is a prepositional-for dependency from event1 to

event2, and where both events are in numbered argument

2 related to predicate started.

Rule1 if sameSentence¼TRUE &&

event1.class¼TREATMENT &&

event1.modality¼FACTUAL &&

event2.class¼PROBLEM &&

event2.modality¼FACTUAL &&

semantic_relation(event1, event2)¼TrAP &&

dependency_prep_for(event1, event2) &&

(Continued)

predicate(event1, Arg2, event2, Arg2)¼started

then infer relation¼Overlap;

Rule2 if sameSentence¼TRUE &&

event1.class¼PROBLEM &&

event1.modality¼FACTUAL &&

event2.class¼PROBLEM &&

event2.modality¼FACTUAL &&

semantic_relation(event1, event2)¼PIP &&

predicate(event1, Arg1, event1,

ArgModifer_Manner)¼having

then infer relation¼Simultaneous;

Rule3 if sameSentence¼TRUE &&

event1.class¼TEST &&

event1.modality¼PROPOSED &&

event2.class¼PROBLEM &&

event2.modality¼FACTUAL &&

semantic_relation(event1, event2) ¼ PIP &&

event2.precedePhraseAtFiveTokenDistance ¼ “to

evaluate” &&

then infer relation¼Overlap_After;

Rule4 if sameSentence¼TRUE &&

event1.class¼DATE &&

event2.class¼PROBLEM &&

predicate(event1, ArgModifier_Temporal, event2,

ArgModifer_Manner) ¼ developed &&

then infer relation¼Begins;

Rule5 if sameSentence¼TRUE &&

event1.class¼TEST &&

event2.class¼CLINCAL_DEPT &&

event1.precedeWordAtTwoTokenDistance ¼ “in” &&

inPredicateArgumentRelation(event1, Arg1, event2,

ArgModifer_Location) ¼ TRUE &&

then infer relation¼During;

Rule6 if sameSentence¼TRUE &&

event1.class¼CLINCAL\_DEPT &&

event1.modality¼FACTUAL &&

event2.class¼TREATMENT &&

event2.modality¼FACTUAL &&

event1.precedeWordAtTwoTokenDistance ¼ “in” &&

inPredicateArgumentRelation(event1, Arg1, event2,

ArgModifer_Location) ¼ TRUE &&

discourseExplicitRelationArg1Arg2(event1, event2) ¼
Conjunction &&

then infer relation¼During_Inv;

Rule7 if consecutiveSentence ¼ TRUE &&

event1.class¼OCCURRENCE &&

event1.modality¼FACTUAL &&

event2.class¼PROBLEM &&

event2.modality¼FACTUAL &&

event1.precedeWordAtTwoTokenDistance ¼ “after”

&&

inExplicitDiscourseRelation(event1, Arg1, event2,

Arg2) ¼ TRUE &&

then infer relation¼Before;

Rule8 if sameSentence¼TRUE &&

event1.class¼PROBLEM &&

event1.modality¼POSSIBLE &&

event2.class¼TEST &&

(Continued)
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event2.modality¼FACTUAL &&

event1.followWordAtTwoTokenDistance ¼ “on” &&

event2.precedeWordAtTwoTokenDistance ¼ “on” &&

then infer relation ¼ Before_Overlap;

Rule9 if sameSentence¼TRUE &&

event1.class¼TREATMENT &&

event2.class¼PROBLEM &&

event2.precedeWordAtFiveTokenDistance ¼ “if” &&

discourseExplicitRelationArg1Arg2(event1, event2) ¼
Condition &&

then infer relation ¼ After;

Rule10 if sameSentence¼TRUE &&

event1.class¼TREATMENT &&

event2.class¼PROBLEM &&

predicate(event1, Arg1, event2, Arg1) ¼ performed &&

predicate(event1, Arg2, event2, Arg2) ¼ underwent &&

dependency_prep_of(event1, event2) &&

then infer relation ¼ Ends;

Page 20 of 20 Original article

 by guest on N
ovem

ber 22, 2016
http://database.oxfordjournals.org/

D
ow

nloaded from
 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bau109/2635427 by guest on 21 M

ay 2024

http://database.oxfordjournals.org/

	bau109-TF1
	bau109-TF2
	bau109-TF3
	bau109M1
	bau109-T7
	bau109-T8
	bau109-T9
	bau109-APP1

