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Abstract

Capture and representation of scientific knowledge in a structured format are essential to

improve the understanding of biological mechanisms involved in complex diseases.

Biological knowledge and knowledge about standardized terminologies are difficult to

capture from literature in a usable form. A semi-automated knowledge extraction work-

flow is presented that was developed to allow users to extract causal and correlative rela-

tionships from scientific literature and to transcribe them into the computable and

human readable Biological Expression Language (BEL). The workflow combines state-of-

the-art linguistic tools for recognition of various entities and extraction of knowledge

from literature sources. Unlike most other approaches, the workflow outputs the results

to a curation interface for manual curation and converts them into BEL documents that

can be compiled to form biological networks. We developed a new semi-automated

knowledge extraction workflow that was designed to capture and organize scientific

knowledge and reduce the required curation skills and effort for this task. The workflow

was used to build a network that represents the cellular and molecular mechanisms

implicated in atherosclerotic plaque destabilization in an apolipoprotein-E-deficient

(ApoE�/�) mouse model. The network was generated using knowledge extracted from

the primary literature. The resultant atherosclerotic plaque destabilization network con-

tains 304 nodes and 743 edges supported by 33 PubMed referenced articles. A compari-

son between the semi-automated and conventional curation processes showed similar

results, but significantly reduced curation effort for the semi-automated process.

Creating structured knowledge from unstructured text is an important step for the
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mechanistic interpretation and reusability of knowledge. Our new semi-automated know-

ledge extraction workflow reduced the curation skills and effort required to capture and

organize scientific knowledge. The atherosclerotic plaque destabilization network that

was generated is a causal network model for vascular disease demonstrating the useful-

ness of the workflow for knowledge extraction and construction of mechanistically

meaningful biological networks.

Introduction

The volume of scientific knowledge has increased rapidly

in the past 50 years. Medline, the most comprehensive bib-

liographic database in the life sciences, currently indexes

more than 5000 journals and contains abstracts of more

than 20 million articles (http://www.nlm.nih.gov/bsd/

index_stats_comp.html). The number of indexed articles

per year has grown constantly: e.g. from 9547 in 1960 to

150 031 in 2013 for cancer, and from 257 in 1960 to 7287

in 2013 for atherosclerosis (http://dan.corlan.net/medline-

trend.html).

Model organism databases (MODs), e.g. WormBase (1)

and the Mouse Genome Informatics (MGI) database (2),

have been developed to store the genetic and genomic data

for sequenced species, in this example, mouse and worm.

The processes developed for literature searches and biolo-

gical data extraction leading to systematic information

capture and organization, e.g. for gene sequence and func-

tion information, are now known as biocuration.

Controlled vocabularies or ontologies such as the Gene

Ontology (GO) (http://www.geneontology.org/) have been

developed to capture the biological data found in litera-

ture. These ontologies are used consistently across different

MODs and are amenable to computer manipulation. In

this context, text mining tools for managing information

recognition and extraction have become increasingly rele-

vant (3). Text mining can help identify genes or proteins

and can be used to map them to controlled vocabularies

(e.g. gene lists, phenotypes and ontologies). Van Auken

et al. (4) showed that Textpresso, a category-based infor-

mation retrieval and extraction system developed by

WormBase, increased curation efficiency by at least 8-fold,

and perhaps by as much as 15-fold (given differences in in-

dividual curatorial speed) compared with manual curation

processes. Using the named entity recognition (NER) tool

ProMiner (5), MGI curators improved their overall effi-

ciency by around 20% without compromising the quality

of the curation (6). Despite the striking progress in biocu-

ration and text mining approaches in the context of cura-

ted databases, little progress has been made in writing

scientific knowledge in a structured and computable form.

Most curated databases are still descriptive in terms of bio-

logical entities, where the entities are not interconnected

and are not in a computable form. Hence, a new curation

challenge is to convert scientific relationships embedded in

the biomedical literature into a structured knowledge base

(7–9). Scientific knowledge curated at the system level will

help researchers rapidly query, visualize and analyse the

specific interaction networks implicated in diseases and

open new opportunities for the identification of critical

biomedical entities as therapeutic targets (10–12).

Knowledge curation into computable format requires a

well-defined structured and standardized language (13).

The two most popular modeling and data exchange lan-

guages currently in systems biology are the biological path-

way exchange language (BioPAX) and systems biology

markup language (SBML). BioPAX can be used to describe

the biological semantics of metabolic, signaling, molecular,

gene-regulatory and genetic interaction networks. It has

been used mainly for qualitative analysis and information

exchange (14). SBML is a structured eXtensible Markup

Language (XML)-based data exchange language that has

been used to model biochemical reaction networks, includ-

ing cell signaling metabolic pathways and gene regulation.

Unlike BioPAX, SBML can accommodate mathematical

expressions, which are necessary for dynamic simulations

(15).

Recently, Selventa, a biotechnology company with a

strong focus on Big Data analyses, released the biological

expression language (BEL) (www.openbel.org), which

allows knowledge modeling in a computable form. BEL

can be used to represent biological knowledge captured in

causal and correlative relationships that are triplets that

contain a subject, a predicate (representing a relationship)

and an object. It can be represented in three different ma-

chine-readable formats: in XML, resource description

framework, and BEL Script. The latter is very similar to

human language. BEL was designed to represent discrete

scientific findings and their relevant contextual informa-

tion as qualitative causal relationships that can drive

knowledge-based analytics. The language supports the col-

lation and use of scientific findings to assemble models dy-

namically. The models range from large models that can be

considered causal network knowledge base models to

small models that represent pathways. A knowledge base

encoded in BEL can be used to query, interpret, analyse
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and visualize networks (16–19). Relationship information

in a computable format serves systems biology approaches,

especially the network-based approaches that have

emerged as powerful tools for interpreting high-through-

put data (20). For example, a network-based approach

was used to explain and predict the development of obesity

and type 2 diabetes (21, 22). Similarly, Kumar et al. (23)

used causal network modeling in a drug development ap-

proach to show the anti-proliferative mechanism of action

of a novel AKT drug inhibitor.

Here, we present the first application of a novel semi-

automated knowledge extraction workflow. The workflow

allows the extraction of causal and correlative biological

relationships using text mining and automated transcrip-

tion into a system modeling language (24). Furthermore,

the system provides relevant information to users to help

narrow down the captured information into accurate cura-

ted statements. As an example of its application, we built a

computable knowledge base that represents atherosclerosis

plaque destabilization using this workflow. Atherosclerosis

plaque destabilization is the main biological process re-

sponsible for cardiovascular disease (CVD), the major

cause of mortality in industrialized countries. Indeed, the

World Health Organization estimated that 17.3 million

people died from CVD in 2008, representing 30% of all

global deaths (http://www.who.int/mediacentre/factsheets/

fs317/en/). Atherosclerosis is a chronic inflammatory dis-

ease of large arteries that can lead to fatal complications

including myocardial infarction and/or stroke. The mouse

apolipoprotein E–deficient (ApoE�/�) model of athero-

sclerosis has been used extensively to investigate human

CVD (25). Early atherogenic mechanisms are amenable to

controlled in vitro experimental perturbations; however,

advanced atherosclerotic lesions and the mechanisms lead-

ing to plaque rupture are difficult to recreate experimen-

tally. Disease modeling approaches and information

extraction methods constitute invaluable tools to overcome

these experimental limitations.

We adopted the semi-automated knowledge extraction

workflow and modeled causal and correlative relationships

extracted from original scientific publications focused on

plaque development and destabilization using the ApoE�/�

model of atherosclerosis. We then compiled the extracted

information into a knowledge network model.

Methods

The semi-automated workflow

The technical details of the knowledge extraction work-

flow have been described in detail by Fluck et al. (24).

A schematic representation of the semi-automated

knowledge extraction workflow is shown in Figure 1.

Here, the various steps are described briefly:

Step 1: Article selection

Selection of relevant articles that summarize specific biolo-

gical mechanisms involved in the atherosclerosis plaque de-

stabilization process. We narrowed the scope of the articles

to include only scientific findings derived from experiments

conducted on mice with the ApoE�/� genetic background.

Keywords, such as ‘atherosclerosis plaque destabilization’,

‘vulnerable lesion’ and ‘advanced lesions’ were used to find

relevant scientific articles in the PubMed library (http://

www.ncbi.nlm.nih.gov/pubmed). We used several review

articles that summarized the original findings to guide us

to specific articles that accurately described the mechanis-

tic pathways (26–31).

Step 2: Article processing

The pipeline requires a plain text input, which also is a

prerequisite for most other text parsing and analysis tools

and pipelines. Because most of the selected articles were

available only in PDF format and had varying layouts,

we converted the PDF files into text files with

the ABBYY FineReader 11 (http://www.abbyy.com/finer-

eader/). To retrieve a large number of causal relationships

from these documents we extracted text from the abstract,

material and method and result sections (32, 33). Relevant

passages were selected manually to avoid possible conver-

sion errors and manual corrections. We excluded the

introduction, discussion and conclusion sections because

these sections typically contain non-causal evidence, repeti-

tion of the results and descriptions of non-factual hypothe-

ses. Tables and graphics were excluded because of the

technical challenges involved in correctly parsing these

objects.

Step 3: Text mining pipeline

Recognizing relevant biological terms in a text is funda-

mental for semantic retrieval and extraction of relation-

ships. The pipeline, which was based on the Unstructured

Information Management Architecture (UIMA) (https://

uima.apache.org/), integrated and combined linguistic al-

gorithms for NER and relationship extraction. A text

document collection given as input to the pipeline can be

output as XML-based BEL (XBEL) documents, an XML

version of BEL.

For dictionary-based NER, the pipeline features

ProMiner, which was shown to be efficient in BioCreative

NER assessments (5, 34), and integrates several diction-

aries that have been optimized for use in systems biology

(24). The evaluation of ProMiner NER for human and

mouse gene/protein names achieved F-scores of 0.79
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(for human) and 0.8 (for mouse). The NER performances

of a number of dictionaries tested in the current workflow

for relationship extraction of protein function inhibitors

are shown in Table 3.

The Turku Event Extraction System (TEES), a sup-

port vector machine-based text mining system developed

at the University of Turku, Finland (35), was integrated

for the extraction of events and relations from natural

language text sources. The NER performance of TEES

was tested within the biomedical text mining (BioNLP

shared task) (http://2011.bionlp-st.org/) assessments and

reached an overall F-score of 53.3%. Relationships de-

tected by TEES are output as ‘positive regulation’ and

‘negative regulation’ and are mapped and translated to

BEL via a BEL converter within the UIMA pipeline.

Further details about the conversion process have been

described by Fluck et al. (10). The BEL converter cre-

ates BEL statements and generates two documents

(XBEL and XMI) as output. The XBEL facilitates its

transformation into an assembled knowledge network

model. It contains evidence, statements and annotations

(e.g. name spaces, experimental context and publication

details) to fully describe the BEL statements

(Supplementary File S1). The XMI document contains

information that cannot be coded in BEL but is relevant

for the curation interface (e.g. text location of the rec-

ognized entities and alternative namespaces).

Step 4: Curation interface

The workflow contains an interface that allows manual

modification of the automatically generated XBEL docu-

ments by employing the additional information from the

XMI document. The interface gives the user access to the

evidence text and highlights the results, such as named

entities and their namespaces, obtained from the previous

text mining pipeline (Figure 2). Each processed text docu-

ment can be opened in the curation interface, and users can

read each piece of selected evidence and review the specific

scientific relationships that have been represented as BEL-

compliant statements. After modification and curation

each BEL statement is re-validated automatically to guar-

antee compliant BEL syntax.

The curation interface was developed specifically to

cover the needs of users with little curation experience.

Therefore an evidence-centric display of the statements is

generated during the curation process; that is, for each

piece of evidence within the document, all full or frag-

mented causal relationships recognized by the text mining

pipeline are listed as BEL statements. Fragmented BEL

statements (e.g. subject-relationship or relationship-object)

can be assembled by the user to form new complete

BEL statements. Each BEL statement is specified by

context information: in this case, tissue, disease, cell and

species. The interface preserves the original XBEL docu-

ment and creates a copy of the modified XBEL document

based on the curation activity. After it is saved, a syntax

validation is performed based on a validator in the BEL

framework toolset and integrated into the curation

interface.

Step 5: Building the knowledge network model

The verified BEL documents were used in the BEL frame-

work toolset, which includes a compiler to generate a

knowledge network model, which is in this case, a know-

ledge assembly model (KAM), for each BEL document.

Several BEL documents were then compiled into a single

KAM and either hosted or exported into the eXtensible

Graph Markup and Modeling Language (XGMML)

format, Cytoscapes’ standard format for saving graph

layouts. The KAMs were used as the knowledge base of

structured scientific information for atherosclerosis plaque

destabilization.

Step 6: Visualization of the knowledge network model

The KAM navigator, another application in the BEL

framework, is a KAM-hosting daemon that can be ac-

cessed via Cytoscape (36) and allows the KAM to be ex-

ported into XGMML format for visualization and

network analysis. Cytoscape is used to visualize the KAM

in a dynamic view. The system also allows to integrate the

network with any type of attribute data and use various

tools for network analysis.

Evaluation of the semi-automated knowledge

extraction workflow

To assess the efficiency of the semi-automated knowledge

extraction workflow compared with conventional manual

extraction, two independent users annotated seven

full-text articles (37–43). Both annotators were scientists

familiar with BEL. The target was to extract causal and

correlative relationships that were specified and demon-

strated experimentally in the articles and code them into

BEL. No further annotation guidelines or training were

provided. One annotator extracted the relationships from

the text manually without further support, while the se-

cond annotator extracted the knowledge via the semi-auto-

mated knowledge extraction workflow. The curation time,

the number of BEL statements and the context annotations

were recorded for each article and setting (manual

vs. semi-automated). In a second step, we evaluated and

compared the resulting networks, the curation time and

the overlap of manually and automatically extracted

evidence.
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Results

The efficiency of the semi-automated curation workflow

and manual knowledge extraction was evaluated (Table 1)

and the results showed that the semi-automated knowledge

extraction workflow took less time than the conventional

manual extraction (395 min (�6 h) for semi-automated vs.

613 min (�10 h) for manual). We also found that the num-

bers of BEL statements and annotations retrieved using the

semi-automated curation pipeline were higher than those

retrieved by manual extraction (234 statements and 112 an-

notations for semi-automated against 191 statements and

46 annotations for manual) (Table 1). Furthermore, the

overall curation time as well as the curation time per BEL

statement was almost halved (1.7 min per statement for

semi-automated and 3.2 min per statement for manual) or

even lower when the annotations also are considered

(1.2 min per statement for semi-automated knowledge ex-

traction with annotations and 2.6 min for the manual know-

ledge extraction with annotations). When the extracted

evidence was compared, we found that only 7% of the sen-

tences among the manual and semi-automatically extracted

sentences overlapped. Even when the statements were ex-

tracted from the same sentences, partly different statements

were produced. An example of such differently coded BEL

statements is given in the following example where the evi-

dence was extracted from PMID: 21120482 (43): ‘capillary

vessel counting in and around primary tumors showed that

CYP4A11 transfection significantly increased microvessel

density per high-powered fields (HPF) (34.16 7.3/HPF in

control and 35.32 6 6.4/HPF in GFP group vs. 63.86 11.4/

HPF in A549-CYP4A11 group, P< 0.05)’.

Semi-automated: p(HGNC:CYP4A11) ->

bp(GOBP:angiogenesis)

Manual: p(HGNC:CYP4A11) ->

(sec(a(CHEBI:‘20-HETE’)) ->

bp(GOBP: ‘blood vessel development’))

Both statements in this example are biologically correct

but use different biological processes. In the semi-auto-

mated annotation, the statement is aligned to the informa-

tion in the original sentence, while in the manual

annotation, more precise knowledge gathered from the full

document is used (secretion of CHEBI:‘20-HETE’ in the

given example). Thus, the level of precision and use of the

different biological processes are general discrepancies be-

tween the two annotations. To obtain an automated com-

parison of the networks, we performed a topological

analysis of the semi-automated and manual knowledge ex-

tracted networks using the Network Analyzer Plugin in

Cytoscape (http://apps.cytoscape.org/apps/networkana-

lyzer). The results confirmed the ‘scale-free properties’ of

the two networks with comparable properties. Scale-free

properties of a network were first described by Barabasi

and Bonabeau (44) and Albert (45) and are defined by an

abundant presence of poorly connected nodes and a low

frequency of highly connected nodes, which is a central

characteristic of most biological networks (45).

Connections between nodes can be defined by the degree

of distribution that indicates the number of times a node is

connected to other nodes. Nodes with degrees of distribu-

tion that are higher than the average are called hubs (46).

It has been proposed that hub nodes play important roles

in a network (47, 48). As shown in Table 1, seven of the

most connected nodes are the same for both networks and

show comparable connectivity. The sec(a(CHEBI:‘20-

HETE’)) node has a larger number of connections (13 con-

nections for CHEBI:‘20-HETE’ in the manual and seven

connections in the semi-automated). In the network gener-

ated semi-automatically an additional hub node

a(SCHEM: tumstatin) was detected. In general, these re-

sults show that the semi-automated process with reduced

curation time generated networks that were similar to

those generated by manual curation. The discrepancies in

Table 1. Content of the two networks created with the semi-

automated and manual knowledge extraction processes.

Biological entities Semi-automated

knowledge

extraction

Manual

knowledge

extraction

Number of statements 234 191

Number of annotations 112 46

Overall curation time [min] 395 613

Curation time per statement [min] 1.7 3.2

Curation time per statementþ
annotation [min]

1.2 2.6

Number of nodes 149 145

Number of edges 285 251

Nodes Degree of distribution of

the most connected nodes

p(HGNC:ABL1) 13 13

p(MGI:Col4a3) 13 13

p(HGNC:FGF2) 14 14

Sec(a(CHEBI:‘20-HETE’)) — 13

P(HGNC:CYP4A11) 14 14

p(HGNC:HMGB1) 16 16

p(HGNC:VEGFA) 19 19

p(HGNC:THBS1) 16 16

A(SCHEM: tumstatin) 13 —

The semi-automated and manually created networks contain 149 and 145

nodes that are connected by 285 and 251 edges, respectively. Overall curation

time, time per statement, and the time per statement and annotation was cal-

culated. The topological analysis of the degree of distribution for both net-

works showed that the most highly connected nodes (from 13� to 19� of

distribution) were similar—namely, VEGFA, HMGB1, THBS1, FGF2,

CYp4A11, Col4a3 and ABL1. Only two of the connected nodes, 20-HETE

and Tumstatin, were different in the two networks.
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the statements and the resulting networks are a result of

the different BEL coding approaches used in the semi-auto-

mated and manual extractions. Clear annotation guidelines

may have prevented these deviations and led to a closer

match between the two networks produced by the two

approaches.

Application of BEL network generation

To demonstrate the benefits of the semi-automated

knowledge extraction workflow a case study based on

atherosclerosis plaque destabilization was defined and

a knowledge network model was constructed

(Supplementary Figure S1). Here, the knowledge network

model was assessed and the biological relevance of the net-

work that was generated using our workflow was

examined.

The scientific data based on the ApoE�/� mouse model,

a well-established model for human atherosclerosis (49,

50), include findings in mice with or without specific re-

gimes or diets. To build a network model that captured the

biological mechanisms controlling plaque destabilization,

all related causal and correlative relationships (with no

boundaries based on tissue context) described in the se-

lected articles were captured. In most studies, the causal

and correlative relationships were from the cardiovascular

system (aorta, aortic arch and carotid arteries) or from

body fluids (blood, plasma and serum).

Content of the atherosclerosis plaque destabilization

network

The atherosclerotic plaque destabilization network

(Supplementary Figure S1) created from the BEL state-

ments that were extracted from filtered articles contains

304 nodes and 743 edges supported by 33 PubMed refer-

enced articles (curated articles are listed in the

Supplementary References). The network consists of 114

protein abundances and 42 RNA abundances as well as 43

biological processes involved in atherosclerosis plaque de-

stabilization in ApoE�/� mice (Table 2). Relationships be-

tween biological entities in the network were represented

by edges that were classified broadly as causal and non-

causal edges. Causal edges represent directional cause-and-

effect relationships between biological entities and are

characterized by relationships such as ‘decrease’, ‘increase’,

‘directlyDecrease’ and ‘causesNoChange’. Non-causal

edges connect different forms of biological entities, such as

protein and RNA without any causal relationship. The

workflow identified 566 of the edges as causal and 177 as

non-causal relationships. Of the 566 causal edges, 101

showed downregulation (i.e. ‘decrease’) and 299 showed

upregulation (i.e. ‘increase’) of the target entity (Table 2).

Topological analysis based on the degree of distribution of

nodes

Topological analysis of the atherosclerotic plaque destabil-

ization network employing the Network Analyzer Plugin

in Cytoscape, confirmed the scale-free properties of the

network. When the connections between the nodes in our

network were analysed, we observed many poorly con-

nected nodes (average degree of distribution was about 4�)

and a few highly connected nodes, the hubs. Biological

processes such as ‘atherogenesis’, ‘plaque destabilization’

and ‘atherosclerosis’ were among the 10 most highly con-

nected nodes (Figure 3). Six of the 10 most connected hub

nodes (from 41� to 28� of distribution) were the CD40 lig-

and (CD40LG), the chemokine ligand CCL2, collagen

COL1A1, tissue inhibitor of metalloproteinase 1 (TIMP1),

avian leukemia oncogene 2 (ETS2) and the matrix metallo-

peptidase 9 (MMP9) (Figure 3); one of the hub nodes was

Ile2-angiotensin II (17), a potent inhibitor of the AT-1 re-

ceptor. The high degrees of distribution for these protein

nodes suggested that they may have important regulatory

roles in the atherosclerosis plaque destabilization network.

The CD40LG node had the largest degree of distribution

(41), suggesting a central role for this ligand in the athero-

sclerosis plaque destabilization network. The CD40LG

Table 2. Summary of the contents of the atherosclerosis

plaque destabilization network.

BEL function Number

of nodes

Abundance (chemicals or lipids) 33

Protein abundance 114

RNA abundance 42

Gene abundance 1

Complex abundance 17

Composite abundance 4

Molecular activity 2

Peptidase activity 8

Kinase activity 6

Catalytic activity 4

Transcriptional activity 1

Degradation 4

Cell secretion 12

Biological process 43

Pathology 13

BEL relationship Number

of edges

Decrease 97

Increase 299

CausesNoChange 166

DirectlyDecrease 4

Causal relationships 566

Non-causal relationships 177

Page 8 of 14 Database, Vol. 2015, Article ID bav057

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav057/2433190 by guest on 06 M

ay 2024

http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav057/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav057/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav057/-/DC1


F
ig

u
re

3
.

A
th

e
ro

sc
le

ro
si

s
p

la
q

u
e

d
e

st
a

b
il
iz

a
ti

o
n

n
e

tw
o

rk
sh

o
w

in
g

th
e

d
e

g
re

e
o

f
d

is
tr

ib
u

ti
o

n
o

f
n

o
d

e
s.

B
io

lo
g

ic
a

l
E

n
ti

ti
e

s
o

r
N

o
d

e
s.

P
in

k
ci

rc
le

s
in

d
ic

a
te

th
e

1
0

m
o

st
co

n
n

e
ct

e
d

n
o

d
e

s
(f

ro
m

4
1
�

to
2

8
� )

d
e

fi
n

e
d

a
s

h
u

b
s.

F
ro

m
le

ft
to

ri
g

h
t,

th
e

h
u

b
n

o
d

e
s

a
re

Il
e

2
-a

n
g

io
te

n
si

n
II

(1
7

),
p

la
q

u
e

d
e

st
a

b
il
iz

a
ti

o
n

,
E

T
S

2
,

C
C

L
2

,
T

IM
P

1
,

M
M

P
9

,
a

th
e

ro
sc

le
ro

si
s,

C
O

L
1

A
1

,
a

th
e

ro
g

e
n

e
si

s
a

n
d

C
D

4
0

L
G

.
R

e
la

ti
o

n
sh

ip
s

o
r

e
d

g
e

s.
G

ra
y

li
n

e
s

w
it

h
a

rr
o

w
s

in
d

ic
a

te
p

o
si

ti
v

e
ca

u
sa

l
re

la
ti

o
n

sh
ip

s;
fi

n
e

d
o

tt
e

d
li
n

e
s

w
it

h
T

s
in

d
ic

a
te

n
e

g
a

ti
v

e
ca

u
sa

l
re

la
ti

o
n

sh
ip

s;
g

ra
y

si
n

e
w

a
v

e
s

in
d

ic
a

te
co

rr
e

la
ti

v
e

re
la

ti
o

n
sh

ip
s;

a
n

d
fi

n
e

d
o

tt
e

d
li
n

e
s

in
d

ic
a

te
n

o
n

-

ca
u

sa
l
re

la
ti

o
n

sh
ip

.

Database, Vol. 2015, Article ID bav057 Page 9 of 14

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav057/2433190 by guest on 06 M

ay 2024



gene is a member of the tumor necrosis factor gene super-

family that is expressed mainly on CD4þ T cells, platelets,

monocytes, macrophages, B cells and endothelial cells.

When CD40LG binds to its receptor, it was found to pro-

mote the recruitment of leukocytes to lesions, favor inflam-

mation and potentially promote atherogenesis and plaque

destabilization (47, 51, 52).

CD40LG interacts with other hub nodes

The network shows upregulation of ‘cell adhesion’, ‘hem-

orrhage’, ‘atherogenesis’ and ‘platelet aggregation’ by

CD40LG, which is consistent with its reported proathero-

genic and inflammatory effect (53). Additionally, the

CD40LG interactions show a general trend towards pro-

inflammatory signaling with an increase in the inflamma-

tory chemokines CCL2 and CCL5 associated with an

increase of macrophages and TH1 T cell markers. Indeed,

our atherosclerotic plaque destabilization network high-

lights the upregulation of the CD4 T cell glycoprotein by

CD40LG via both a direct action and an indirect CCL2

pathway as well as the simultaneous downregulation of the

CD8 T cell glycoprotein by CD40LG (Figure 4). These re-

sults suggest that the network recapitulates the important

role of adaptive immunity and CD40LG in atherosclerosis

plaque progression and destabilization reported previously

(54, 55). Apart from the inflammatory pathways, the other

highly connected hub nodes, CO1A1, TIMP1, ETS2 and

MMP9, were found to be associated with extracellular ma-

trix reorganization or degradation in the atherosclerotic

plaque destabilization network.

Discussion and Outlook

In this work we describe a workflow that consists of an

automated BEL text mining pipeline and a curation inter-

face that can simplify and accelerate knowledge extraction

and representation from published literature. The novelty

of this work resides in the workflow, which is a valuable

tool for users with little curation experience rather than for

experienced curators. This was achieved mainly by using

BEL and a curation interface that consolidates relevant in-

formation and allows the curation to be performed at the

assembled knowledge level instead of the more commonly

used entity recognition level.

The relevance of this work is supported by the growing

number of publications and unstructured knowledge sour-

ces that are now available, making it imperative to develop

ways to code biological knowledge in a computable for-

mat. The linguistic tools (e.g. ProMiner and TEES) that

have been implemented in our text mining pipeline support

this process and combine a high recall of biomedical entity

relationships with a manual curation process to ensure

high precision in knowledge extraction. The semi-auto-

mated text mining pipeline extracts and converts causal

and correlative relationships between biomedical entities

into BEL statements that can be reviewed and corrected by

the user. Combined with the human-readable knowledge

coding language, BEL allows curation to be performed by

any user with knowledge in the biological domain. The

underlying technology and curation process scales well

with increasing numbers of relevant articles.

As proof of concept, we demonstrated the efficiency of

the process by constructing knowledge network models

that were visualized using freely available software. The

atherosclerosis plaque destabilization network model that

was generated using this workflow consists of 304 nodes

and 743 edges representing scientific details in a structured

cause-and-effect BEL format that also can be read by non-

experts because of its strong similarity to natural scientific

language. The atherosclerosis plaque destabilization net-

work accurately described the important role of CD40LG

in the regulation of chemotaxis, the immune and inflam-

matory responses, and extracellular matrix disassembly

(Supplementary Figure S1).

The semi-automated knowledge extraction workflow

presented here detected biological entities (e.g. genes and

proteins) with high recall; however, the detection of lipids

and chemical compounds was less efficient. The recall rate

for gene and protein names was �93%, but only 66% and

75% for chemical compounds in the Chemical Entities of

Biological Interest (ChEBI) dictionary and SCHEM

(OpenBEL names for chemicals, drugs, and other molecule

abundances that have not yet been mapped to any other

namespace), respectively (Table 3).

To assess the efficiency of the semi-automated know-

ledge extraction workflow, we compared the manual and

semi-automated curation processes using seven randomly

selected full text publications (37–43). A comparison of

the resulting networks showed that the two extraction

processes produced overall similar networks that contained

the same hub proteins, although compared with the man-

ual process, the semi-automated process generated a higher

number of nodes, edges and annotations (Table 1). The as-

sisted curation time was approximately half (40–54%)

that of the manual curation time. However, the method-

ology underlines the relevance of annotation guidelines be-

cause knowledge statements are expected to deviate from

curator to curator, even when the same methodology is

used.

Current efforts are focused on assisting users to format

tables and lists into BEL statements because these know-

ledge sources are structured differently from natural lan-

guage text. Extending the system by incorporating this

technology, we expect to see a significant increase in recall.
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To further improve the rate of recall and automated entity

recognition, additional dictionaries with more exhaustive

lists of compounds (e.g. lipids) together with suitable nor-

malization methods need to be implemented into the text

mining pipeline. Moreover, custom dictionaries, based on

namespace gaps identified during the curation process,

should also be developed to improve biomedical entity rec-

ognition and knowledge extraction.

In the next generation of the text mining pipeline, the

system will be enhanced by implementing the best-per-

forming TEES 2.1 (56), which originally was designed and

evaluated in the BioNLP Shared Task 2013. TEES 2.1 now

Inoue et al,   2002 PMID: 12438296 
SET Evidence = "CD40 immunoreac vity in plaques was markedly 
increased in empty plasmid transfected mice but was not 
markedly increased in 7ND transfected mice compared with the 
baseline group"

p(MGI:CCL2) -> p(MGI:CD40)

r(MGI:AGTR2)

a(CHEBI:"Ile(5)-
angiotensin II (1-7)”)

p(MGI:ETS2)

r(MGI:MMP9)

r(MGI:NOS2)

r(MGI:Ccl9)

r(MGI:CD86)

cat(p(MGI:MMP2))

p(MGI:TIMP1)

p(MGI:MMP9)

p(MGI:COL1A1)

cat(p(MGI:MMP9))

r(MGI:Arg1)

p(MGI:Lamp2)

p(MGI:ISG20)

p(MGI:CD4)

p(MGI:CCL5)

p(MGI:CCL2)

p(MGI:CCR2)

p(MGI:IL6)

composite(p(MGI:CD8A)
,p(MGI:CD8B))

p(MGI:CD8A)

p(MGI:IFNG)

sec(p(MGI:CCL2))

p(MGI:CD40LG)

complex(p(MGI:ISG20)
,p(MGI:FOXP3))

p(MGI:PRF1)

sec(p(MGI:PRF1))
p(MGI:CD8B)

complex(p(MGI:CDK11B)
,p(MGI:Ly6c1))

p(MGI:CDK11B)

p(MGI:Ly6c1)

sec(p(MGI:CD40LG))

p(MGI:FOXP3)

complex(p(MGI:ITGA2B)
,p(MGI:CDK11B))

r(MGI:IL1B)

Figure 4. Part of the network showing CD40LG and its interactions with other hub nodes. Biological entities or nodes. CD40LG is indicated in red, and

the nodes that are regulated by CD40LG are indicated in blue. An example of evidence extracted from Inoue et al. (53) (PMID: 12438296) with the

semi-automated extraction workflow and the associated BEL statement are given in the two boxes on the bottom left of the figure. Square, RNA abun-

dance; triangle, protein abundance; V shape, protein activity; hexagon, complex; diamond, secretion. (B) Relationships or edges. Lines with dark

arrows indicate positive causal relationships; lines with dark Ts indicate negative causal relationships; black sine waves indicate correlative relation-

ships and black dotted lines indicate non-causal relationships.

Table 3. Evaluation of the efficiency of BEL text mining.

Dictionary Overall entity count

in gold standard

Recall rate initial

version (%)

Recall rate final

version (%)

Genes/protein (HGNC) 1673 80 93

Chemical compounds (ChEBI) 218 15 66

Chemical compounds (SCHEM) 575 30 75

Chemical compounds (ChEBIþ SCHEMþChEMBL) 793 Not determined 91

Selventa-human-complex 45 40 46

GO-complex 45 Not determined 64

Selventa-human-complexþComplex 45 Not determined 82

GO-function 66 22 Not determined

Selventa-human-families 66 8 77

The recall rate statistics (i.e. the numbers of existing BEL names that were detected) are shown as well as the counts in the manually annotated reference corpus

composed of 1348 sentences and 2577 annotations.
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includes models for the recognition of relationships in

pathways (especially protein-chemical compound relation-

ships) and models trained specifically for relations between

proteins or chemicals and biological processes. These im-

provements will likely result in a significant increase in the

precision of relationship identification.

Computable BEL, which was the main facilitator for

the semi-automated creation of knowledge network mod-

els, has also been used to interpret ‘omics’ data (18, 20,

57). It is clear that the creation of computable networks

representing the current understanding of biological proc-

esses is a crucial step in analyzing systems biology and

systems toxicology data, which are characterized by multi-

dimensional high-throughput data (Big Data). Various

algorithms have been developed for the computational

analysis of Big Data in biological networks and to quan-

tify network perturbations. The network presented here

can be populated with a downstream layer that allows re-

verse causal reasoning (20) or network perturbation ampli-

tude can be calculated (18, 58) on high-throughput gene

expression data. The text mining pipeline can be tested

through a web service via the URL: http://www.scaiview.

com/belief

Conclusions

Creating structured knowledge from unstructured text in

publications is an important step for the reusability of

knowledge. Here, we described a semi-automated know-

ledge extraction workflow that was designed to reduce

curation effort and increase recall of causal relationships

compared with manual curation. By curating directly

at the knowledge level using a knowledge syntax that is

close to human language, the curation task was shifted

from the expert curator to users with biological domain

expertise. The system is scalable, which will allow it to

keep pace with the rapidly increasing number of publica-

tions. Moreover, the structured knowledge is computable,

which will help in the interpretation of Big Data. The

plaque destabilization network presented here provides

an easily accessible representation of the main vascular

events that lead to plaque rupture and its complications.

Supplementary Data

Supplementary data are available at Database Online.
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