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Abstract

Analysis of scientific and clinical phenotypes reported in the experimental literature has

been curated manually to build high-quality databases such as the Online Mendelian

Inheritance in Man (OMIM). However, the identification and harmonization of phenotype

descriptions struggles with the diversity of human expressivity. We introduce a novel

automated extraction approach called PhenoMiner that exploits full parsing and concep-

tual analysis. Apriori association mining is then used to identify relationships to human

diseases. We applied PhenoMiner to the BMC open access collection and identified

13 636 phenotype candidates. We identified 28 155 phenotype-disorder hypotheses cov-

ering 4898 phenotypes and 1659 Mendelian disorders. Analysis showed: (i) the semantic

distribution of the extracted terms against linked ontologies; (ii) a comparison of term

overlap with the Human Phenotype Ontology (HP); (iii) moderate support for phenotype-

disorder pairs in both OMIM and the literature; (iv) strong associations of phenotype-

disorder pairs to known disease-genes pairs using PhenoDigm. The full list of

PhenoMiner phenotypes (S1), phenotype-disorder associations (S2), association-filtered

linked data (S3) and user database documentation (S5) is available as supplementary

data and can be downloaded at http://github.com/nhcollier/PhenoMiner under a Creative

Commons Attribution 4.0 license.
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Introduction

Phenotype descriptions of anatomy, physiology and behav-

iour such as ‘weak extraocular muscles’ and ‘increased intra-

ocular pressure’ form the basis for determining the existence

and treatment of a disease against the given evidence. In

recent years, significant effort has been spent to generate

standardized phenotypic vocabularies for a variety of organ-

isms [called ‘ontologies’, e.g. Human or Mouse Phenotype

Ontologies (1, 2)] and progress has been made to exploit

these resources for automatic judgements on the genetic

causes of diseases both for human, e.g. Decipher (3) and infer-

ring from animal models (4–6). However, such systems rely

on phenotype data that is coded to ontological concepts, data-

base entries or domain-specific nomenclatures. Given further

progress in phenotype encoding, we will have clinical and bio-

medical data resources aligned through phenotypic descrip-

tions and clinicians exploiting the findings from molecular

biology for the evaluation of individual genetic dispositions

against the differential diagnosis under scrutiny. In this article

we contribute to this goal by proposing a novel approach for

automatically extracting phenotypes from the scientific litera-

ture using text/data mining as shown in Figure 1. Text-mined

phenotypes should shorten the work of ontology curators

involved in knowledge discovery and integration as well as

providing evidence to life scientists and clinicians about phe-

notype associations with disorders.

Phenotype descriptions are syntactically and semantically

complex because authors exploit the full expressivity of

language. Previous computer-based approaches have

employed localized patterns, either within a rule-based (7)

or machine learning based framework (8, 9). Collier et al.’s

(10) previous work using a fully supervised approach high-

lighted the issue of overfitting on a disease domain as well

as the fragility of employing the one-class-per-span assump-

tion that is common in named entity approaches. As illus-

trated in Figure 2, the approach we employ here is the first

to explicitly make use of full parsing to create a semantically

typed phrase structure tree. By using a tree-matching algo-

rithm the method is capable of handling the disjoint nature

of phenotypic mentions, e.g. the separation of abnormal

and fourth ventricle in the relative clause the fourth ventricle

that appeared abnormal. The approach is also capable of

capturing the nested semantics required by phenotypes. We

make use of a variety of extant ontologies (e.g. for human

anatomical and gene terms) within an entity-quality (EQ)

framework to identify phenotype candidates and validate

them against disease association profiles in the Online

Mendelian Inheritance of Man (OMIM) database (11).

We also deliver a database of phenotype information. The

database along with a search box and REST interface and

user guide is available from http://phenominer.mml.cam.ac.

uk/index.html. The search interface offers stratified refine-

ment of the search result by phenotype, ontology, associated

disorder or P-value. Each entry contains links to ontologies

allowing for a decomposed EQ representation of the pheno-

type along with PubMedCentral (PMC) indexes to full-text

Figure 1. Overview of PhenoMiner illustrating the flow of data from the literature, to text mining, to association discovery and into an integrated

semantic representation.
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articles and Medline abstracts where evidence about the phe-

notype occurs. The database covering phenotypes related to

abnormal anatomical structures is evaluated intrinsically for

quality and coverage against the existing standard in the

Human Phenotype Ontology (HP) and extrinsically using

data mining for phenotype-disorder associations against a

human-curated gold standard in OMIM. Potentially there is

a huge space of phenotypes given all of the EQ combinations.

This work allows us to begin to answer questions about

which forms are actually used in scientific discourse and to

harness these for human curation and bioinformatics applica-

tions on data in the scientific literature.

System and methods

What is a phenotype?

In biology phenotypes are often considered to be observable

characteristics of an organism (8), whereas in medical con-

texts the term phenotype is usually considered to denote a

deviation from normal morphology, physiology or behav-

iour (12). This is the working definition that we adopt here

and is of particular relevance when considering the profiles

of diseases recorded in the free-text literature. In terms of

the automated acquisition of phenotypes from text, what

makes this task particularly challenging is that it encom-

passes a range of basic semantic types (e.g. cells, tissues, bio-

logical functions) and text types, e.g. scientific texts, clinical

trial reports, electronic patient records (EPRs).

Data sampling

Evidence for phenotype mentions was gathered from the

207 000 document BMC full-text corpus (http://www.bio-

medcentral.com/about/datamining) using sentences con-

taining a set of context triggers designed to capture

abnormalities. We note that triggers which imply more

specific abnormalities such as atroph* and hypoplast* will

be applied in future studies. The context triggers consisted

of the following stems: {abnormal* j characteristic*j

Figure 2. Semantic representation of a text fragment in the PhenoMiner system. Keyword search identifies the potential trigger word unusual causing the sen-

tence to be selected for grammatical parsing. The adjectives thickened and median along with the common noun nerve are identified and their corresponding

ontology terms are mapped as shown. A semantically typed regular expression then guides the system to select the phrase as a phenotype candidate.
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aberra* j defect* j atypical* j unusual* j irregular* j
anomal* j unhealthy j inactiv* j inadeq*}. The set of triggers

was selected based on a core set of synonyms for ‘abnormal’

provided in PATO:0000460. This was then expanded by a

computational linguist (NC) using resources such as

WordNet and manual analysis of contexts in Medline and

EPRs. At this stage we placed no restriction on the domain of

the article, so phenotypes may be mined from any organism

or type of study. Pruning the set of mined candidate pheno-

types to those most relevant for disorders in humans is done

later through association rule (AR) mining on the set of

OMIM diseases (see Association Data Mining section).

Text/data mining

Text mining is the application of natural language processing

(NLP) to the acquisition of structured information from

unstructured texts. Recent use cases include the ShARE/CLEF

(13) EPR curation and BioCreative gene curation challenges

(14) which provide controlled test suites for system developers.

The PhenoMiner (PM) system pipeline is outlined in

Figure 3. The principal modules are now briefly discussed.

1. Data sampling: As described in Data Sampling section;

2. Data cleansing: split and tokenize the sentences using

the GENIA tagger (15) trained on the GENIA Medline

abstract corpus;

3. Parsing: phrase structure parsing takes place using the

BLLIP/Charniak-Johnson parser (available from

https://github.com/ BLLIP/bllip-parser); (16) trained on

the GENIA corpus as labelled data and PubMed;

4. Named entity recognition: biomedical entities were

tagged using thePM NER tagger (17) and the GENIA

tagger. This allows us to include semantic labels about

anatomical entities, disorders, genes, proteins and other

entities that might not be matched in the external

vocabularies of the NCBO Annotator.

5. Concept annotation: text spans corresponding to con-

cepts in external vocabularies were recognized using

the NCBO Annotator (18) and their links recorded. See

Concept Annotation section;

6. Tree assembly: using the phrase structure parse tree as a

frame, the lexical leaf nodes were transformed to encode

the semantic features extracted from earlier stages;

7. Relation identification: phenotypes were extracted

based on a set of patterns encoded in Stanford

Tregex (19);

Figure 3. Text/data mining pipeline showing processes and resources. Highlighted indexes correspond to steps in Text/Data Mining section.
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8. Data formatting: the raw data from phenotype identifi-

cation was transformed into XML using custom Perl

scripts that encoded the term, its identifier, the date

when the annotation was made, links to external

vocabularies, associated OMIM disorders (found from

Apriori associations) and links to occurrences of the

phenotype in the literature.

The pipeline was implemented and run on a twenty-

four 2.66 GHz Xeon core server running on Ubuntu Linux

9.04. Various programming languages are used to imple-

ment the algorithms with process flow control scripts in

Perl.

Concept annotation

Free-text phenotypes require disambiguating in order to

make clear the similarity between different surface forms.

Harmonization (also called ‘normalization’) can be

approached by decomposing the free-text phrase and map-

ping to unique identifiers in external semantic resources

such as ontologies. The task is complex and challenging

because the same free-text phrase can refer to different

ontological concepts in different contexts (e.g. high blood

pressure as either Elevated diastolic blood pressure

(HP:0005117) or Elevated systolic blood pressure

(HP:0004421) or Hypertension (HP:0000822)). A variety

of techniques have been employed such as heuristics (e.g.

choosing the most common sense), comparing matching

similarity on the words in the phrase, using local contex-

tual features, acronym expansion, as well as more complex

techniques such as topical coherence.

Because of its stability and wide range of underlying

ontologies we chose to use the National Center for

Biomedical Ontology (NCBO) Annotator. NCBO

Annotator is available as a Web service that exploits regu-

lar expression matching to identify heterogeneous biomedi-

cal concepts in a range of ontologies in the Unified

Medical Language System (UMLS) (20) and BioPortal

(21). We chose several that are of particular relevance to

the composition of phenotypes such as the HP (1),

RxNORM (22), ChEBI (23), Gene Ontology (GO) (24),

the Phenotypic Attribute and Trait Ontology (PATO) (25),

Mouse Adult Gross Anatomy Ontology (MA) (26), the

Human Disease Ontology (DOID) (27), Mammalian

Phenotype Ontology (MP) (2), SNOMED CT (28), OMIM

(11) and the Foundation Model of Anatomy (FMA) (29).

Tregex

Because phenotype mentions occur in a variety of syntactic

environments many different patterns are required to capture

them. Traditional regular expressions are fragile for capturing

terms with disjoint parts and require substantial effort to

develop and post-filter. As evidenced by shared evaluations

such as BioNLP (30) we believe that full parsing technology

is now robust enough to handle the scientific literature.

In these experiments we have explored syntactic pat-

terns that occur in a context of abnormal phenotype mor-

phology. This led to 134 939 phenotype phrase structure

trees being mined. Below is a list of the patterns in

Stanford Tregex form that capture these phenotypes.

Patterns were hand crafted based on a set of semantic

frames focused on PATO modifiers and careful analysis of

examples in the literature. Lexical constraints on the leaf

nodes have been replaced with regular expressions for

matching to semantic constraints on the set of predicated

ontology categories (SEM) attached to each word in the

sentence, e.g. PATO corresponds to a word that is linked

to a PATO concept. Each pattern is followed by an illustra-

tion of the type of text fragment which it matches (the sur-

rounding text has been omitted for brevity). An illustrative

example is shown in Figure 4. Note that non-leaf labels

correspond to grammatical phrase structure categories

such as DT for determiner, NN.? for any type of noun, JJ

for adjective and CC for a conjunction. Future work will

look at comparing our hand-crafted Tregex patterns to

patterns discovered using machine learning.

1. NP< (JJ< (SEM< /PATO/) þþ (/NN.?/ < (SEM </

FMAjRXNORMjCHEBIjMA/))). e.g. a large dilated

esophagus. In this pattern we are filtering for noun

phrases (NP) that contain a child (<) adjective (JJ)

which matches to a PATO concept. The adjective

should have a sister (þþ) noun (NN.?) that matches to

a concept in FMA, RxNORM, CHEBI or MA.

2. NP < ((ADJP < (JJ < (SEM < /PATO/))) þþ (/NN.?/

< (SEM </FMAjRXNORMjCHEBIjMA/))), e.g.

abnormally long polyglutamine tract

3. NP < ((NP < (JJ < (SEM < /PATO/))) þ CC (NP <

(NN < (SEM< /FMAjRXNORMjCHEBIjMA/)))), e.g.

severe burns and solid organ injuries

4. NP < (JJ < (SEM < /PATO/) þþ (/NN.?/ < (SEM < /

MPjHP/))), e.g. abnormal tongue position

5. NP < ((ADJP < (JJ < (SEM < /PATO/))) þþ (/NN.?/

< (SEM </MPjHP/))), e.g. a very short life span

6. NP < ((NP < (JJ < (SEM < /PATO/))) þ CC (NP <

(NN < (SEM </MPjHP/)))), e.g. abnormal dentition

and delayed tooth eruption

7. NP < (JJ < (SEM < /PATO/) þþ (/NN.?/ < (SEM </

DOIDjORDOjOMIM/))), e.g. right quadrant pain

8. NP < ((ADJP < (JJ < (SEM < /PATO/))) þþ (/NN.?/

< (SEM </DOIDjORDOjOMIM/))), e.g. intrapartum/

early neonatal death
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9. NP < ((NP < (JJ < (SEM < /PATO/))) þ CC (NP <

(NN < (SEM </DOIDjORDOjOMIM/)))), e.g. slow

healing and excessive scaring

Formatting

Since many phenotypes occur only rarely, we decided to

keep only those 9792 candidates that have a document fre-

quency (df) of 10 times or more in a search of PMC

(abstracts and full texts) using the phenotype term in the

E-utilities Web interface. In total 12 747 phenotype candi-

dates (93.5%) returned one or more PubMed identifiers

(PMIDs). 8033 (58.9%) had df� 25. 281 phenotype candi-

dates (2.1%) had df� 10 000. Examples of very low docu-

ment frequency phenotypes in PMC include heritable

inverted teat defect, multiple platelet defects and promi-

nent atypical cannabinoid receptor. High-frequency phe-

notypes include abnormal liver function behaviour and

heart defects. In general low-frequency phenotypes are typ-

ically quite long and might contain descriptive qualifiers,

conjunctions or lists. For example, (i) prominent midline

neural tube defect (df¼ 6) and neural tube defect

(df¼1186), and (ii) cautious abnormal gait strategies

(df¼2), cautious abnormal gait (df¼ 5), abnormal gait

strategies (df¼ 62) and abnormal gait (df¼ 504). The full

list of 9792 extracted phenotypes with df� 10 along with

linked concept identifiers and PMIDs is contained in

Supplementary material S1.

Association data mining

In order to find significant associations between phenotype

candidates and disorder terms we chose to use literature

indexing as our intermediate feature set. Mining term asso-

ciations using topical annotations has a long history, (31)

who looked at evidence to support a therapeutic relation

between Curcumin Longa and retinal diseases based on

MeSH profiles in the literature. In our case we wanted to

know whether there is association-based evidence for

known or possibly novel phenotype-disease relations that

can be verified against human curated standards.

Disorder data: Synonyms play an important role in

identifying disorder concepts. For example ‘Leopard syn-

drome’ can include synonyms such as ‘Gorlin syndrome’,

‘Cardiocutaneous syndrome’ and ‘Lentiginosis profusa

syndrome’. Query expansion in this way increases the

available evidence considerably. We chose the list of

OMIM disorders and their synonyms provided by the

Merged disease vocabulary (MEDIC) (32, 33) which uni-

fies OMIM terms with Disease subtree of the National

Library of Medicine’s Medical Subject Headings (MeSH).

We used the July 2014 build (http://ctdbase.org/down

Figure 4. Example of semantic tree matching with a Tregex rule.

Page 6 of 12 Database, Vol. 2015, Article ID bav104

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav104/2433235 by guest on 30 April 2024

,
PubMed Central (
)
-
,
a
b
,
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav104/-/DC1
e.g. [
] 
if 
[
] 
http://ctdbase.org/downloads/


loads/) and selected all terms with an OMIM alternative

disease identifier. From these we created an intermediate

file consisting of the disease name and all synonyms which

we searched for in PMC E-utilities using the same query

syntax for phenotypes.

All PMIDs that were returned were unified by labelling

with the canonical disease name in MEDIC (e.g. ‘Leopard

syndrome’). For individual search terms we restricted the

search to return 10 000 PMIDs but because of the synonym

expansion the cumulative totals (illustrated below) were

higher in some cases.

In total 2885 disorders returned one or more PMIDs.

2426 disorders (84%) had df� 25 623 disorders (22%)

had a cumulative df� 10 000. Examples of very low-

frequency disorders in PMC include Bothnia retinal dystro-

phy, congenital preauricular fistulae and Joubert syndrome

6. High-frequency disorders include Schizophrenia,

Hodgkin disease and Type 2 diabetes mellitus.

Apriori: After discovering phenotype candidates we

post-filtered them by frequency of association with human

disorders. Motivated by the studies of association mining

concept relations (34) and (35), we explored the use of the

R Apriori algorithm (36) for identifying disorder-

phenotype rules. AR mining attempts to discover rules

between frequently co-occurring items in a transaction

data set. A typical use case scenario is discovering products

that are often purchased together. In our case we want to

discover rules of the form P! D, where P (the antecedent)

is drawn from the set of phenotypes we discovered previ-

ously, and D (the consequent) is drawn from the set of

OMIM disorders. The set of OMIM disorders and their

synonyms was obtained from MEDIC (32). PMIDs are

used to label the transaction items and are found for each

phenotypes and disorder by querying the PMC E-utils

RESTful Web Service with the phrase or the disorder in the

‘term’ field and ‘retmax’ set to 10 000.

In contrast to our approach, Razan et al. [34] investi-

gated AR mining on EPRs and focused on 114 skeletal dys-

plasias. Using NCBO Annotator with HP as the target

ontology they looked at identifying the set of phenotypes

for a disorder, i.e. pathognomonic features. They applied a

novel association mining algorithm with measures of com-

monality and confidence in place of standard support and

confidence. In future work we would like to compare

Apriori to their method using our data.

The input to Apriori is a database containing a list of

transactions, each with a unique PMID identifier. For

example one transaction was obtained with

PMID 18 852 161 containing the terms {d/Marfan

Syndrome, p/abnormal chest signs, p/abnormal connective

tissue, p/abnormal connective tissue structure, p/abnormal

tissue pathology, p/abnormal weight control}, where the

suffix d denotes a disorder and p denotes a phene.

We applied Apriori using the following parameters to

obtain a set of meaningful ARs: sup¼0.00000025,

conf¼0.1, minlen¼2, maxlen¼2, target¼‘rules’. A further

threshold was a minimum document frequency of 10 for

phenotypes. Where, (i) sup: is the minimum support for an

itemset (e.g. {d/Marfan Syndrome, p/abnormal connective

tissue})). With approximately 7 million item sets over

12 675 items, support corresponds to a restriction of two

documents containing the phene-disorder association. This

low level was set to capture as wide a range of associations

as possible and to allow users of the data to apply their

own filtering on the data. The mean and median support

were 1543 and 20 document associations respectively.

Maximum support was for 30 000 document associa-

tions. (ii) conf is the minimum confidence for rules and

corresponds to the conditional probability of the disorder

given the phene, e.g. P(d/Marfan Syndromejp/abnormal

connective tissue). The mean and median confidence were

0.34 and 0.20, respectively. Maximum confidence was 1.0.

(iii) minlen is an integer value for the minimum number of

items in the rule set, i.e. the minimum cardinality of the

rule set, (iv) maxlen is an integer value for the maximum

number of items in the rule set and (v) target is a character

string indicating the type of association to be mined. The

mined rules are post-filtered so that only those of type

{phenotype}! {disorder} are retained. P values for each of

the extracted rules were used to allow ranking of the ARs.

These are calculated using Fisher’s exact test on the contin-

gency table within Apriori and are provided in

Supplementary materials S2 and S3.

Experimental setup

This study provides a quantitative and a qualitative assess-

ment of the mined phenotypes. The goal of the quantitative

assessment was (i) to characterize the mappings of PM

terms according to a range of biomedical ontologies; (ii) to

evaluate the coverage of PM terms with respect to the

human-curated gold standard in HP using the Bio-LarK

concept recognition system (http://biolark.org/) and to

stratify this coverage by affected anatomical system in the

HP concept hierarchy; (iii) to evaluate the quality of phe-

notype-disorder associations from Apriori against the

OMIM database (http://omim.org/) gold standard; (iv) to

benchmark the quality of PM terms against HP terms for

discovering known gene-disorder associations. Evaluation

was performed by PhenDigm (6), a system for semantic

mapping of clinical features observed in humans and

mouse.
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Results

Using the text-mining pipeline we were able to extract

13 636 phenotype terms from the BMC collection.

These were filtered in two stages: first we searched for

the terms in PMC and removed any term with a docu-

ment frequency of less than 10. Then we applied AR

mining on the set of remaining terms and a collection of

disorder terms from OMIM (described later). We

retained a set of 4898 terms that were found to be

highly associated with disorders available in

Supplementary material S2. These terms were then for-

matted in XML and are provided along with semantic

links to the ontologies described in Concept Annotation

section as well as PMIDs to full-text and Medline

abstracts from the PMC Web service (available in

Supplementary material S3).

Quantitative evaluation of PM concept mappings

Table 1 shows the distribution of mappings to external

vocabularies found by NCBO Annotator. The results how-

ever represent approximate values due to factors such as

unmatched synonyms or unrecognized word ordering

(false negatives) and incorrectly resolved polysemy (false

positives).

Because all the Tregex patterns required a PATO entity,

it is not surprising to find a high incidence of these terms.

Moreover, given the coverage and granularity of

SNOMED CT, it is also unsurprising to find high coverage

there. HP and FMA are well represented with nearly half

of our candidates having a mapping to some concept (see

manual analysis in Quantitative Evaluation of HP

Coverage section). It is encouraging to find a moderate

number of mappings to rare disorders in DOID and

ORDO. The very low number of mappings to GO prob-

ably reflects the focus of the context trigger words on ana-

tomic structures rather than processes.

Quantitative evaluation of HP coverage

PM terms and HP concepts have been automatically

aligned using a second concept recognition system called

Bio-LarK (37). Bio-LarK uses an information retrieval

approach to index and retrieve HP concepts, combined

with a series of linguistic techniques to perform term nor-

malization and decomposition (e.g., token lexical varia-

tion). In addition to standard concept recognition, the

system is able to decompose and align conjunctive terms

(e.g. short and broad fingers aligned to HP:0009381 Short

fingers and HP:0001500 Broad fingers), as well as recog-

nize and process non-canonical phenotypes, such as fingers

are short and broad which would be aligned to the same

terms as in the previous example. Bio-LarK has been exten-

sively tested and achieved 86.2% F-Score on a set of 2075

manually crafted HP test suites that included a varied

range of tests from length-based cases to canonical vs. non-

canonical ordering, coordination or synonymy.

Using the set of 4898 terms we were able to obtain a

successful complete or partial HP mapping against 10 900

HP terms for 2254 PM terms. The complete set of inferred

HP maps from Bio-LarK are provided within

Supplementary material S3. By comparing the PM to HP

mappings with the HP concepts, we were able to obtain

data for coverage of PM at the system level. The results are

presented in Table 2. We can see from the data that PM

terms from the BMC open access collection have greatest

coverage in HP’s Abnormality of breast category. This

aligns with our expectations due to the high volume of

breast cancer research reported in the collection. The

results in Table 2 need to be interpreted with some caution

because HP has a high proportion of concepts in abnor-

mality of the skeletal system (28.8%) due to the growth in

anatomical partonomy relations (e.g. phalanx of finger of

hand). Whilst the coverage in PM is low, the mined terms

might provide insights to guide curators in which anatomi-

cal partonomy phenotypes are actually mentioned by

authors.

Qualitative evaluation of PM terms

Manual analysis of the PM to HP mapping process by the

authors revealed several categories of challenges: (i)

Missing terms: as hoped PM discovered many phenotype

terms that appeared to be novel for HP. These include

abnormal neural plate morphology (PM1029) and abnor-

mal neuron excitability (PM1031). Such terms included

complex forms involving biological processes such as

abnormal neutrophil oxidase function (PM1035). They

also include synonyms, e.g. malformed inner ears

(PM5543) which is a non-specific term closely related to

Table 1. Representation of external concepts in disorder phe-

notype terms

Ontology (O) P(T,O) Ontology (O) P(T,O)

PATO 0.99 MP 0.24

SNOMEDCT 0.98 ORDO 0.21

OMIM 0.96 MA 0.15

HP 0.57 RxNORM 0.09

FMA 0.44 ChEBI 0.02

DOID 0.30 GO 0.00

Probability that an extracted Phenotype term (T) will have an ontology

concept (O) associated with it based on NCBO Annotator data (18). Total

number of terms is 4898.
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morphological abnormality of the inner ear (HP:0011390).

The missing terms also raised some interesting thoughts

about how qualifiers should be applied to existing complex

concepts such as obesity (HP:0001513), as in abnormal

obesity (PM1045) and anxiety (HP:0000739) as in abnor-

mal anxiety (PM102); (ii) Coordination: PM terms con-

taining coordinated entities need to be decomposed to

understand whether they are individual or complex terms.

e.g. abnormal myocardial perfusion and obstructive coro-

nary disease (PM1014). In some cases a complex term was

already registered in HP, e.g. acute fasting hypoketotic

hypoglycaemia (PM1822) as HP:0001943, and in others

Bio-LarK successfully formed a union of two extant HP

terms, e.g. rapidly progressive visual field defects

(PM7632) as progressive visual field defects (HP:0007987)

and rapidly progressive (HP:0003678); (iii) Acronyms:

abbreviations were not explicitly handled during term min-

ing and require disambiguation/expansion as part of future

work, e.g. abnormal ogtt and high insulin (PM1046) which

would map to abnormal oral glucose tolerance test

(HP:0004924); (iv) Qualifiers: some terms in HP are

handled in a de-compositional manner, e.g. abnormal

depression as abnormalþ depression (HP:0000716))

whilst some are handled in a pre-compositional manner,

e.g. abnormality of cardiovascular system physiology

(HP:0011025); (v) Post-nominal modifiers: phenotypes

may participate in other terms, e.g. abnormal nerve

conduction studies (PM1019), requires the exclusion of

studies to map to abnormal nerve conduction

(HP:0000762); (vi) World view: we found some cases

where the semantic view between the mined terms and the

HP terms differ, e.g. abnormal nocturnal blood pressure

(PM1038) could not be mapped to either elevated blood

pressure or low blood pressure; (vii) Missing context: as a

final category of challenges we found that in some cases

extra context was required to disambiguate and achieve a

correct alignment from PM to HP. For example, absent

pituitary (PM1571) is missing information about ‘anterior’

or ‘posterior’, and abnormal overgrowth (PM1061) is

missing a subject.

Quantitative evaluation of PM-OMIM associations

Three experienced biomedical experts, each with over 10

years’ experience in biomedical genetics were asked to rate

the phenotypes, disorders and relations. The experts were

encouraged to pay reference to their intuitions, OMIM and

the scientific literature. Sampling chose 200 phenotype-

disorder associations from the high confidence pairings

given in the Supplementary material S2 at ranks 1–40,

101–140, 201–240, 401–440 and 501–540.

Each phenotype, disorder and association was scored as

either incorrect, possibly correct or correct. For example,

low red blood cell count (anemia) was found to be associ-

ated with Gaucher Disease and abnormal cytokine expres-

sion was found to be associated with Acute Myeloid

Leukemia. To simplify agreement calculations, correct

and possibly correct judgements were conflated into a sin-

gle positive judgement. Phenotype terms were judged to be

positive if they (i) denoted a deviation from normal mor-

phology, physiology or behaviour, (ii) were sensible

English and (iii) were used in the literature. Disorders were

positive if they denoted an OMIM disorder and were sensi-

ble English. Paired associations were positive if either (i)

the disease led to the phenotype or (ii) the disease led to

secondary complication that included the phenotype. One

annotator was chosen who had the most experience in phe-

notype curation (PR) and the other two annotators’ judge-

ments were used to calculate inter-coder (i.e. ‘inter-rater’)

agreement. It should be noted that of the three annotators,

PR had the lowest number of possibly correct judgements

for associations. Using Wilson score intervals the rate of

positive judgements for phenotypes (n¼ 200) was calcu-

lated as 0.68 with [0.61,0.74] 95% confidence intervals

(95% CI). This compares to a macro-average positive

judgement of 0.62 for all three annotators. Positive disor-

ders (n¼ 200) were found to be almost totally correct (1.0)

with [0.99, 1.0] 95% CI. Finally positive judgements on

phenotype-disorder associations (n¼ 200) were calculated

Table 2. HP coverage

Affected system ID %

Abnormality of the endocrine system HP:0000818 9.0

Abnormality of prenatal development or birth HP:0001197 6.7

Neoplasm HP:0002664 17.3

Abnormality of the respiratory system HP:0002086 14.1

Abnormality of the genitourinary system HP:0000119 13.2

Abnormality of the nervous system HP:0000707 12.6

Abnormality of the musculature HP:0003011 7.0

Abnormality of metabolism/homeostasis HP:0001939 8.4

Abnormality of blood and blood-forming tissues HP:0001871 15.2

Abnormality of the immune system HP:0002715 15.9

Abnormality of the voice HP:0001608 13.3

Abnormality of the skeletal system HP:0000924 2.7

Abnormality of the ear HP:0000598 5.7

Abnormality of head and neck HP:0000152 8.4

Abnormality of the breast HP:0000769 17.4

Abnormality of the integument HP:0001574 6.5

Growth abnormality HP:0001507 15.7

Abnormality of the abdomen HP:0001438 14.6

Abnormality of the cardiovascular system HP:0001626 12.5

Abnormality of the eye HP:0000478 8.0

Abnormality of connective tissue HP:0003549 6.2

Percentage overlap between PhenoMiner terms and HPO terms estimated

using Bio-LarK’s concept alignment.
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at 0.38 with [0.32,0.45] 95% CI. This compares to a

macro-average of 0.45 for all three annotators.

Inter-coder agreement (38) between PR and the other

two annotators was calculated for phenotypes (n¼ 200)

using pairwise agreement (70% and 80%) and Cohen’s

Kappa (0.34 and 0.59) which can be interpreted as

Moderate. Pairwise agreement on the disorders (n¼ 200)

was almost unanimous (>99%).

Pairwise agreement on the phenotype-disorder associa-

tions (n¼200) was 64% and 65% with Cohen’s Kappa of

0.24 and 0.32 which is only Fair on the scale reported in

Artstein and Poesio. When we selected only phenotypes

where PR and each of the other coders had a consensus

opinion, pairwise agreement for phenotype-disorder asso-

ciations rose to 74% (þ10%, n¼ 152) and 70% (þ5%,

n¼ 138) with Cohen’s Kappa of 0.48 (þ0.24) and

0.45(þ0.13) which is Moderate.

When we looked in detail at the incorrect phenotypes,

we found several causes of error: (i) Incomplete phrases,

e.g. the other 50, slow progression and unusually long.

These candidates generally consisted of a quality but

lacked an entity; (ii) Non-specific phenotypes, e.g. abnor-

mal molecular weight and advanced neoplasia. These can-

didates were missing a specific entity in which the quality

inheres; (iii) Structure not phenotypes, e.g. closed chroma-

tin structure and tripartite motif protein 5. These candi-

dates on the surface had both qualities and entities but

were descriptive names of structures; (iv) Disorder not phe-

notypes, e.g. recurrent staphylococcal and candidal skin

infections; (v) Coordinate phrase containing a phenotype,

e.g. detecting and treating abnormal blood sugars. Here we

observed that one of the coordinating terms was a pheno-

type whilst the other was not; (vi) Other errors, e.g. offset

variable and terminal differentiation and ongoing cell pro-

liferation. A manual analysis was conducted on the full set

of automatically discovered phenotypes (Supplementary

material S3) to remove 373 erroneous terms. The resulting

set of terms was re-indexed using the identifier ‘PMI’ and

is now available as Supplementary material S6.

Quantitative evaluation of PM-OMIM associations

by known-gene associations

In previous work on PhenoDigm, we have shown that the

manually curated OMIM HP annotations can be used in

cross-species semantic comparisons to mouse mutant phe-

notypes annotated using the Mammalian Phenotype

Ontology (MP) (6). We were able to recall known gene-

disease associations described in OMIM’s MorbidMap

and Mouse Genome Database (MGD) literature curated

mouse models of human disease with high specificity and

sensitivity. To establish whether the PM annotations are

also able to be used in such comparisons we repeated this

assessment for the 1,234

OMIM diseases that contained one or more PM annota-

tions that could be mapped to HP. The performance in

recalling known disease gene associations using mouse

models was compared with that when using the manually

curated HP annotations for these 1234 diseases.

The performance of the method was captured in a

receiver operating characteristic (ROC) curve, which is

shown in Figure 5. For each disease, the true- and false-

positive rate are calculated from the list of mouse genes

ordered by phenotypic similarity and the known associated

gene. The ROCR R package was used to calculate and plot

these values for each disease and determine the area under

the curve (AUC), specificity and sensitivity. In ROC analy-

sis, obtaining an AUC score in a range of 0.5-1 indicates

that the applied prioritization algorithm is valid, and the

predictions conform to the existing biological knowledge,

with the higher the value, the better the fit. The AUC of

known disease genes from OMIM was notable for both the

manually curated HP annotations and the PhenoMiner

annotations (0.868 and 0.814, respectively) with the per-

formance of PhenoMiner’s annotations only slightly

below that seen for the manual curations. Given that

many of the additional PhenoMiner annotations could

not be mapped to HP and were therefore not available for

this experiment, this represents an impressive validation

of PhenoMiner. The results for the MGD manually

asserted models were similar with PhenoMiner giving an

AUC of 0.885 compared with 0.93 for manually curated

HP annotations.

Conclusion

The combinatorial nature of phenotypes that occurs

through the composition of various semantic types

makes capturing them a major challenge. Taken together

the tests we have done indicate that our methods can

successfully capture a range of human phenotypes from

the scientific literature that are relevant for a wide range

of heritable diseases. Our approach provides a novel

technique for flexibly capturing diverse phenotypes and

allows us to begin to answer the question about which

phenotype forms are actually used in the scientific litera-

ture and how frequently. Furthermore we have begun to

make progress towards automated extraction of pheno-

type profiles for human Mendelian diseases and cross-

species comparison.

The current method of exploiting literature-level cooc-

currence between a phenotype and a disorder works well

in achieving its goal but understanding the fine-grained

relationship that is being reported is key to helping
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curators make the final decision about inclusion of the

phenotype in ontologies like the HP. This is an area we

have already started and will be reporting in future

publications.

Our systematic comparison of the captured phentoypes

revealed interesting trends in the systems covered by the

full-text articles in the BMC open access collection and

their overlap with expert curated phenotypes in the HP. In

future work we intend to provide an expert curation study

of those phenotypes not matched to HP and we will look

at expanding the groupings of from structural abnormal-

ities to increase coverage.

Supplementary data

Supplementary data are available at Database Online.
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13. Suominen,H., Salanterä,S., Velupillai,S. et al. (2013) Overview

of the share/clef ehealth evaluation lab 2013. In: Information

Access Evaluation. Multilinguality, Multimodality, and

Visualization. Springer. pp. 212–231.

14. Arighi,C., Lu,Z., Krallinger,M. et al. (2011) Overview of the

BioCreative III workshop. BMC Bioinformatics, 12(Suppl. 8), S1.

15. Tsuruoka,Y., Tateisi,Y., Kim,J.D. et al. (2005) Developing a

robust part-of-speech tagger for biomedical texts. In: Bozanis,P.

and Houstis,E. (eds), Advances in Informatics: Proceedings of

the 10th Panhellenic Conference on Informatics, Volos, Greece,

LNCS. pp. 382–392.

16. McClosky,D., Charniak,E. and Johnson,M. (2010) Automatic

domain adaptation for parsing. In: Human Language

Technologies: The 2010 Annual Conference of the North

American Chapter of the Association for Computational

Linguistics. pp. 28–36. Association for Computational

Linguistics.

17. Collier,N., Tran,M.V., Le,H.Q. et al. (2013) Learning to recog-

nize phenotype candidates in the auto-immune literature using

svm re-ranking. PloS One, 8, e72965.

18. Shah,N., Bhatia,N., Jonquet,C. et al. (2009) Comparison of con-

cept recognizers for building the open biomedical annotator.

BMC Bioinformatics, 10(Suppl. 9), S14.

19. Levy,R. and Galen,A. (2006) Tregex and tsurgeon: tools for

querying and manipulating tree data structures. In: Proceedings

of the Fifth International Conference on Language Resources

and Evaluation, Citeseer. pp. 2231–2234.

20. Bodenreider,O., Mitchell,J.A. and McCray,A.T. (2002)

Evaluation of the UMLS as a terminology and knowledge

resource. In: Proceedings of the Americal Medical Informatics

Association (AMIA) Annual Symposium, San Antonio, TX,

pp. 61–65.

21. Whetzel,P., Noy,N., Shah,N. et al. (2011) Bioportal: enhanced

functionality via new web services from the national center for

biomedical ontology to access and use ontologies in software

applications. Nucleic Acids Res., 39(Suppl 2), W541–W545.

22. Liu,S., Ma,W., Moore,R. et al. (2005) Rxnorm: prescription for

electronic drug information exchange. IT Profession., 7, 17–23.

23. Degtyarenko,K., de Matos, P., Ennis,M. et al. (2008) ChEBI: a

database and ontology for chemical entities of biological interest.

Nucleic Acids Res., 36(Suppl 1), D344–D350.

24. Gene Ontology Consortium (2000) Gene ontology: tool for the

unification of biology. Nat. Genet., 25, 19–29.

25. Gkoutos,G., Mungall,C., Dolken,S. et al. (2009) Entity/quality-

based logical definitions for the human skeletal phenome using

pato. In: Engineering in Medicine and Biology Society, 2009.

Annual International Conference of the IEEE, pp. 7069–7072.

IEEE.

26. Hayamizu,T., Mangan,M., Corradi,J. et al. (2005) The adult

mouse anatomical dictionary: a tool for annotating and integrat-

ing data. Genome Biol., 6, R29.

27. Schriml,L., Arze,C., Nadendla,S. et al. (2012) Disease ontology:

a backbone for disease semantic integration. Nucleic Acids Res.,

40(D1), D940–D946.

28. Stearns,M.Q., Price,C., Spackman,K.A. et al. (2001) SNOMED

clinical terms: overview of the development process and project

status. In: Proceedings of the American Medical Informatics

Association (AMIA) Symposium, pp. 662–666.

29. Rosse,C. and Mejino,J.L.V.(2003) A reference ontology for bio-

informatics: the Foundational Model of Anatomy. J. Biomed.

Informatics, 36, 478–500.

30. Nédellec,C., Bossy,R., Kim,J.D. et al. (2013) Overview of bionlp

shared task 2013. In: Proceedings of the BioNLP Shared Task

2013, pp. 1–7.

31. Srinivasan,P., Libbus,B. and Sehgal,A.(2004) Mining medline:

postulating a beneficial role for curcumin longa in retinal dis-

eases. In: Workshop BioLINK, Linking Biological Literature,

Ontologies and Databases at HLT NAACL, pp. 33–40.

32. Davis,A., Wiegers,T., Rosenstein,M. et al. (2012) Medic: a prac-

tical disease vocabulary used at the comparative toxicogenomics

database. Database.

33. Davis,A., Murphy,C., Johnson,R. et al. The comparative toxico-

genomics database: update 2013. Nucleic Acids Res.

34. Razan,P., Groza,T., Hunter,J. et al. (2014) Inferring characteris-

tic phenotypes via class association rule mining in the bone dys-

plasia domain. J. Biomed. Informatics, 48, 73–83.

35. Oellrich,A., Jacobsen,J., Papatheodorou,I. et al. (2014) Using

association rule mining to determine promising secondary phe-

notyping hypotheses. Bioinformatics, 30, i52–i59.

36. Borgelt,C. and Kruse,R. (2002) Induction of association rules:

Apriori implementation. In: Compstat, Springer. pp. 395–400.
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