
Original article

High-performance integrated virtual

environment (HIVE): a robust infrastructure for

next-generation sequence data analysis

Vahan Simonyan1,*, Konstantin Chumakov1, Hayley Dingerdissen1,2,

William Faison2, Scott Goldweber1,2, Anton Golikov1, Naila Gulzar2,

Konstantinos Karagiannis1,2, Phuc Vinh Nguyen Lam1,

Thomas Maudru1, Olesja Muravitskaja1, Ekaterina Osipova1, Yang Pan2,

Alexey Pschenichnov1, Alexandre Rostovtsev1, Luis Santana-Quintero1,

Krista Smith1,2, Elaine E. Thompson1, Valery Tkachenko1,

John Torcivia-Rodriguez1,2, Alin Voskanian1, Quan Wan2, Jing Wang1,

Tsung-Jung Wu2, Carolyn Wilson1 and Raja Mazumder2

1Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD

20993, USA and , 2Department of Biochemistry and Molecular Biology, George Washington University

Medical Center, Washington, DC 20037, USA

*Corresponding author: Tel: 307-796-7371; vahan.simonyan@fda.hhs.gov; vahansim@gmail.com

Citation details: Simonyan,V., Chumakov,K., Dingerdissen,H. et al. High-performance integrated virtual environment

(HIVE): a robust infrastructure for next-generation sequence data analysis. Database (2016) Vol. 2016: article ID baw022;

doi:10.1093/database/baw022

Received 22 July 2015; Revised 4 December 2015; Accepted 9 February 2016

Abstract

The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and

compute environment designed primarily to handle next-generation sequencing (NGS)

data. This multicomponent cloud infrastructure provides secure web access for authorized

users to deposit, retrieve, annotate and compute on NGS data, and to analyse the out-

comes using web interface visual environments appropriately built in collaboration with

research and regulatory scientists and other end users. Unlike many massively parallel

computing environments, HIVE uses a cloud control server which virtualizes services, not

processes. It is both very robust and flexible due to the abstraction layer introduced be-

tween computational requests and operating system processes. The novel paradigm of

moving computations to the data, instead of moving data to computational nodes, has

proven to be significantly less taxing for both hardware and network infrastructure.

The honeycomb data model developed for HIVE integrates metadata into an object-ori-

ented model. Its distinction from other object-oriented databases is in the additional im-

plementation of a unified application program interface to search, view and manipulate

data of all types. This model simplifies the introduction of new data types, thereby mini-

mizing the need for database restructuring and streamlining the development of new

VC The Author(s) 2016. Published by Oxford University Press. Page 1 of 16

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2016, 1–16

doi: 10.1093/database/baw022

Original article

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

http://www.oxfordjournals.org/

integrated information systems. The honeycomb model employs a highly secure hier-

archical access control and permission system, allowing determination of data access

privileges in a finely granular manner without flooding the security subsystem with a

multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform

NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in

public and private domains, and project collaborations are welcomed.

Database URL: https://hive.biochemistry.gwu.edu

Introduction

Many challenges associated with the analysis of extra-large

next-generation sequencing (NGS) data result from the size

and significance of these datasets. Millions of reads from

sequencing runs must be analysed to derive biologically

significant meaning from these data, and even more reads

are required to discover evolutionary trends through meta-

genomic level analyses. For example, a comparative ana-

lysis of single nucleotide polymorphisms (SNP) profiles for

a family of viruses to find determinants of virulence re-

quires parsing of hundreds of millions of reads, tens of gen-

omes and billions of bases, resulting in terabytes of

information. This volume is projected to increase to a peta-

byte scale in the coming years (1–4) with similar trends

predicted for most major biological databases (5,6).

Application of NGS methods to analyse human genomic or

RNA sequences requires additional stringency of methods

for deposition, storage and computations of these datasets

need to be efficient, to be secure and to have a high level of

integrity.

U.S. Food and Drug Administration (FDA) has the re-

sponsibility to regulate products that are creating the NGS

data, or include NGS data in support of product evalu-

ation. As the underlying technology to create NGS data, as

well as the bioinformatics and IT infrastructure required to

evaluate NGS data, continue to evolve rapidly, FDA recog-

nizes the need to commit resources to bioinformatics and

IT infrastructure. Through a research collaboration with

the George Washington University, we report here the de-

velopment of the hardware and software platform to ad-

dress these needs. HIVE is the outcome of these activities

and represents in-house expertise and the tools FDA needs

to evaluate and understand NGS technology. We use HIVE

to both support in-house research using and evaluating

NGS, and to perform independent analysis as part of our

evaluation of NGS data provided to the agency in support

of medical product regulatory submissions.

The high-performance integrated virtual environment

(HIVE) was created and optimized for the storage and ana-

lysis of NGS and other similarly extra-large datasets. HIVE

was designed to provide analysis and storage support for

NGS data throughout the entirety of its lifespan, by ad-

dressing the following needs:

1. Robust retrieval of extra-large data from public and

private sources through unstable connection in a con-

current mode: HIVE is compatible with known indus-

try standard sources, is capable of maintaining

complicated electronic handshaking protocols, and sup-

porting accession and identifier universe;

2. Distributed storage of extra-large data in a secure

environment;

3. High security of proprietary and human derived data

while maintaining a collaborative environment where

controlled sharing of the data and processes is natively

supported;

4. Parallelized computation of data in an efficient manner

with high fidelity and traceability;

5. Informative visualization of computational results in a

user-friendly interactive manner;

6. Support of custom developed and widely expected ex-

ternal algorithmic tools in an integrated environment;

7. A straightforward pathway for expansion and custom-

ization of the library of algorithmic approaches used

for data analysis and representation.

Please, see Table 1 for comparison of these and some other

features of HIVE platform vs other industry

representatives.

Figure 1 shows an overview of the technical organiza-

tion of HIVE infrastructure. The infrastructure of this en-

vironment and the specific solutions HIVE employs to

satisfy these requirements will be discussed here in terms of

three main tasks: deposition, storage and computation.

Data deposition: Challenges surrounding data depos-

ition are largely due to the use of unreliable connections

to achieve the reliable transfer of large volumes of data.

To address this problem, HIVE uses a multiple attempt

procedure with an extensive support system devoted to en-

sure its success. HIVE can accept and verify files of essen-

tially any size, and ‘fix’ the transfer pathway (if broken),

all without direct user involvement. Additionally, the

hierarchical security system implemented in HIVE

Page 2 of 16 Database, Vol. 2016, Article ID baw022

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

https://hive.biochemistry.gwu.edu
Deleted Text: analyzed
Deleted Text: ,
Deleted Text: databases²
Deleted Text: .
Deleted Text: analyze
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ``
Deleted Text: ''

guarantees privacy and security of uploaded files and

computations.

Storage: In terms of storage solutions, HIVE allows

users to save files significantly larger than personal com-

puters typically allow. HIVE stores these files while

actively maintaining the linkage between data and meta-

data, ensuring that the integrity of these files is never

compromised.

Computation: Although a number of computational

methods already exist throughout the NGS industry, HIVE

Table 1. Key priorities and emphasis of HIVEa compared to other platforms

Features CLC-Bio DNAnexus Galaxy Geneious SB Genomics HIVE

FDA regulatory compliance � � � � � Yes

Data and process security þ þþ � � þþ þþþ
Hierarchical sharingb � � � � � Yes

Verified data download protocolc � � � � Yes Yes

Object traceability/auditd � Yes Yes � � Yes

Novel native Next-Gen algorithmse þ � þþ � � þþþ
Login based visibility of tools/databases/interfacesf � Yes Yes � � Yes

Distributed storageg � � � � � Yes

Parallelization þ þþþ þþþ þ þ þþþ
User App Development � Yes Yes � Yes Yes

User defined metadatah � � Yes � Yes Yes

Customizable Visualizations Client app Yes User developed Client App Yes Yes

Mobile apps � � � � � Yes

Amazon EC2 � Yes Yes Planned � Yes

aFeature emphasis for other platforms and software are based on information present on website as of September 2015.
bHighly granular sharing mechanism allowing read, write, execute options up and down a hierarchy. Results, processes, tools, databases, data are all objects

and can be given/denied access to others.
cExtensive bookkeeping is performed with robust checking to confirm data downloads from public or private sources to ensure all data are downloaded. For

big files this is critical as downloads can be interrupted due to connectivity.
dTo meet FDA compliance and a need requested by our users in the pharmaceutical industry every process/object is traceable.
eDevelop novel algorithms to improve end-to-end NGS analysis.
fBecause of hierarchical sharing and almost everything being an object users see on their screen what they have access to.
gDistributed storage makes it possible to efficiently compute and also provides added level of security where if one node is compromised all data are not lost.
hBecause users can define metadata it is possible to create databases within minutes which can be integrated into HIVE and used in workflows.

Figure 1. HIVE backbone. HIVE core relies on three major components: (1) the kernel layer for low-level interactions with operating system; (2) the na-

tive HIVE backbone responsible for distributed storage, security, object model, and computations and (3) a comprehensive science library of func-

tions, data types, and visualizations. A set of task-specific libraries and core applications are available to be used directly or through pipelines for

internal and external applications. CGI-based web application layer and custom JavaScript object libraries provide key functionality both for the web

portal and for external web applications to interact with HIVE backbone.

Database, Vol. 2016, Article ID baw022 Page 3 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

has developed and integrated new and existing tools, opti-

mized for use in a distributed environment, to better facili-

tate the generation of biologically relevant conclusions

from NGS data. HIVE currently provides users analytical

capabilities via the HIVE-hexagon aligner (7). (as well as

other industry standard aligners), an in house profiler and

SNP caller, a sequence manipulation toolbox, a sequence

recombination engine and a number of other utilities

including a clonal discovery engine, a metagenomics taxo-

nomic profiler (CensuScope (8)), adapted Velvet de novo

assembler, and others that will be explained in future pub-

lications. All tools are developed in or adapted to (in the

case of externally developed tools) the cloud cluster envir-

onment such that once a computational task is initiated by

users, tool-related computations are split into chunks and

distributed across hardware, guaranteeing high efficiency

and avoiding bottlenecks.

Each deployment of a running HIVE engine is capable of

queuing (Figure 2) a virtually unlimited number of requests

to be run in a resource-managed environment where the

amount of memory and disk usage is strictly controlled. As

such, HIVE does not overload the computers or networks

and the total load is easily configurable by system devel-

opers or administrators. The HIVE portal serves as an entry

point, in addition to being a tool that redirects the actual

storage and computation requests to the nodes which have

the lowest load at that particular time. This not only reduces

the load on any particular node but also removes the need

for extra-large data transfers and long compute queues.

Materials and methods

Hardware configuration

HIVE installations are customizable and flexible to meet the

needs of many conventional network configurations. HIVE

can potentially be run on large enterprise level compute infra-

structures as well as on a single computer or set of intercon-

nected computers within private network of organizations.

However, the configuration must consider the number of ex-

pected total and concurrent users, primary storage space per

user, lifespan of computational results, network connectivity,

throughput and topology. The system is designed for prefer-

ential installation into a Linux environment; however, Mac

and Windows installations are also supported.

Using a high performance switch, the HIVE system can

connect a virtually unlimited number of computational and

storage nodes as a private network. The computational

nodes can be standard commercial workstations containing

high-performance or retail disk drives. One server acts as

both the master job scheduler and the public web interface.

The storage nodes are standard commercial networked

Figure 2. Service queue. Job requests submitted by the user or initiated by the system maintenance procedures are queued for processing.

Execution priorities are determined by user-initiated load, process type, and, in some cases, user privilege. The cloud control server communicates

the availability of tasks to available compute nodes on the back end, which then retrieve the relevant data from the user data store and run executable

computations locally. Parallel jobs and sequential processes communicate data and messages through inter-process communication data pool.

Page 4 of 16 Database, Vol. 2016, Article ID baw022

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: aligner³
Deleted Text: ,
Deleted Text: CensuScope⁴
Deleted Text: ,

attached storage (NAS) devices with core processor/s, 2 giga-

bytes of RAM, and eight 3 terabyte hard disk drives. The

NAS devices run a vendor customized version of Linux.

Storage is provided to the computational nodes through the

network file system protocol using one or many 10 gigabit

Ethernet connections. The system allows for ease of expan-

sion and integration of additional nodes, if necessary, in

order to increase the computational and storage capacity.

Example implementation of this installment for 50–100

users, 10 concurrent users, that requires no hardware pur-

chases for 1 year (Supplementary Figure S1):

Compute nodes with total of 400 CPU cores with 1600

GB RAM (4 GB RAM, 200 GB local scratch disk space

per core)

Storage server

• Twenty-four CPU cores, 512 GB RAM. Attached redun-

dant storage: 50 TB permanent, 30 TB scratch, 6 TB

staging area

• HIVE domain head node, 16 CPU cores, 24 GB RAM, 2-

3 TB local redundant storage with backup. High avail-

ability visualization computational node, 10 CPU cores,

256 GB RAM, 2 TB local scratch space

• Web server, 8-16 CPU cores, 32-64 GB RAM, minimum

1 TB storage

• 10 Gbps switch(s) with adequate number of ports to con-

nect all nodes in cluster

Redundant storage

• Permanent Storage: minimum recommended 500 GB of

disk space per user for NGS data files, reference data

(genomes), personal files, and computational results

• Process intercommunication scratch: minimum recom-

mended 300 GB per user, per project

• Data deposition (uploads) staging area: 610 TB depend-

ing on connectivity speeds of deposition portals

Compute nodes

• Major computational powerhouse nodes: 4 CPU core

and 16 GB RAM per user, 1 TB local scratch disk space

• High availability visualization computational nodes: 1

CPU core and 25 GB RAM, 200 GB scratch space per

concurrent user

• HIVE domain head nodes: 16 or more CPU cores 24 GB

RAM server per redundant sub-domain, 2-3 TB redun-

dant local disk space, depending on anticipated amount

of metadata

Web servers

• 32 GB RAM, 8 CPU core server with 1 TB local scratch

disk space; Minimum two load balanced servers

Network

• Appropriate amount of 10 Gbps full duplex switches to

accommodate connected hardware

• Firewall (if present) configured to allow connections

from cluster to external reference genomic repositories

(NCBI, EBI, UniProt, etc.) via HTTP and FTP, ASPERA

Accounts

• Single service account across the cluster

• MySQL account

• Email server mailbox access that allow for email stor-

age(i.e. POP3 or IMAP)

Tools

A number of externally developed applications have been

implemented into HIVE and optimized for performance. In

addition, several tools have been developed by HIVE and

are available through the HIVE interface. Open source

tools currently available in HIVE and discussed in this

paper include: BLAST (9), Bowtie (10), TopHat (11) and

MAFFT (12). Novel tools developed specifically for HIVE

and discussed in this paper include: HIVE-hexagon aligner

(7), HIVE-heptagon sequence profiler and SNP-caller,

HIVE-octagon clustering and classification algorithm,

HIVE-seq sequence manipulation toolkit and the recom-

bination discovery engine.

Public data

Certain HIVE tools use broadly accepted reference datasets

as either required or optional inputs for computation.

There are two major prerequisite datasets provided by the

developers: the National Center for Biotechnology

Information (NCBI) nucleotide sequence database, ac-

cessed in January 2015 from ftp://ftp.ncbi.nlm.nih.gov/

blast/db/, and the NCBI taxonomy dataset, accessed in

April 2014 from ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/.

Other files are shared directly by a HIVE data administra-

tor to minimize redundant use of compute and storage re-

sources. Currently shared public information includes:

RefSeq (13) reference genomes of the 12 model organisms,

bacterial and viral annotations from NCBI GenBank (14)

at ftp://ftp.ncbi.nlm.nih.gov/genomes/ accessed in June

2013, and representative genome sets curated by the

Protein Information Resource (15), accessed in March

2013 from ftp://ftp.pir.georgetown.edu/databases/rps/.

Please see supplementary information for more details.

Results and discussion

The unique HIVE architecture described above compared

to other widely available tools enhances usability and per-

formance. Below is a detailed description of both the

Database, Vol. 2016, Article ID baw022 Page 5 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: (NFS)
Deleted Text: to
Deleted Text: one
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw022/-/DC1
Deleted Text: 24
Deleted Text: ,
Deleted Text: 2
Deleted Text: BLAST⁵
Deleted Text: ,
Deleted Text: 6
Deleted Text: ,
Deleted Text: 7
Deleted Text: ,
Deleted Text: MAFFT⁸
Deleted Text: .
Deleted Text: aligner³
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
http://ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/
Deleted Text: RefSeq⁹
Deleted Text: GenBank¹⁰
http://ftp://ftp.ncbi.nlm.nih.gov/genomes/accessed
Deleted Text: Resource¹¹
Deleted Text: ,
http://ftp://ftp.pir.georgetown.edu/databases/rps/
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw022/-/DC1

enhanced standard features and entirely novel aspects of

HIVE that contribute to its uniqueness as an efficient, mas-

sively distributed storage, archival and analysis platform

for NGS data.

How is data deposited into HIVE? Downloader and

archiver

The two main components of the data deposition pipeline

in HIVE are the downloader and the archiver. The ‘down-

loader’ allows users to download sequences from the inter-

net or upload sequences from the user’s local environment.

Regardless of input, the downloading task is parallelized as

much as possible through the creation of concurrent re-

quests (e-utils inquiries or similar) which retrieve the

desired data in smaller chunks. Upon retrieval of all pieces,

the downloader will validate the completeness of the

download and reconstitute the original information. In

case of partial or complete failure, the downloader will

reinitiate attempts to retrieve missing parts, if any, and

upon successful completion, the files will be passed along

to the archiver for processing.

Once files are loaded, the ‘archiver’ accepts parses,

indexes, and stores data for future use within the system.

HIVE archiver automatically recognizes a large number of

generic file formats (txt, csv, doc, jpg, png, etc.), in add-

ition to commonly used file types in the NGS industry:

FASTQ, FASTA, FNA/Qual pair, SAM/BAM, VCF,

GenBank, properly formatted XML NCBI-bio-project,

bio-sample, bio-experiment and bio-run. Single or multiple

files can be either loaded in an open native form or inside

compressed packages (gz, tar.gz, zip, rar, z2 or bam).

Dependent on file type, HIVE applies specific validation,

compression and distribution algorithms for the most effi-

cient and minimal-footprint storage. Once retrieved and

decompressed, the system executes the parser to identify

and analyse the content of each file in order to extract and

efficiently store its information. Each file is split, distrib-

uted across the storage cluster, and assigned a unique ID

that is used internally to recognize and access the specific

file-set (Figure 3).

Together these tools manage the storage of any file, re-

gardless of size, in an environment safer than that which

conventional personal computers or cloud storage plat-

forms currently provide.

How is data stored?

Once data has been loaded into HIVE and parsed it is con-

sidered to be an ‘object’. Metadata information and field

abstraction are implemented by using the HIVE object ori-

ented architecture. Two different kinds of highly optimized

database engines are used in HIVE to store structured in-

formation: modern relational standard query language

(SQL) databases and an internally developed vioDB flat

file engine.

To accomplish relational data mapping to object-ori-

ented structures, HIVE implements a flat, ‘honeycomb

model’ wherein multiple columns of different tables from

an SQL schema are mapped into a single, flat, but highly

structured table such that relations between fields are

maintained by the honeycomb engine, not by SQL con-

straints. The honeycomb model minimizes database design

and maintenance while providing the capability to imple-

ment a single search engine, and visualization and object

modification interface to work with data regardless of the

internal complexity of the data structure.

Engine allows remembering not only name value pairs

of metadata object fields, but also trajectories mapping

values onto hierarchical representation of object’s struc-

ture. Key/value/path triplets are thus determining the

object’s content linking the instance of an object into its

type definition which is also maintained inside the same

database. The behavior of HIVE objects is as such highly

similar to object oriented C/Cþþ structure constructs.

Type definitions are also objects of a single type and

the Honeycomb engine is aware of internal structure.

Using that information honeycomb is capable of resolving

search queries into multiple joins of SQL in a single

transaction.

As an object-oriented data engine, HIVE honeycomb fa-

cilitates multi-level single base inheritance and multiple

sub-object uses within its class model. This allows devel-

opers to define simpler, broader objects and then build

progressively more complex subcomponents representing a

superset of fields and enriching with more custom field

value pairs.

Conventional SQL engines often fail when working

with large data sets derived from NGS. To avoid this prob-

lem, HIVE implements its own highly indexed, object-ori-

ented database engine and file format called ‘vioDB’ that

can manage tera scale metadata. Using relationships be-

tween different types of containers and index tables, vioDB

allows retrieval of file information in a very efficient way.

One-to-many, many-to-one, and many-to-many relations

can be supported within heterogeneous types of objects,

thus providing direct access to cross-linked information.

vioDB can maintain billions of rows of information in a

distributed set of files allowing immediate access to any

chunk of information using the same honeycomb applica-

tion programing interface (API).

SQL is of general purpose and is targeted to provide

universal functionality for variety of different purposes.

That universality frequently comes at a cost of low

Page 6 of 16 Database, Vol. 2016, Article ID baw022

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: analyze
Deleted Text: ``
Deleted Text: ''.
Deleted Text: -

performance when it comes to indexing and retrieving

large tera-scale information. VioDB in contrast is a flat file

format, memory mappable container, providing direct ac-

cess to in-memory content of object values using low level

kernel libraries. From API perspective of the application

coder the search using vioDB results in memory pointers in

page segments, hence no overhead of data transfer, data

translation and network transactions. Although not as uni-

versal as SQL, vioDB does demonstrate dramatic increase

in speed critical for NGS computations using hundreds of

parallel processes.

How are files secured?

Since HIVE is designed for use on unpublished or propri-

etary data, it is important to have the option of secure stor-

age. HIVE implements a novel security paradigm which is

a superset of access control rights subsystems existing in

UNIX and Windows systems.

The set of developer-accessible database store proced-

ures and C/CþþAPI libraries combined with front-end

modules and web application interfaces represent the se-

curity gateway controlling and distributing access to the

permission subsystem as a whole.

HIVE organizes users into groups located in hierarchic-

ally organized projects and groups by assigning single or

multiple memberships to its users. Such memberships are

audited, verified and approved by group/branch super-

visors and by HIVE administrators. HIVE provides a way

to dynamically create, move, and invalidate branches upon

supervisor request. Additionally, HIVE maintains a separ-

ate object-based hierarchy for all entities in the system.

Mapping of object privileges to user privileges permits for

very fine user access control.

Objects and object hierarchies shared in HIVE are

assigned permissive or restrictive credentials relative to a

particular user or branch. Such permission can be non-

inherited, inherited down to a group’s members

Figure 3. Data loading process. Data loading can be initiated by a user upload from local storage or a download request can be submitted to HIVE for

concurrent, verifiable retrieval from external sources. Once the data arrives, the HIVE control server initiates parsing, format validation and quality

control procedures in parallel before indexing the information. Data are then split and distributed to the storage cloud and encapsulating wrapper ob-

jects are created for easy data location and access.

Database, Vol. 2016, Article ID baw022 Page 7 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: ,

hierarchically or propagated up a chain of supervisors.

Thus, a single rule can cover multiple different objects,

users and groups hierarchically allowing very granular and

targeted permission limitations while maintaining the few-

est rules in a collaborative environment (Figure 4). User

rules are tracked down in sequence to first ‘allow’, and

then ‘deny’ access, avoiding potential unauthorized access

leaks.

User-specific viewer masks provide an additional layer

of management of access permissions to objects. If a par-

ticular user has access to a given object with a mask, only

the fields defined in that mask will be accessible for the

specified set of permissions. This allows subsets of fields to

be visible to a specific subset of user(s) while other users

can access different fields within the same object. Refer to

supplementary document for a use case and instructions.

The security consideration of data in HIVE is classified

based on which of the following categories it belongs to:

Public data are shared, mostly originating from pub-

licly available sources or generated by HIVE authors for

the benefit of the HIVE user community. Access to such

objects is open to any HIVE user for reading and brows-

ing purposes. A special system user appropriately

named ‘biological data handler’ owns the public data

and is responsible for maintenance and updates.

Examples of such data include but are not limited to

public genomes from NCBI, annotations from GenBank

or Uniprot, etc.

Private data are that which are uploaded or down-

loaded by a user from a private repository or local com-

puter, or generated by a user as a result of sequencing

and computations. Such data cannot be accessed by

anyone but the owner of the data itself, by processes

running on his/her behalf, or by system maintenance

processes providing backup, encryption or compression

functionality.

Collaborative data are intentionally shared by an

owner with other users or groups. Such data are access-

ible only to those who have been assigned appropriate

privileges by users who had a right to share the data.

This categorization schema is a policy driven by institu-

tional rules on every particular HIVE deployment host

organization.

How are computations handled in HIVE?

After the deposition and storage of files is complete, users

can perform a variety of computational procedures on

their data. HIVE computational infrastructure is composed

of architecture layers. The biocomputational (BioC) struc-

ture is based on cloud technology invented by Dr Vahan

Simonyan and implemented together with Dr Raja

Mazumder at NCBI/PubChem, FDA/CBER and GWU.

BioC works by separating services, requests, data and jobs.

Services are particular implementations of software al-

gorithms. Each service takes predefined inputs and pro-

duces known formats of output. Services may have

configurations controlling the performance and outcome

of the service. A service may be as simple as the parsing of

sequence quality files into a workable flat file, or as com-

plex as the alignment of queries on a genome or computa-

tion of structural folding of a protein. Services represent an

Figure 4. Hierarchical security model. Users, groups, files, processes, metadata, visual elements and algorithms are all treated as security-enabled

objects. A hierarchical security model allows granting of permissions down the hierarchy, up the hierarchy, or to specific subjects with a minimal

number of access control rules. The use of multiple hierarchies to organize users, projects and data objects further controls access rights through the

complex mapping between distinct hierarchies.

Page 8 of 16 Database, Vol. 2016, Article ID baw022

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: ,
Deleted Text: User
Deleted Text: ``
Deleted Text: ''
Deleted Text: ,
Deleted Text: .
Deleted Text: .
Deleted Text: ,
Deleted Text: ,

encapsulated package or a layer of encapsulation for pack-

aged, so-called ‘black box’ algorithms that the user of the

service does not need to understand in order to efficiently

use.

Requests are inquiries to execute service algorithms

with specific inputs and configuration parameters. Each in-

quiry is assigned a unique identification number to track

the status of the request and associate the request with the

submitter and executor jobs.

Data are generalized arbitrary blobs of information

associated with requests and maintained on the BioC ser-

ver to communicate the users’ inquiry into back-end work-

ing processes. Each type of service may have its own

predefined structure of data blobs.

Resources are executable images, static data, configur-

ation files and any other form of information needed for

proper execution of back-end processes running on power-

house workstations. The QPride control daemon ensures

the workstations dedicated to a particular service always

have the resources available on local storage before the

execution of process image.

Jobs are processes running under an operating system

such as Windows, Linux or Mac. Jobs are launched by the

BioC control manager daemon; this design directs proc-

esses to grab queued requests for execution and deposit

computation results back into the BioC server.

Using this technology, the request to execute an algo-

rithm on a particular data set is communicated back to the

highly optimized, parallelized cloud of service-performing

jobs. The requests are split for parallelization and queued

on the BioC server for execution at the time of node

availability.

Upon submission of HTML-formatted information into

the BioC server queue, a unique request identification

number is assigned. This identification number allows the

system to track the submission and easily retrieve or up-

date associated information. The information flow of the

general computation task is shown in Figure 5.

The jobs running on BioC powerhouse computers are

designed as daemon processes monitoring the status of the

queue for their particular service. Once a request is submit-

ted, a network ping activates the processes to grab the

Figure 5. Computations task information flow. The submission process, usually a web page CGI process or a client program, submits the initial infor-

mation from HTML form or web application into the HIVE cloud server queue. The request is then split and submitted to queue for execution. While

compute nodes retrieve the data from storage cloud and perform calculations, the front end monitors the status of the jobs and refreshes the status.

Once all parts of the computation are finished, data are coagulated and visualizations are prepared and sent to the user’s web page.

Database, Vol. 2016, Article ID baw022 Page 9 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: ``
Deleted Text: ''
Deleted Text: OS
Deleted Text: -

request, retrieve input data, execute the request, upload the

results and finally to return to the monitoring state.

For applications to use this infrastructure, API function-

ality is provided in the form of libraries for C/Cþþ, shell-

executable and Perl scripts. For existing applications al-

ready designed without such infrastructure in mind a vir-

tual parallelization layer is used.

Application developers can create new native HIVE

programs as well as adopt existing software using HIVE

APIs and deploy to existing HIVE instances. HIVE does

have large technical documentation describing internals of

the system and development guidelines available to its de-

velopmental users. However that information is much be-

yond the scope of this publication and we refrain from

putting too much detail and encourage those interested to

contact corresponding authors.

How are existing applications/tools optimized and

used in the HIVE environment?

HIVE architecture provides a highly parallel processing en-

vironment and distributed data storage not only for custom

applications, but for adapted, third-party applications as

well. Performance optimization of externally developed

tools is achieved by two methods: job-array parallelization

and concurrent computations. Job-array parallelization ex-

ploits the ability of certain applications or parts of the

same applications to be launched in parallel. Results are

then combined after completion. This allows HIVE to re-

spond in the same time frame regardless of the total num-

ber of users, processes and size of data under computation.

Query data are automatically split into chunks and

handled by multiple parallel processes. Generally, each

tool outputs alignments in a specific format (e.g. SAM)

along with other output files. HIVE merges outputs from

the parallel processes and converts the alignments into an

internal HIVE format based on the vioDB format (See

‘Viodb file’ definition under ‘How is data deposited into

HIVE?’ section above). In this way, the HIVE interface can

display alignments produced by internally developed as

well as externally developed tools. Other output files from

the parallel processes are merged and presented to the user

for downloading via the HIVE interface.

The approach described above has been used to inte-

grate several popular alignment tools into HIVE.

BLAST alignment tool by NCBI has been adapted to

HIVE (9), optimized to run in a highly parallel fashion, ex-

ploiting the advantages of distributed data storage to avoid

input/output bottlenecks.

Bowtie is another popular reference-based alignment

utility adapted to work within HIVE in a parallel fashion

(10). The resulting SAM formatted files are parsed using

HIVE’s integrated SAM parsers so users can continue using

other alignment-based HIVE virtual services.

TopHat is used for reference-based continuous or dis-

continuous assemblies (11). It has been adapted to HIVE

for RNA-seq analysis. TopHat’s results are also produced

in SAM format and HIVE’s SAM parser processes those to

a native format and allowing the integration of alignment

into pipelines.

Which analytical tools are currently available in

HIVE?

Several tools, both internally and externally developed, are

already implemented in HIVE, including DNA-seq align-

ers, RNA-seq aligners, profilers (pile-up tools), recombin-

ation discovery tools, and more. Below is a brief

description of some of the most used, currently available

HIVE-developed tools.

HIVE-hexagon aligner employs new algorithmic

approaches which exploit both the nature of extra-large

sequencing data and HIVE’s parallel execution architec-

ture to improve upon the speed, sensitivity and accuracy

with which alignments are currently performed. Some new

and improved utilities which contribute to this enhanced

performance include non-redundification and subsequent

sorting of sequences using prefix trees, inherent paralleliza-

tion and an efficient diagonal linearization approach to

Smith–Waterman optimization (16). TODO: In Figure 6

once can see the major steps before and after alignment al-

gorithm in a conventional mutation calling pipeline

example.

HIVE-heptagon profiler with genomic-proteomic map-

ping calculates the frequency of individual bases as com-

pared to either a reference genome or consensus sequence.

Additionally, the HIVE-heptagon profiler computes qual-

ity and noise profiles with appropriate statistics.

To evaluate the impact of identified SNPs on amino

acid sequence, HIVE provides graphical representation of

the mapping between the genomic and proteomic space.

Protein annotation information and metadata are automat-

ically retrieved from the relevant GenBank file upon down-

load, and subsequently parsed by the archiver for quick

access during SNP profiling.

HIVE translates the DNA sequence into its correspond-

ing protein sequence based on previously retrieved se-

quence information and the DNA codon table. This

facilitates potential discovery of SNP position mutations

which may affect protein structure. When users visualize

the profiling output, the system automatically searches for

the appropriate annotation file in the user’s space, along

with the data regarding the SNP positions. HIVE repre-

sents this information in a column graph for SNP

Page 10 of 16 Database, Vol. 2016, Article ID baw022

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ?''
Deleted Text: ⁵
Deleted Text: ,
Deleted Text: ⁶
Deleted Text: .
Deleted Text: ⁷
Deleted Text: .
Deleted Text: ,
Deleted Text: -
Deleted Text: ¹².

positions, side-by-side and in scale to a box plot for protein

information. Thus, the distribution of the SNP positions in

a DNA sequence and any subsequent effects on related

protein sequences can be easily visualized.

Recombination discovery engine allows the user to

view variable alignments of the same data to different ref-

erence segments, and, through the use of modern graphical

functionality, provides clear visualization of any recombin-

ation events and their break points.

HIVE-octagon clustering tool performs a comparative

analysis of sequence alignment profiling results by hier-

archical clustering of SNP frequency data. HIVE’s

CþþAPI has built-in support for hierarchical clustering of

arbitrary biological sequence data, including support for

subsequences and sequencing gaps. Pairs of sequences can

be compared using a variety of distance functions, such as

p-norms, cosine similarity, and Canberra distance. The re-

sulting distance matrix for a set of sequences can be turned

into a hierarchical clustering using the neighbor-joining al-

gorithm (17, 18) or the faster but na€ıve single-linkage and

complete-link algorithms. Upon selection of a set of se-

quence profiling results, produced from alignments against

the same reference genome, SNP frequencies at reference

positions are interpreted as a new sequence; a hierarchical

clustering is calculated for these sequences using algo-

rithms chosen by the user, and the output of results are an

interactive phylogram. The phylograms, as well as the raw

data used to generate them, can be downloaded for further

analysis by external tools.

HIVE-seq is a sequence file abstraction layer with se-

quence manipulation utilities that allow users to merge se-

quences from different sources into one continuous

sequence file object. In addition users can specify the type

and amount of noise added to short reads that are gener-

ated based on a given genome. The resulting file of short

reads derived from the original genome provides a means

to measure the quality of different bioinformatics tools. In

addition to manipulating reads it also allows users to

generate random short reads using a genome sequence,

based on user specifications.

As mentioned above, outside tools can be integrated

and optimized to capitalize on HIVE’s parallel computa-

tional paradigm. All integrations, in a particular HIVE in-

stance, of outside utilities must go through the HIVE

development team supporting that instance. This is to en-

sure the proper integration and security of outside utilities

for optimized performance within a HIVE deployment.

How is the HIVE interface different?

HIVE follows a paradigm similar to Data-Driven

Documents (DDD) (19) rather than static HTML pages to

address the challenges of visualizations presented by algo-

rithmic outputs from large data sets. DDD is a domain-spe-

cific language that enables transformation of the document

object model (DOM) driven by data. The separation be-

tween content, functionality and DOM is the underlying

concept of HIVE’s interface achieved by moving data-bind-

ing to the client side. The server sends visualization compo-

nents that dynamically update the DOM and format the

raw data sent to the client. As a result, it is feasible in the

HIVE interface to visualize the same content in different

ways by simply binding the same data to different visual-

ization modules. In order to maintain and ensure the

modularity provided by this paradigm, the communication

between client and server is done asynchronously. By

incorporating an Ajax (Asynchronous JavaScript and

XML) web application model, the HIVE interface allows

the user to dynamically exchange data with the server that

will in turn update the bounded modules.

HIVE is a cluster of computers that executes a number

of heavily parallelized scientific processes. The front end of

the cloud (user interface) is a simplified representation of

an advanced infrastructure that exists on the back-end.

Intermediate layers based on Common Gateway Interface

(CGI) and SQL are used in order to achieve the transition

Figure 6. Alignment pipeline. The pipeline displayed summarizes the main tasks executed during the sequence alignment process in HIVE. Although

we recommend alignment using the native HIVE-hexagon tool, this step can be performed by other industry-standard aligners including Bowtie,

BWA and others.

Database, Vol. 2016, Article ID baw022 Page 11 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: algorithm13
Deleted Text: 14
Deleted Text: ,

of this sophisticated back-end to a user friendly web inter-

face. CGI is used to resolve HTML form data and pass

them into the database. Since service requests come in the

SQL form, the CGI layer keeps track of every request as it

parses it and submits to HIVE. In addition, the database

holds the description of the objects within the infrastruc-

ture. In that way components like processes, algorithmic or

not, are described as objects in the database and can be

viewed, edited or inherited by the user through the afore-

mentioned model. As a result, when a user selects to exe-

cute a service, an object defined by the database is

displayed in the front end; by changing the parameters and

submitting the request an object is created in the back-end.

As the user waits for the service to be completed, a daemon

is responsible for the execution of the service, monitoring

the progress, and killing and resubmitting any parts of the

parallelized service that have failed. As compute cores

complete chunks of the request and report the progress

back to the daemon, asynchronous communication be-

tween server and front end allows the user to observe the

status of the request or even interrupt the process without

having to refresh the whole page. (Please see Figure 5 for a

schematic of the HIVE backbone.)

Use case: polio virus strain recombination and

mutation profile clustering

HIVE infrastructure allows researchers and their collabor-

ators to perform NGS analysis in a much more efficient

and secure manner than is currently possible. (See Table 1

for comparison of features among industry-favorite

tools).To fully convey the utility of such an environment,

we present here a case study which demonstrates the di-

verse array of functionalities facilitated by HIVE.

Although poliomyelitis is no longer a major health issue

in most regions of the world, new cases are still occurring

throughout lower income countries in Africa and the

Middle East (20). Of especial concern is the emergence of

pathogenic vaccine-derived polioviruses (VDPV) which

seem to arise by mutation of attenuated poliovirus strains

in regions where vaccine coverage is not high enough (21).

Even more disconcerting is the potential for outbreak of in-

fection in regions long thought to be polio-free (22). These

concerns have inspired renewed interest in poliovirus trans-

mission and efforts by the U.S. government to review scien-

tific publication and identify research needs.

The complete genomes for 21 previously identified en-

terovirus strains belonging to the Picornaviridae family

were downloaded from NCBI GenBank (14) by supplying

HIVE’s downloader utility with the appropriate accessions

(Supplementary Table S1). HIVE-seq was run on all 21

genomes using the ‘Filters only’ algorithm with default

parameter settings to create a single, concatenated genome

called ‘Enterovirus_Combined_Genome.fasta’. Ten paired-

end deep sequence datasets generated for recombinant

VDPV strains isolated in Finland and kindly provided by

Dr Merja Roivainen were uploaded from local user space

through the HIVE data-loading interface (Supplementary

Table S2).

Quality control procedures were automatically per-

formed as reads were loaded and formats were recognized

by HIVE. Quality controls consisted of AT/GC content

measures, read length histograms, positional distribution

of nucleotides and positional distribution of associated

quality scores. When viewing the ATGC distribution in the

positional QC for samples, it is common to see a bias at

the beginning of the chart such that nucleotide content ap-

pears to be distributed in a non-random fashion. Primers

by definition have non-random content and therefore the

appearance of primers within the reads can explain this

phenomenon. Primers can be removed using the ‘Primers

Filter’ utility from the ‘General’ menu in the HIVE-Portal

list of tools and algorithms.

Once confident in the quality of the data, align-

ments to reference genomes were performed. From the

home reads menu, we selected the first pair of reads

and clicked the icon to ‘align using HIVE-hexagon.’

Enterovirus_Combined_Genome.fasta, the genome set

which we just created, was selected as the reference gen-

ome and the alignment was submitted using all default par-

ameter values. Immediately it was seen that this sample

contains predominantly sequences similar to Sabin 1, one

of three Sabin vaccine strains, with 17 million of almost 27

million reads aligning to this reference. However, there

were still significant alignments reported to the related

viruses with Sabin 2 having the second largest representa-

tion. This suggests a recombination event occurred be-

tween strains, but further analysis may be needed to

confidently make this claim. (A sample alignment table is

included for alignments to ID DQ443002 as a .csv in

Supplementary Table S3. Full alignment tables are not

included here due to the prohibitive size of such informa-

tion, but full results can be exported from the web inter-

face if desired.)

Following alignment, we used the HIVE-heptagon pro-

filer utility to accumulate statistics related to coverage,

base-calling, and SNP-calling. For the same sample, we

saw relatively consistent coverage for the Sabin 1 segment

with the exclusion of the 3500–5000 base pair region. To

fully elucidate the possibility of recombination at this

position, we used the recombination discovery utility.

We first created a multiple sequence alignment of the indi-

vidual references by selecting MAFFT (12) (as imple-

mented within HIVE) from the HIVE-portal menu. The

Page 12 of 16 Database, Vol. 2016, Article ID baw022

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: East¹⁵
Deleted Text: .
Deleted Text: 16.
Deleted Text: 17.
Deleted Text: GenBank¹⁰
Deleted Text: .
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw022/-/DC1
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: 10
Deleted Text: vaccine-derived poliovirus (
Deleted Text:)
Deleted Text: .
Deleted Text: .
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw022/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw022/-/DC1
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''.
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw022/-/DC1
Deleted Text: -
Deleted Text: MAFFT⁸

Enterovirus_Combined_Genome.fasta object was selected

as the sequence input and the job was launched with de-

fault parameters.

Once the multiple-alignment was complete, we

launched the ‘Reference Recombination’ tool under the

‘Profiling Tools’ menu on the results page for the

Pair_1_Alignment. Here, we selected all reference seg-

ments, specified the recently computed MAFFT alignment

as the ‘Reference Genome Alignment file’ and submitted

the computation with other default inputs. The results

demonstrated the recombination amongst the viral strains

contained in the reference set, notably the recombination

between the Sabin 1 and 2 segments in the 3500–5000

base pair region (Figure 7). The results show that the loca-

tion of this recombination event is consistent with prior

observations of VDPV that often capture non-capsid re-

gions of their genomes from other Sabin strains or other

non-polio enteroviruses (23). Repeating this pipeline for all

10 pairs that included VDPVs of all three serotypes re-

vealed a similar pattern of recombination events.

Another interesting case involves the stability of viral

genomes generated from a single master seed. For this ex-

ample, data were collected serially from the working seeds

of different oral polio vaccine manufacturers generated

from the same master seed. Samples were sequenced and

aligned as described above to a combined reference con-

taining all three Sabin genomes. Alignments showed a

strong similarity among all samples to the Sabin 3 genome

with insufficient coverage for the Sabin 1 and 2 genomes.

Following alignment, mutation profiles for each sample

were generated using the HIVE-heptagon variant caller

feature to report mutations with respect to the Sabin 3 gen-

ome. All profiles were then entered as input for the HIVE-

octagon profile clustering utility which quantifies the

difference between mutation profiles as a function of the

distance between the mutations. The output is a phylogen-

etic tree where closer nodes imply greater similarity. The

resulting tree (Figure 8) displays not only the grouping of

each series (where A, B, C and D correspond to the gen-

omes for vaccine lots of the different manufacturers), but

distinctly shows two major clusters. Interestingly, the gen-

ome for the group designated by B was determined to be

too distant from that of the seed and was therefore never

approved for use. This example demonstrates the real-

world utility of HIVE workflows in supporting scientific

and regulatory NGS research.

Additional developments and considerations

Metadata management: Using convenient and customiz-

able web pages in the HIVE portal, a researcher can create

‘project’, ‘experiment’, ‘run’ and ‘sample’ records in the

metadata database to document details of scientific proto-

cols and biological. During this process, identification

numbers and names are assigned to metadata records. The

scientist can attach those same identifiers to sequencing

samples prior to submission to an in-house or out-of-house

sequencing center where the resulting NGS data files are

produced. When data are available, HIVE pipelines can

pick up the files through a secure channel from the data

file providers and upload them directly into the HIVE sys-

tem staging location.

Figure 7. Recombination discovery between poliovirus Sabin 1 and Sabin 2 vaccine strands. The output of the recombination discovery utility clearly

shows dominant coverage of the Sabin 1 genome (light green) with the exception of the 3500–5000 base pair region. This region, known to contain

proteins critical to virus viability, is instead mapping primarily to the Sabin 2 genome (olive green) implying the likelihood of recombination between

these two strains in the sample.

Database, Vol. 2016, Article ID baw022 Page 13 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: -
Deleted Text: 18
Deleted Text: .
Deleted Text: ,
Deleted Text: ``
Deleted Text: '',
Deleted Text: ``
Deleted Text: '',
Deleted Text: ``
Deleted Text: '',
Deleted Text: ``
Deleted Text: ''

Data are then verified, validated, parsed and appropri-

ate quality control procedures are applied to produce dia-

grams available for visual inspection by the bioinformatics

professional and/or data owner. Once approved and en-

crypted, the data are split into smaller parts and migrated

into the distributed storage system. As with all HIVE data,

after the submission is indexed and registered in the meta-

data archive, the researcher has the opportunity to define

security credentials and permission profiles for the data in

accordance to institution standards. At this point, data are

considered an integrated part of the HIVE storage and are

available for searching, downloading or biological

curating.

Visualizations: Using web-driven visual interfaces, a sci-

entist can search and select one or many data sets for com-

putations. A multiplicity of tools have been created

specifically for NGS data analysis, and additional pre-

existing, widely used tools specifically optimized for paral-

lelized HIVE infrastructure, can then be used to run

computations on the selected datasets. The scope and the

number of these tools are not limited and will be updated

based on the needs and requests of the scientific commu-

nity. All data in the system are available for downloading

in a variety of industry accepted formats.

Deployments: There are currently several distinct de-

ployments of HIVE across two institutions, the U.S. Food

and Drug Administration (FDA) and the George

Washington University (GWU).

FDA houses two separate HIVE deployments. The first

is a cutting-edge research environment that enables rapid

development of entirely new NGS analytics algorithms or

augmenting function to existing tools. The second is con-

figured in a partially dedicated sub-cluster of a larger high-

performance computing cluster at the FDA. Deployment in

this environment allows for access to greater compute and

storage resources. This deployment is highly secure and

allows FDA to store, retrieve, and analyse NGS data pro-

vided in support of regulatory submissions.

The public-HIVE located at the Mazumder lab at GWU

engages in pilot projects with researchers from several in-

stitutes including several other labs from GWU, the

Lombardi Cancer Institute at Georgetown University,

Figure 8. HIVE-octagon clustering outputs visual comparison of mutation profiles. Profile clustering of oral polio vaccine samples allows direct com-

parison of mutation profiles among the samples. Here, we see clusters of each group designated by a letter (A, B, C or D) corresponding to vaccine

lots manufactured from four different companies. Clusters are calculated with respect to the occurrence of SNPs called by position. By selecting the

nodes in the tree to the left, we can visualize different trends in mutation as a function of SNP frequency by genome position.

Page 14 of 16 Database, Vol. 2016, Article ID baw022

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: ,
Deleted Text: -
Deleted Text: analyze

University of Texas, JCVI and other commercial or aca-

demic entities.

HIVE does maintain detail audit log on all compute

time and storage capacity per user, per project basis.

However all current installations of HIVE are supported

by institutions hosting particular hardware and no cost is

as such transferred to users.

Conclusion

The HIVE infrastructure and algorithms provide:

• A high security environment for data deposition, compu-

tation, and storage of large NGS datasets, including pro-

prietary and human subject data;

• A mechanism for robust retrieval of NGS data from a

variety of sources and the subsequent distributed storage

of this data in a highly secure environment;

• An efficient method for data sharing and collaboration;

• A streamlined approach to NGS analysis with fidelity

and traceability of all subprocesses;

• Outputs that can be exported for external analysis or

viewed internally through a diverse array of high quality

scientific visualizations.

The HIVE infrastructure has been developed to ad-

dress computational challenges associated with the ex-

ponentially growing universe of sequence datasets, while

maintaining high security of proprietary and private

data. HIVE facilitates the robust retrieval of NGS data

from a variety of sources and the subsequent distributed

storage of this data in a highly secure environment. The

HIVE honeycomb data model used to ensure security

also enables an efficient method for simple sharing and

collaboration through the system. The massively parallel

nature of HIVE computations streamlines the process of

NGS analysis with fidelity and traceability of all subpro-

cesses. All outputs can be exported for external analysis

or viewed internally through a diverse array of high-

quality scientific visualizations. HIVE actively seeks

and welcomes the opportunity for collaborations to pro-

mote a standardized and cooperative NGS community.

Please visit https://hive.biochemistry.gwu.edu for more

information.

Funding and Acknowledgements

HIVE is supported by funding from Medical

Countermeasures Initiative and in part by R.M. research

funds. We would like to acknowledge the following people

for providing feedback and HIVE support over the years:

Robert Foreman, Garrett Fields, Eric Donaldson, Fan Yu,

Hu Yu, Brian Fitzgerald, Darren Jansen, Mark

Walderhaug, Christopher Kiem, and other colleagues who

have tirelessly supported HIVE efforts.

Funding

This research was supported in part by the Food and Drug

Administration Medical Countermeasures Initiative. The funders

had no role in study design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Supplementary data

Supplementary data are available at Database Online.

Conflict of interest. None declared.

References

1. Taylor,R.C. (2010) An overview of the Hadoop/MapReduce/

HBase framework and its current applications in bioinformatics.

BMC Bioinformatics, 11(Suppl 12), S1.

2. Shao,W., Kearney,M., Maldarelli,F. et al. (2009) RT-SHIV sub-

population dynamics in infected macaques during anti-HIV ther-

apy. Retrovirology, 6, 101

3. Smith,A., Balazinska,M., Baru,C. et al. (2011) Biology and data-

intensive scientific discovery in the beginning of the 21st century.

OMICS, 15, 209–212.

4. Ouellette,F. (2009) Fifth International Conference of the

Brazilian Association for Bioinformatics and Computational

Biology, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil.

5. Galperin,M.Y. and Cochrane,G.R. (2011) The 2011

Nucleic Acids Research Database Issue and the online

Molecular Biology Database Collection. Nucleic Acids Res., 39,

D1–D6.

6. Sayers,E.W., Barrett,T., Benson,D.A. et al. (2011) Database re-

sources of the National Center for Biotechnology Information.

Nucleic Acids Res., 39, D38–D51.

7. Santana-Quintero,L., Dingerdissen,H., Thierry-Mieg,J. et al.

(2014) HIVE-hexagon: high-performance, parallelized sequence

alignment for next-generation sequencing data analysis. PLoS

One, 9, e99033

8. Shamsaddini,A., Pan,Y., Johnson,W.E. et al. (2014) Census-

based rapid and accurate metagenome taxonomic profiling.

BMC Genomics, 15, 918

9. Altschul,S.F., Gish,W., Miller,W. et al. (1990) Basic local align-

ment search tool. J. Mol. Biol., 215, 403–410.

10. Langmead,B., Trapnell,C., Pop,M. et al. (2009) Ultrafast and

memory-efficient alignment of short DNA sequences to the

human genome. Genome Biol., 10, R25

11. Trapnell,C., Pachter,L. and Salzberg,S.L. (2009) TopHat: dis-

covering splice junctions with RNA-Seq. Bioinformatics, 25,

1105–1111.

12. Katoh,K. and Standley,D.M. (2013) MAFFT multiple sequence

alignment software version 7: improvements in performance and

usability. Mol. Biol. Evol., 30, 772–780.

Database, Vol. 2016, Article ID baw022 Page 15 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

Deleted Text: ,
https://hive.biochemistry.gwu.edu
Deleted Text: Raja
Deleted Text: Mazumder
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw022/-/DC1

13. Pruitt,K.D., Brown,G.R., Hiatt,S.M. et al. (2014) RefSeq: an up-

date on mammalian reference sequences. Nucleic Acids Res., 42,

D756–D763.

14. Benson,D.A., Cavanaugh,M., Clark,K. et al. (2013) GenBank.

Nucleic Acids Res., 41, D36–D42.

15. Chen,C., Natale,D.A., Finn,R.D. et al. (2011) Representative

proteomes: a stable, scalable and unbiased proteome set for se-

quence analysis and functional annotation. PLoS One, 6,

e18910

16. Saigo,H., Vert,J.P. and Akutsu,T. (2006) Optimizing amino acid

substitution matrices with a local alignment kernel. BMC

Bioinformatics, 7, 246

17. Saitou,N. and Nei,M. (1987) The neighbor-joining method: a

new method for reconstructing phylogenetic trees. Mol. Biol.

Evol., 4, 406–425.

18. Studier,J.A. and Keppler,K.J. (1988) A note on the neighbor-joining

algorithm of Saitou and Nei. Mol. Biol. Evol., 5, 729–731.

19. Bostock,M., Ogievetsky,V. and Heer,J. (2011) D3; Data-Driven

Documents. Visual. Computer Graph. IEEE Trans., 17, 2301–2309.

20. Modlin,J.F. (2010) The bumpy road to polio eradication. New

Engl. J. Med., 362, 2346–2349.

21. Delpeyroux,F., Colbere-Garapin,F., Razafindratsimandresy,R.

et al. (2013) [Eradication of poliomyelitis and emergence of

pathogenic vaccine-derived polioviruses: from Madagascar to

Cameroon]. Med. Sci., 29, 1034–1041.

22. Luo,H.M., Zhang,Y., Wang,X.Q. et al. (2013) Identification

and control of a poliomyelitis outbreak in Xinjiang, China. New

Engl. J. Med., 369, 1981–1990.

23. Agol,V.I. and Gmyl,A.P. (2010) Viral security proteins: counter-

acting host defences. Nat. Rev. Microbiol., 8, 867–878.

Page 16 of 16 Database, Vol. 2016, Article ID baw022

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

022/2630228 by guest on 19 M
ay 2024

	baw022-TF1
	baw022-TF2
	baw022-TF3
	baw022-TF4
	baw022-TF5
	baw022-TF6
	baw022-TF7
	baw022-TF8

