
Original article

Assessing the state of the art in biomedical

relation extraction: overview of the BioCreative

V chemical-disease relation (CDR) task

Chih-Hsuan Wei1,†, Yifan Peng1,2,†, Robert Leaman1, Allan Peter Davis3,

Carolyn J. Mattingly3, Jiao Li4, Thomas C. Wiegers3 and Zhiyong Lu1,*

1National Center for Biotechnology Information, Bethesda, MD 20894, USA, 2Department of Computer

and Information Sciences, University of Delaware, Newark, DE 19716, USA, 3Department of Biological

Sciences and the Center for Human Health and the Environment, North Carolina State University,

Raleigh, NC 27695, USA, and 4Institute of Medical Information, Chinese Academy of Medical

Sciences, Beijing 100700, China

*Corresponding author: Email: zhiyong.lu@nih.gov Tel: 301-594-7089; Fax: 301-480-2288

†These authors contributed equally to this work.

Citation details: Wei,C.-H., Peng,Y., Leaman,R. et al. Assessing the state of the art in biomedical relation extraction: overview of the

BioCreative V chemical-disease relation (CDR) task. Database (2016) Vol. 2016: article ID baw032; doi:10.1093/database/baw032

Received 23 November 2015; Revised 4 February 2016; Accepted 25 February 2016

Abstract

Manually curating chemicals, diseases and their relationships is significantly important to bio-

medical research, but it is plagued by its high cost and the rapid growth of the biomedical lit-

erature. In recent years, there has been a growing interest in developing computational

approaches for automatic chemical-disease relation (CDR) extraction. Despite these attempts,

the lack of a comprehensive benchmarking dataset has limited the comparison of different

techniques in order to assess and advance the current state-of-the-art. To this end, we organ-

ized a challenge task through BioCreative V to automatically extract CDRs from the literature.

We designed two challenge tasks: disease named entity recognition (DNER) and chemical-

induced disease (CID) relation extraction. To assist system development and assessment, we

created a large annotated text corpus that consisted of human annotations of chemicals, dis-

eases and their interactions from 1500 PubMed articles. 34 teams worldwide participated in

the CDR task: 16 (DNER) and 18 (CID). The best systems achieved an F-score of 86.46% for the

DNER task—a result that approaches the human inter-annotator agreement (0.8875)—and an

F-score of 57.03% for the CID task, the highest results ever reported for such tasks. When com-

bining team results via machine learning, the ensemble system was able to further improve

over the best team results by achieving 88.89% and 62.80% in F-score for the DNER and CID

task, respectively. Additionally, another novel aspect of our evaluation is to test each partici-

pating system’s ability to return real-time results: the average response time for each team’s

DNER and CID web service systems were 5.6 and 9.3 s, respectively. Most teams used hybrid

systems for their submissions based on machining learning. Given the level of participation
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and results, we found our task to be successful in engaging the text-mining research commu-

nity, producing a large annotated corpus and improving the results of automatic disease rec-

ognition and CDR extraction.

Database URL: http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/

Introduction and motivation

Chemicals, diseases and their relations are among the most

searched topics by PubMed users worldwide (1, 2), reflect-

ing their central roles in many areas of biomedical research

and healthcare such as drug discovery and safety surveil-

lance. Developing a drug takes time and money: on average,

around 14 years and $2 billion or more (3). Greater than

95% of potential drugs fail during development for reasons

such as undesired side effects due to either off-target binding

or unanticipated physiologic roles of the intended target (4).

Although the ultimate goal in drug discovery is to develop

chemicals for therapeutics, recognition of adverse drug reac-

tions (ADRs) between chemicals and diseases is important

for improving chemical safety and toxicity studies and facili-

tating new screening assays for pharmaceutical compound

survival. In addition, ADRs are an integral part of drug

post-marketing surveillance. Identification of chemicals as

biomarkers can also be helpful in informing potential rela-

tionships between chemicals and pathologies. Hence, man-

ual annotation of such mechanistic and biomarker/

correlative chemical-disease relations (CDR) from unstruc-

tured free text into structured knowledge to facilitate identi-

fication of potential toxicity has been an important theme

for several bioinformatics databases, such as the

Comparative Toxicogenomics Database (CTD; http://

ctdbase.org/) (5). NOTE: We consider the words ‘drug’ and

‘chemical’ to be interchangeable in this document.

Manual curation of CDRs from the literature is costly

and insufficient to keep up with the rapid literature growth

(6). In response, there have been many attempts to extract

such relations by automated natural language processing

(NLP) methods. Over the years, a wide variety of relation

extraction approaches have been proposed, such as simple

co-occurrence, pattern matching, machine learning and

knowledge-driven methods (7–9). A small number of test

corpora were also developed, but they are limited in size

and annotation scope (10, 11). More recently, a similar set

of computational methods has been applied to a number of

diverse datasets such as the FDA’s Adverse Event

Reporting System (FAERS) (12), electronic medical records

(13), tweets, and user comments in social media (14). In

comparison, the scholarly publications contain richer in-

formation about drug-induced phenomena in a variety of

settings such as in vitro and in vivo systems and across

species for approved indications, off-label uses, and for

drugs in development.

Despite these previous attempts and other closely

related studies [e.g. PPI (15)], automatic biomedical rela-

tion detection from free text remains challenging, from

identifying relevant concepts [e.g. diseases (16–19)], to ex-

tracting relations. The lack of a comprehensive bench-

marking dataset has limited the comparison of different

computational techniques in order to assess and improve

the current state of the art. In addition, few software tools

for relation extraction have been made freely available

and, to the best of our knowledge, been incorporated into

practical applications such as biocuration.

Materials and methods

Through BioCreative V, one of the major formal evalu-

ation events (20) for BioNLP research, we organized a

challenge task of automatic extraction of mechanistic and

biomarker CDRs from the biomedical literature with the

goal of supporting biocuration, new drug discovery and

drug safety surveillance. More specifically, we designed

two subtasks:

• Disease named entity recognition (DNER). An inter-

mediate step for automatic CDR extraction is DNER

and normalization, which was found to be highly diffi-

cult on its own based on previous BioCreative CTD tasks

(21, 22) and other studies (19). For the subtask, partici-

pating systems were given PubMed titles and abstracts

and asked to return normalized disease concept

identifiers.

• Chemical-induced disease (CID) relation extraction.

Participating systems were provided with titles and ab-

stracts from PubMed articles as input (same as DNER in-

put) and asked to return a ranked list of <chemical,

disease> pairs with normalized concept identifiers for

which drug-induced diseases are associated in the abstract.

Note that both chemical and diseases were described

using the National Library of Medicine’s Medical Subject

Headings (MeSH) controlled vocabulary (23). Systems

were required to return entity pairs; both entities needed to

be normalized into MeSH identifiers, along with their text

spans in the article.
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Figure 1 illustrates our task pipeline. As the task organ-

izers, we prepared the corpus and developed an evaluation

server that uses a Representational State Transfer (REST)

API to submit test data to participating systems and imme-

diately collect their results for real-time evaluation. On the

participant side, teams could use any techniques to design

their CDR system and were provided a test server and sam-

ple data so that they were able to iteratively improve their

system before the final test.

Task data

For our task, we prepared a total of 1500 PubMed articles:

500 each for the training, development and test set. Of all

1500 articles, most (1400) were selected from an existing

CTD-Pfizer collaboration-related dataset (see details

below). The remaining 100 articles represented completely

new curation and were incorporated into the test set (The

dataset can be found at http://www.biocreative.org/re

sources/corpora/biocreative-v-cdr-corpus/.).

For both tasks, we prepared manual annotations. For

the DNER task, a number of NCBI-based MeSH annota-

tors were recruited to annotate every disease and chemical

occurrence in the abstract with both text spans and con-

cept identifiers. We refer readers to (24) for more details

regarding this annotation.

During a previous collaboration with Pfizer (6), CTD

curated over 150 000 chemical-disease interactions. CTD

biocurators followed CTD’s rigorous curation process and

curated interactions from just the abstract whenever pos-

sible, except in cases where referencing the full text was ne-

cessary to resolve relevant issues mentioned in the abstract.

For the CDR task, we mostly leveraged existing curated

data from the 1400 articles. The relation data for the add-

itional 100 articles was generated during the CDR chal-

lenge by CTD staff, and this curation was not made public

until the challenge was complete.

Table 1 describes the chemical, disease and relation anno-

tations for the three data sets. The chemical and disease men-

tion columns are non-distinct mentions per abstract. The ID

and CID relations columns are distinct per abstract.

Task evaluation

For final evaluation of the participant systems, text-mined

entities (diseases) and relations (<chemical, disease> pairs)

were compared to manually annotated data using standard

precision, recall and F-score metrics. More specifically,

the DNER results are evaluated by comparing the set of

disease concepts annotated within the document with the

set of disease concepts predicted by the participant system.

Similarly, the CID results are evaluated by comparing the

Figure 1. The pipeline of the task workflow. The task organization is shown in purple; corpus development is shown in green; and team participation

is shown in red.
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set of chemical-disease relationships annotated within the

document with the set of chemical-disease relationships

predicted by the system.

For results submission, participants followed the proced-

ure implemented for the previous BioCreative-CTD task (21)

where teams submitted their results through web services (We

allowed offline submissions for manual runs.). In particular

RESTful was selected as the architectural style for the partici-

pant web services. To assist participants, the organizers pro-

vided executable files together with a step-by-step installation

guide. Also, a testing web site was provided to the teams in

order to simulate the exact system-testing environment that

would be used later to test the participant systems. Indeed,

this testing facility was heavily used by teams during the sys-

tem development phase. Because of the use of REST, we are

able to report the response time of each system in addition to

their accuracy.

Benchmarking systems

For comparison, we benchmarked several systems for the

DNER and CID tasks.

For DNER, we first developed a straightforward diction-

ary look-up baseline approach that relied on disease names

from CTD. We also retrained models using the out-of-box

DNorm, NCBI’s previous work for DNER and normalization

(16). DNorm combines an approach based on rich features

and conditional random fields for named entity recognition

[using BANNER (25)] with a novel machine learning method

for normalization based on pairwise learning to rank (26).

DNorm is a competitive system which achieved the highest

performance in a previous disease challenge (17, 27); its per-

formance therefore provides a very strong benchmark.

For the CID task, we established a baseline using a sim-

ple co-occurrence method with two variants: co-occur-

rence of chemicals and diseases at the abstract-level, and at

the sentence-level. The chemical and disease entities were

automatically recognized using NCBI’s in-house tools,

DNorm (16) and tmChem (28), respectively.

Post-challenge ensemble system

To benefit from all participated systems and further im-

prove the results, we combined the team results using an

ensemble approach based on machine learning. We used

one binary feature to represent each participant system

output. For the DNER task, each feature represents

whether the respective system returned the disease concept.

For the CID task, each feature represents whether the indi-

vidual system returned a <Chemical ID, Disease ID>

pair. Our implementation used Support Vector Machine.

We performed a 5-fold cross validation on the test set to

evaluate our ensemble method.

Results

A total of 25 teams submitted 34 systems for testing in the

CDR task: 16 systems were tested in conjunction with the

DNER task, and 18 for the CID task. Each team was

allowed to submit up to three runs (i.e. three different ver-

sions of their tool) for each task; a total of 86 runs were

submitted. The 25 teams represented 12 different countries

in four continents: Australia (1), Asia (12), Europe (9) and

North America (3).

DNER results

A total of 16 teams successfully submitted DNER results in

40 runs. As shown in Figure 2 (only the best run of each

team is included), multiple teams achieved an F-score

higher than 85% with the highest being 86.46% (Team

314), a result that approaches the inter-annotator agree-

ment of the human annotators (0.8875) (24). The average

precision, recall and F-score were 78.99%, 74.81% and

76.03%, respectively. The best precision result was ob-

tained by using CRF model together with word2vec mod-

els trained over Wikipedia and Medline (Team 296); the

best recall result was obtained by using rules and diction-

ary with a low level of spelling correction (Team 304); and

the best F-score result was obtained by using CRF model

with post-processing (Team 314). Detailed results are

shown in Appendix Tables A1 and A2.

All teams but one achieved a higher F-score than our

baseline dictionary method, which obtained an F-score of

52.30%. While we did not perform any additional devel-

opment on DNorm to adapt it to this dataset, it sets a sig-

nificantly stronger benchmark with a performance of

Table 1. Statistics of the CDR data sets

Task dataset Articles Chemical Disease CID relation

Mention ID Mention ID

Training 500 5,203 1,467 4,182 1,965 1,038

Development 500 5,347 1,507 4,244 1,865 1,012

Test 500 5,385 1,435 4,424 1,988 1,066
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80.64% F-score. A total of seven teams achieved perform-

ance higher than DNorm.

CID results

A total of 18 teams successfully submitted CID results in

46 runs. As shown in Figure 3 (only the best run of each

team is included), the F-score ranges from 32.01% to

57.03% (Team 288) with an average of 43.37%. All teams

outperformed the baseline results by the simple abstract-

level co-occurrence method (16.43% in precision, 76.45%

in recall and 27.05% in F-score). The best results were ob-

tained by combining two Support Vector Machine (SVM)

classifiers (29), which were trained on sentence and docu-

ment level respectively (Team 288). Detailed results are

shown in Appendix Tables A3 and A4.

Response time results

The average response time for DNER teams was 5.57 s,

with a standard deviation of 6.1 (Figure 4), ranging from

0.053 to 19.4 s per request. The average response time for

CID teams was 8.38 s, with a standard deviation of 6.5,

ranging from 0.119 to 27.8 s. The quickest response time

was obtained by Team 304, which used a rule-based sys-

tem for both DNER and CID tasks.

Ensemble approach results

Tables 2 and 3 show the evaluation results of the combined

DNER and CID results, respectively. The first row shows

the best result of individual teams, and the second row

shows an upper bound performance score by comparing

independent annotations carried manually by either human

curators or crowds. From the results in the third row, we

observed that using the ensemble approach we were able

to achieve a 2.8% and 10.1% improvement in F-score over

the best individual system for DNER and CID,

respectively.

Discussion

The DNER task of BioCreative V showed that the auto-

matic recognition of disease entities from PubMed ab-

stracts is a feasible task by automated named entity

recognition. To determine the difficulty of DNER and CID

tasks, we examined how many teams correctly identified

each of the gold standard DNER concepts and CID rela-

tions in the test set. As shown in Table 4, only �5% of the

1988 DNER concepts in the test set were not found by any

of the teams (i.e. 95% of the concepts were retrieved by at

least one team, the complete list is shown in Appendix

Table A5). The 103 unrecognized mentions represented 83

distinct DNER concepts; of those 83 concepts, 26 (31.3%)

did not appear in either the training or development sets.

For the CID task, 128 of the 1066 CID pairs (12%)

were not detected by any of the teams. This means that

only 88% CID relations could be retrieved by at least one

team, demonstrating the difficulty of the CID task. For

those 128 pairs, most (92.2%) were not present in the

training and development sets.

40
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50 60 70 80 90
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Figure 2. DNER results of all teams as well as the baseline (dictionary look up) and DNorm systems.
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We carried out a post-challenge survey in order to better

understand the commonly used participating techniques,

tools and resources. Results are presented in the Appendix

Table A7. Overall, most of the teams developed their hybrid

systems using machine-learning techniques: primarily CRF

for the DNER task and SVM for CID (30). The other two

general approaches are pattern matching (CID) and diction-

ary look-up (DNER). Only a few teams explored the use of

other machine learning techniques such as maximum entropy

and logistic regression. Although machine learning-based

approaches attained the highest scores in general, it’s worth

noting that some rule-based systems were also highly com-

petitive, as demonstrated by one team which ranked second

and third in the DNER and CID tasks, respectively.

When developing their own systems, many teams

adapted existing packages that implement machine learn-

ing algorithms (e.g. LibSVM or CRFsuite) or general NLP

software (e.g. Stanford CoreNLP or OpenNLP). BioNLP

20
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precision

re
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Co−occurence abstract
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Figure 3. CID results of all teams as well as two variants of the co-occurrence baseline method (i.e. abstract- and sentence-level).

276

277

285

288

290

293

296

304

309

310

314

315

325

363

364

365

0 2 4 6 8 10 12 14 16 18 20
response time (sec)

te
am

DNER response time (best run)

276

288

289

290

293

299

303

304

310

316

322

334

335

341

363

364

365

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
response time (sec)

te
am

CID response time (best run)

Figure 4. Average response time of each individual team for DNER and CID tasks.
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software tools such as tmChem and DNorm for chemical

and disease entity recognition were heavily used in the rela-

tion extraction task as a pre-step.

In terms of resources, many used external databases or

terminologies with UMLS and CTD being the most com-

monly used resources.

Conclusions

Given the level of participation and team results, we con-

clude that the CDR challenge task was run successfully

and is expected to make significant contributions to both

the text-mining and biocuration research communities. To

the best of our knowledge, the constructed corpus is the

largest of its kind for both disease annotations and disease-

chemical relations. In addition, our corpus includes both

the text spans and normalized concept identifiers of entity

annotations, as well as relation annotations, in the same

abstract. We believe this data set will be invaluable in

advancing text-mining techniques for relation extraction

tasks. Furthermore, our annotated data includes �30% of

the CDR relations that are asserted across sentence boun-

daries (i.e. not in the same sentences).

Unlike most challenge tasks in BioNLP (20), our task

was designed to provide practical benefits to assist litera-

ture-based biocuration through two distinct requests: (i) all

text-mined entities and relations were to be normalized to

database identifiers so that they could be readily used for

data curation and (ii) through web services, biocuration

groups can remotely request text-mined results in real-time

without additional investment in text-mining tool adoption

and technical infrastructure. By doing so, we hope that the

state-of-the-art will be advanced for BioNLP systems to-

ward higher standards for interoperability and scalability

in future development efforts.

Supplementary data

Supplementary data are available at Database Online.
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