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Abstract

Mining chemical-induced disease relations embedded in the vast biomedical literature

could facilitate a wide range of computational biomedical applications, such as pharma-

covigilance. The BioCreative V organized a Chemical Disease Relation (CDR) Track re-

garding chemical-induced disease relation extraction from biomedical literature in 2015.

We participated in all subtasks of this challenge. In this article, we present our participa-

tion system Chemical Disease Relation Extraction SysTem (CD-REST), an end-to-end

system for extracting chemical-induced disease relations in biomedical literature. CD-

REST consists of two main components: (1) a chemical and disease named entity recog-

nition and normalization module, which employs the Conditional Random Fields

algorithm for entity recognition and a Vector Space Model-based approach for normal-

ization; and (2) a relation extraction module that classifies both sentence-level and docu-

ment-level candidate drug–disease pairs by support vector machines. Our system

achieved the best performance on the chemical-induced disease relation extraction sub-

task in the BioCreative V CDR Track, demonstrating the effectiveness of our proposed

machine learning-based approaches for automatic extraction of chemical-induced dis-

ease relations in biomedical literature. The CD-REST system provides web services using

HTTP POST request. The web services can be accessed from http://clinicalnlptool.com/

cdr. The online CD-REST demonstration system is available at http://clinicalnlptool.com/

cdr/cdr.html.

Database URL: http://clinicalnlptool.com/cdr; http://clinicalnlptool.com/cdr/cdr.html

Introduction

Over the past decades, extensive biomedical studies have

been conducted to assess the relations between chemicals

and diseases, which resulted in a huge volume of literature

regarding complex chemical–disease relations (e.g. treat-

ment or adverse events). Significant efforts have been spent
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on building comprehensive databases containing relations

between chemicals and diseases from literature. As an ex-

ample, the Comparative Toxicogenomics Database (CTD)

(1) contains chemical–disease associations that are manu-

ally extracted from the biomedical literature by biocura-

tors. Although manual review of literature helps generate

accurate knowledge, it is very time-consuming, given the

rapid growth of published literature. Therefore, natural

language processing (NLP) methods that could automatic-

ally detect chemical and disease concepts, as well as their

relations from biomedical literature have shown great po-

tential in terms of facilitating biomedical curation proc-

esses (2–4). Automated extraction of chemical and disease

relations from literature requires two steps: 1) named en-

tity recognition (NER), to identify chemical and disease

entities from narrative text; and 2) relation extraction, to

determine the relations between any pair of chemical and

disease entities in one document.

Many attempts have been made for chemical and dis-

ease NER, by using different approaches. For example,

many NER systems are rule-based, relying on existing bio-

medical databases/dictionaries. Among them, cTAKES (5)

and MetaMap (6) are two widely used systems for extract-

ing various types of entities including chemicals/drugs and

diseases and linking them to concepts in the Unified

Medical Language System (UMLS) (7), for clinical narra-

tives and biomedical literature respectively. LeadMine (8)

uses grammars and dictionaries to recognize chemical enti-

ties. In addition, many high-performance biomedical NER

systems were developed based on annotated corpora using

machine learning algorithms. Jiang et al. (9) implemented

a machine learning-based system to extract clinical entities,

including medical problems, tests and treatments from

narrative clinical notes. Leaman et al. (10) developed a

high-performance chemical NER and normalization sys-

tem—tmChem, which was the best performing system in

the BioCreative IV CHEMDNER task. Researchers have

also proposed hybrid approaches for NER, such as the

ChemSpot (11) system for chemical and the UTH-CCB

(12) system for disease recognition. The successes of these

hybrid systems indicate that the traditional machine-

learning-based biomedical NER systems can be further im-

proved by integrating with rules.

Relation extraction from biomedical literature is an-

other important task of NLP (13). It has received great at-

tention and many different approaches have been

developed (14). Common relation extraction methods initi-

ated in the general domain, such as co-occurrence analysis,

rule-based methods, and machine-learning-based methods,

have been applied to chemical–disease relation extraction.

Chen et al. (15) conducted co-occurrence analysis to rank

the associations between eight diseases and relevant drugs.

Mao et al. (16) also used co-occurrence analysis to identify

aromatase inhibitors-related adverse drug events in health

social media. The rule-based approaches often relied on

manually developed rules based on syntactic and semantic

parsing. Khoo et al. (17) explored manually annotated

graphical patterns to extract causal relations in the

MEDLINE abstracts by using syntactic parse trees. The

MeTAE system extracted medical relations based on semi-

automatically constructed linguistic rules (18). Instead of

manually constructing rules, Xu and Wang (19) designed a

system to learn drug–side-effect-specific syntactic patterns

from the parse trees using known drug–side-effect associ-

ations as a clue. Then, they used the learned patterns to ex-

tract additional drug–side-effect pairs from biomedical

literature. Researchers have also applied machine-learning

approaches to extract chemical–disease relations. For ex-

ample, Rosario and Hearst (20) compared graphical mod-

els and neural networks on the identification of the

semantic relations between diseases and treatments using

lexical, syntactic and semantic features. Gurulingappa

et al. (21) trained support vector machines to extract po-

tential adverse drug event relations from the MEDLINE

case reports.

However, most of the previous studies on chemical–

disease relation extraction focused on either the entity rec-

ognition or the relation extraction—few of them provide

an end-to-end solution. Moreover, the identified entities

were not normalized to standard terminologies. In 2015,

the BioCreative V introduced a shared task on Chemical

Disease Relation (CDR) extraction, which consists of two

subtasks: 1) Disease NER and Normalization (DNER); 2)

Chemical-induced Diseases Relation Extraction (CID),

which is to extract all chemical-induced disease pairs as-

serted in one abstract (22). It requires all participants to

identify chemical and disease entities and then the chem-

ical-induced disease relations.

In this article, we present the Chemical Disease Relation

Extraction SysTem (CD-REST) built for the BioCreative V

CDR Track. CD-REST consists of two modules: 1) an en-

tity recognition and normalization module that recognizes

chemicals and diseases using Conditional Random Fields

(CRFs) (23) and normalizes them into Medical Subject

Headings concept identifiers (MeSH ID) using a vector

space model (VSM)-based approach, and 2) a relation ex-

traction module that extracts chemical-induced disease re-

lations from both the sentence and document levels using

support vector machine-based classifiers. CD-REST

achieved the best performance on the CID task in the

BioCreative V CDR Track, demonstrating the effectiveness

of our proposed machine-learning-based approaches for

automatic extraction of chemical-induced disease relations

from biomedical literature.
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Materials and methods

Datasets

The CDR Track organizers developed a corpus (the

CDR corpus) for NER and chemical–disease relation

extraction using a set of PubMed abstracts. This cor-

pus consists of 1500 abstracts with 4409 annotated

chemicals, 5818 diseases and 3116 chemical–disease inter-

actions (24). As illustrated in Figure 1, the annotators

manually annotated entity text spans and then

normalized the entities to MeSH ID. The relations between

chemicals and diseases were annotated at the document

level (without indicating the specific sentence(s) that

contributed to the relations). In the CDR Track, the

corpus was divided into a training set (500 abstracts), a

development set (500 abstracts) and a test set (500

abstracts).

System description

The CD-REST system that we proposed is an end-to-end

approach to extract chemical-induced disease relations

from biomedical literature. Figure 2 shows the workflow

of the CD-REST system. We employed CRF-based NER

approaches for chemical and disease entities, by making

use of different types of features including distributed

word representation features learned from unannotated

corpus. We adopted a VSM-based approach to normaliz-

ing recognized entities into MESH IDs by calculating the

similarity between the target entity and candidate MeSH

concepts. Then, we trained two classifiers to extract chem-

ical–disease relations at sentence and document levels re-

spectively and combined their outputs to generate final

relation pairs. We describe the details in the following

sections.

NER and normalization

Entity representation

Both disease and chemical recognition are typical NER

tasks. We transformed the annotated data into the BIO for-

mat, in which “B-D” and “I-D” were used to denote the

begin- and continuation- of the disease entity, respectively.

Similarly, “B-C” and “I-C” tags were used for the chemical

entity. “O” was used for any tokens outside of any entities.

Machine-learning algorithm

We employed CRFs for both chemical and disease NER. The

implementation in the CRFsuite package (http://www.chokka-

n.org/software/crfsuite/) was used in this study.

Features

We systematically investigated different types of features for

chemical and disease NER, including: 1) Word-level fea-

tures: Bag-of-word, Part of Speech (PoS) tags, orthographic

information, such as case patterns, char n-gram, prefixes

and suffixes of words; 2) Dictionary lookup features: We

developed a dictionary-based semantic tagger by leveraging

existing vocabularies and corresponding semantic tags (e.g.

disorder, problem, drug, etc.) from UMLS; 3) Contextual

features: Bi- and tri-grams of tokens, including word, word

stem, PoS and semantic tags extracted by our semantic tag-

ger; 4) Chemical/disease-related features: We adopted the

features representing characteristics specific to chemicals

from tmChem (10). We also defined several binary features

for diseases, including suffixes (e.g. “-algia”, “-emia”, etc.)

and prefixes (e.g. “ab-”, “hemo-”, etc.); and 5) Distributed

word representation features: In this study, we explored the

deep neural network-based word embeddings. We de-

veloped a deep neural network (25) to train word embed-

dings from all PubMed abstracts published in 2013.

… 

In a further series of experiments, haloperidol (0.2 mg/kg i.p.) was used in order to 
block the dopaminergic activation and to estimate the real degree of the tolerance to 
the rigidity without any dopaminergic interference. Haloperidol enhanced 
the rigidity in the A group. 

…

…     
3780846 976 987 haloperidol Chemical D006220
3780846 1116 1124 rigidity Disease D009127
3780846 1164 1175 Haloperidol Chemical D006220
3780846 1189 1197 rigidity Disease D009127
3780846 CID D006220 D009127  
…     

[Abstract]

[Annotations]

Figure 1. A sample from the CDR corpus with the annotations of mentions, corresponding normalized MeSH IDs for both chemical and disease enti-

ties and normalized chemical-induced disease relation conveyed in the abstract.
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Named entity normalization

We adopted a previously developed VSM-based encoding

module (12) to find the correct MeSH ID for a given entity.

This encoding module was originally developed to normal-

ize clinical entities into UMLS concept identifiers using a

term to UMLS CUI index. In this study, we re-built the

index using MeSH. We calculated the cosine similarity

scores between a target entity and all candidate concepts in

MeSH and returned the MeSH ID which has the highest

similarity score. If the target entity hits multiple MeSH IDs

with the same score, we randomly select one. When there

was no MeSH ID matching the target entity, the normal-

ization module will assign “-1” as a pseudo ID as required

by the challenge guidelines.

Chemical-induced disease relation extraction

We treated the chemical-induced disease relation extrac-

tion task as a binary classification problem. Although the

CDR corpus only provided document-level annotations,

we separated relations at the sentence level and the docu-

ment level, by developing a sentence-level classifier (Cs)

and a document-level classifier (CD) to identify the CDR

pairs using the evidences from a sentence or an abstract.

Sentence-level classifier

The Cs classifier utilized intra-sentence text features incor-

porating with domain knowledge to identify chemical-

induced disease pairs located in the same sentence. As

Tables 1 and 2 show, we systematically investigated three

different groups of features:

Context Information: uni- and bi-gram of words before,

between and after the target chemical and disease entities.

Also, the presence of trigger words (e.g. induce) in the sen-

tence was also used as features.

Entity Information: mentions and normalized values of

the target chemical and disease entities. In addition, we

defined a binary feature called “core chemical.” If a chem-

ical entity occurs in the title or it is the most frequently

mentioned chemical in the abstract, we define it as a “core

chemical.”

Information from domain knowledge: the existing domain

knowledge of the target chemicals and diseases. We explored

four different knowledge bases: MeSH, CTD, MEDication

Indication Resource (MEDI) (27) and Side Effect Resource

(SIDER) (28). We converted all terms (chemicals/drugs and

disease/ADRs) in the MEDI and SIDER into MeSH ID using

UMLS. As shown in Table 2, we extracted all relations of the

chemical–disease pair in the CTD, MEDI and SIDER as fea-

tures. Chemicals or diseases from the same category are more

likely to have similar biological properties. Thus, we ex-

tracted category-related features for each entity from its

MeSH hierarchical tree structures, which were represented

by several MeSH Tree Numbers (TN). Take the disease

“retrograde amnesia” as an instance, all direct and indirect

hypernyms, i.e. “C10”, “C10.597”, “C10.597.606” and

“C10.597.606.525”, were extracted as categories by parsing

its MeSH TN “C10.597.606.525.100”. In addition, based on

the MeSH Tree Structures, we also re-visited the document to

query whether the document had a more specific (hyponym)

or general (hypernym) disease than the target disease. For ex-

ample, “retrograde amnesia (C10.597.606.525.100.150)” is

more specific than “amnesia (C10.597.606.525.100)”.

Therefore, we were able to extract two binary features

for each disease to denoting whether the source docu-

ment has diseases more specific or general than the target

disease.

Document-level classifier

The CD classifier utilized document-level information as

well as domain knowledge to classify the relations between

c1
...
cn

d1
...
dm

CS
CD

Figure 2. An overview of CD-REST.
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chemicals and diseases at the document level. The CD used

above three groups of features from the Cs. As shown in

Table 1, compared to Cs, CD also used the co-occurrence

information of the target chemical and disease entities, but

did not use the uni- and bi-gram features as in the Cs.

Machine learning

For both sentence- and document-level relation classifica-

tion, we employed SVMs algorithm and used the LIBSVM

(29) package for SVMs implementation.

Training corpus generation

The training of the document-level classifier was straight-

forward as the relations were annotated at the document

level in the gold standard. However, we needed to con-

struct sentence-level annotations to train the sentence-level

classifier. We extracted all sentences that had at least one

chemical–disease pair, denoted as < c; d >, and generated

the sentence-level annotations according to the document-

level annotations by following a simple rule: a sentence-

level relation pair < c;d > would be annotated as “true”

if and only if the < c; d > pair is in the document-level

Table 1. The entity and context information features used for the sentence-level classifier CS and the document-level classifier

CD

# Name Gloss CS CD

Entity information

1 Entity mention Bag of words & bigrams of the entity mentions � �
2 Chemical first Is chemical the first entity in the sentence �
3 MeSH Ids The corresponding MeSH IDs of each entity � �
4 Core chemical Whether target chemical is a core chemical � �
Context information

5 Before Bag of words & bigrams before the entities �
6 Between Bag of words & bigrams between the entities �
7 After Bag of words & bigrams after the entities �
8 Same sentence Whether the < c;d >pair locates in the same sentence �
9 Adjacent sentences Whether the < c;d >pair locates in adjacent sentences �
10 More than two sentences Whether the < c;d >pair crosses more than two sentences �
11 Match terms(i) Whether the words between the entities contains any term

in terms(i) that indicated the induced relation, such as

“caused”, “induced” etc.

� �

12 Match terms(h) Whether the sentence contains d has any term in terms(h)

that indicated the holder of d, e.g. “patient”, “groups”

and “rats” etc.

� �(if feature 8

or 9 is true)

Table 2. Features extracted by incorporating knowledge bases

# Name Gloss

MeSH features

1 Categories of d All direct or indirect hypernyms of d

2 Categories of c All direct or indirect hypernyms of c

3 Has a specific disease Whether the document has a more specific disease

4 Has a general disease Whether the document has a more general disease

MEDI features

5 rð< c;d >Þ Relation of < c; d >in MEDI: null or treatment

6 rð< c;d >Þ Relation of < c; d >in MEDI’s high precision subset

SIDER features

7 rð< c;d >Þ Relation of < c; d >in SIDER: null, treatment or aderver-drug-reaction

8 rð< c;d >Þ Relation of < c; d >in SIDER subset confirmed by FDA Adverse Event Reporting System (26)

9 isADRðdÞ Whether d is an adverse drug event in SIDER

CTD features

10 rð< c;d >Þ Relation of < c; d >in CTD: null, inferred-association, therapeutic or marker/mechanism

11 isInducedðdÞ Whether d has a marker/mechanism association with any chemicals in CTD

These features were used for both CS and CD classifiers
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annotations; otherwise, the<c, d> pair would be anno-

tated as “false”.

Experiments and evaluation

We developed our machine-learning models using the

training set and optimized the parameters using the devel-

opment set. Then we combined the training and the devel-

opment datasets to build the final models.

NER and normalization

We tried two different approaches: (1) NER-S: trained two

separate CRFs models, one for disease entities and the

other for chemical entities, and (2) NER-U: trained a uni-

fied CRFs model for both disease and chemical entities. In

the NER-S approach, additional external corpora were

also investigated. We used the BioCreative IV

CHEMDNER corpus (30) for chemical NER and the

NCBI Disease Corpus (31) for disease NER.

Relation extraction

The CID task in the BioCreative V CDR Track was de-

signed to extract CDRs in an end-to-end setting, in which

predicted chemicals and diseases were provided as inputs

to the relation extraction system. To better understand the

performance of the relation extraction system, we also

evaluated and reported the performance of the CDR ex-

traction system using the gold-standard chemical and dis-

ease entities as the inputs. Three different strategies for

generating chemical–disease pairs were used: (1) CS, which

applies CS for those < c; d > pairs located in the same sen-

tences only; (2) CD, which applies CD for all < c;d > pairs

in the same document; and (3) CS þCD, a combination

strategy of CS and CD in which the union set of the two

classifiers’ predictions were used as our system’s predic-

tions. Moreover, we evaluated the contribution of features

from different domain knowledge bases.

Evaluation metrics

The evaluation metrics of the CDR track include F-score

(F), precision (P) and recall (R). For DNER, the evaluation

scores were calculated based on tuples of the document ID

and the disease concept ID. In addition to the concept-level

evaluation scores, we further reported P, R and F on the

mention-level using exact span matching. This evaluation

setting was also used for CNER. For the CID task, the

evaluation scores were calculated based on 3-tuple com-

posed of document ID, chemical and disease concept ID.

Please refer to the task description (22) for more details.

Results

Table 3 shows the performance of the CD-REST on chem-

ical and disease NER and normalization task. The NER-S

approach, which trained individual models for CNER and

DNER, outperformed the NER-U approach that combined

the chemical and disease entities recognition in one model.

The best performance of DNER was achieved by the NER-

S approach that used the CDR corpus only for model train-

ing. The best performance for CNER was achieved by the

NER-S approach that used both the CDR corpus and the

BioCreative IV CHEMDNER corpus for model training.

Table 4 shows the performance of different approaches

on the CID task in the end-to-end setting and the gold-

standard setting. The CSþCD approach outperformed indi-

vidual classifiers (CS or CD), achieving the highest F-scores

of 0.5853 in the end-to-end setting and 0.6716 when gold-

standard chemical and disease entities were used.

Table 5 shows the performance of the CD-REST on the

test set with features from different knowledge base fea-

tures, based on the best performing strategy (CSþCD). All

features from knowledge bases improved the system’s per-

formance. It is also not surprising that CTD improved the

performance most, comparing with other knowledge bases,

as CTD is the knowledge base for chemical-induced

diseases.

Table 3. Performance of the CD-REST in the CNER and DNER tasks on the test set with different approaches

Task # Run Approach Training dataset Concept-level Mention-level

P R F P R F

CNER 1 U V 0.8850 0.9115 0.8980 0.9278 0.8858 0.9063

2 S V 0.8941 0.9112 0.9027 0.9339 0.8819 0.9072

3 S VþIV 0.9010 0.9199 0.9103 0.9376 0.8698 0.9024

DNER 1 U V 0.8254 0.8395 0.8324 0.8648 0.8230 0.8434

2* S V 0.8312 0.8395 0.8353 0.8689 0.8210 0.8443

3 S VþN 0.8158 0.8355 0.8255 0.8636 0.8232 0.8429

U: the NER-U approach; S: the NER-S approach; V: the BioCreative V CDR Corpus; IV: the BioCreative IV CHEMDNER Corpus; N: the NCBI Disease

Corpus. * was the best run the CD-REST achieved on DNER task in the CDR challenge. DNER Run #3 was not submitted to the challenge. Where applicable,

the best performance in each category is highlighted in bold.
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Table 6 shows performance of the CD-REST on the

CID task using different combinations of CNER and

DNER. Among all the combinations, the Run #1 achieved

the highest F1-score of 0.5853. To our surprise, the Run

#3, which combined the best CNER module (CNER #2)

and the best DNER module (DNER #2), was outper-

formed by Run #1. Therefore, we further examined the

two runs by calculating the “relation coverage”—defined

as the number of gold standard relations covered by the

predicted entities. A relation is labelled as covered if both

the chemical entity and the disease entity were identified.

We compared the relation coverage of the two runs based

on the gold standard and found that the Run #1 covered

10 more relations than the Run #3, suggesting that the

Run #1 could capture more in-relation entities than the

Run #3.

During the challenge, we developed a rule-based post-

processing module, which improved the performance on

the development corpus. However, adding the post-pro-

cessing module actually hurt the performance. Our best

submission in the challenge (using strategy in CID Run #1

with the post-processing module) achieved the highest

F-score (0.5703) among all teams, which is lower than the

score reported in this article.

We examined the efficiency of CD-REST system using a

computer with 32 GB RAM and a 3.7 GHz 4-core proces-

sor. It took about 450 s to process the whole test set for

relation extraction. The average processing time for one

abstract was <1 s. However, the web service took more

time since it only processed one document per request (22).

Discussion

In this study, we developed CD-REST, an end-to-end sys-

tem to extract chemical-induced disease relations from bio-

medical literature by incorporating domain knowledge

into machine-learning models. Our system achieved the

best performance among 18 participating teams and 46

submitted runs in the challenge of the BioCreative V CDR

Track. Our results demonstrated the feasibility of incorpo-

rating domain knowledge into machine-learning-based

approaches for CDR extraction.

System performance comparison and analysis

NER-S vs. NER-U

As shown in Table 3, NER-S, which trained individual

classifiers for chemicals and disease, respectively, outper-

formed the NER-U approach, which combines chemical

and disease entities into one model. We noticed that the

NER-S approach always achieved a higher precision while

maintaining a comparable recall. In general, a unified NER

model built for all entities will benefit from the dependen-

cies among different types of entities. However, the unified

Table 4. The performance of the CD-REST in the CID task

using the end-to-end setting (CNER #1, DNER #1) and the

gold-standard setting on the test set with different

approaches. Where applicable, the best performance in each

category is highlighted in bold.

Approach End-to-end Gold-standard

P R F P R F

CS 0.6424 0.4381 0.5209 0.6763 0.5487 0.6059

CD 0.6412 0.5047 0.5648 0.6836 0.6182 0.6493

CS þ CD 0.6186 0.5553 0.5853 0.6580 0.6857 0.6716

Table 5. Results of the CD-REST withþapproach on the test set using the end-to-end setting (CNER Run #1, DNER Run #1) and

the gold-standard setting, when different sets of knowledge base features were used. The best results are highlighted in bold.

Feature set End-to-end Gold-standard

P R F P R F

Entity þ Context 0.5160 0.3640 0.4268 0.5960 0.4400 0.5073

Entity þ Context þMeSH 0.5155 0.4222 0.4641 0.5842 0.5140 0.5469

Entity þ Context þMeSH þMEDI 0.5206 0.4278 0.4696 0.5953 0.5244 0.5576

Entity þ Context þMeSH þMEDI þ SIDER 0.5308 0.4372 0.4794 0.6086 0.5310 0.5671

Entity þ Context þMeSH þMEDI þ SIDER þ CTD 0.6186 0.5553 0.5853 0.6580 0.6857 0.6716

Table 6. The performance of the CD-REST with CS þ CD ap-

proach on the CID task using different combinations of CNER

and DNER. Where applicable, the best performance in each

category is highlighted in bold.

# # CNER Run # DNER Run P R F

1 1 1 0.6186 0.5553 0.5853

2 2 2 0.6216 0.5516 0.5845

3 3 2 0.6255 0.5422 0.5809

4 2 3 0.6193 0.5525 0.5840

5 3 3 0.6231 0.5413 0.5793
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model performed worse in this study, probably due to the

low dependence between the chemical and disease entities.

Performance comparison among CS, CD and their

combination

In our experiments, the document-level classifier CD out-

performed the sentence-level classifier CS in both the end-

to-end setting and the gold-standard settings (see Table 4).

One obvious reason is that the CS discarded the chemical-

induced disease pairs across multiple sentences, which ac-

counted for �30% of the CID relations in the corpus (24).

Moreover, the automatically generated corpus for the CS

approach was based on a simple assumption, and it con-

tained many false positive instances. The combination of

CD and CS achieved the highest F-score of 0.5853 and

0.6716 on the end-to-end setting and the gold-standard set-

ting, respectively (Table 4). Regarding the performance of

individual classifiers, the CS achieved an F-score of 0.5209

and the CD achieved an F-score of 0.5648, respectively.

These F-scores were still among the top-ranked submis-

sions in the BioCreative V CDR challenge.

The contribution of features from domain knowledge

bases

The features derived from domain-specific knowledge

bases improved the CDR extraction performance. As

illustrated in Table 5, domain knowledge played a critical

role in CDR extraction. The contribution from different

knowledge bases varied. The features derived from the

CTD yielded the most improvement, which is not

surprising, as CTD is the database for chemical-induced

diseases. We also noticed that the category-related features

derived from the MeSH improved performance on the

recall.

Error analysis

For the NER and normalization task, the incorrectly recog-

nized boundaries of mentions caused a significant perform-

ance drop, especially for disease entities. Our system

achieved an F-score of over 0.90 on disease recognition

under relaxed matching which allows for boundaries over-

lapping. Most of the boundary errors were caused by miss-

ing modifiers in disease mentions, such as course and

severity. For example, our system detected “hepatic fail-

ure” instead of “end-stage hepatic failure,” “hepatitis” in-

stead of “acute hepatitis” and “liver injury” instead of

“drug-induced liver injury.” One limitation of our system

is that we did not handle abbreviations well at this time.

For example, in “indomethacin (IDM)”, although the long

form mention “IDM” was correctly recognized, our system

missed “IDM” as a chemical in following sentences. Errors

caused by missing abbreviations occurred for both diseases

and chemicals.

There are various types of errors for the CID task. First,

implicit relations that are across multiple sentences are dif-

ficult to detect. Another type of error was related to disease

granularities. For example, there was explicit evidence in

the abstract that chemical X induced disease Y. However,

in gold standard, a relation pair<X, Z>was extracted in-

stead of<X, Y> in many cases, because Z was a more spe-

cific disease of Y. Moreover, the errors propagated from

the NER and normalization step also reduced the perform-

ance of the end-to-end system. As we seen from Table 4,

the performance of the system increased �10%, when the

gold-standard entities were used.

Conclusion

In this study, we incorporated machine-learning algorithms

with domain-specific knowledge to build an end-to-end

system for chemical-induced disease relation extraction,

which consists of a disease and chemical NER and normal-

ization module and a chemical-induced disease relation ex-

traction module. In the BioCreative V CDR Track, our

system achieved the highest performance on the CID task,

indicating the feasibility of the proposed approaches for

chemical-induced disease relation extraction.
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