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Abstract

We describe our approach to the chemical–disease relation (CDR) task in the BioCreative

V challenge. The CDR task consists of two subtasks: automatic disease-named entity rec-

ognition and normalization (DNER), and extraction of chemical-induced diseases (CIDs)

from Medline abstracts. For the DNER subtask, we used our concept recognition tool

Peregrine, in combination with several optimization steps. For the CID subtask, our sys-

tem, which we named RELigator, was trained on a rich feature set, comprising features

derived from a graph database containing prior knowledge about chemicals and

diseases, and linguistic and statistical features derived from the abstracts in the CDR

training corpus. We describe the systems that were developed and present evaluation

results for both subtasks on the CDR test set. For DNER, our Peregrine system reached

an F-score of 0.757. For CID, the system achieved an F-score of 0.526, which ranked se-

cond among 18 participating teams. Several post-challenge modifications of the systems

resulted in substantially improved F-scores (0.828 for DNER and 0.602 for CID). RELigator

is available as a web service at http://biosemantics.org/index.php/software/religator.

Introduction

The extraction of chemicals, diseases, and their relation-

ships from unstructured scientific publications is important

for many areas of biomedical research, such as pharmaco-

vigilance and drug repositioning (1, 2). Text-mining sys-

tems in combination with methods for literature-based

discovery and network analysis hold promise for automat-

ically generating new hypotheses and fresh insights (3, 4).

The manual extraction of these entities and relations, and

their storage in structured databases is cumbersome and

expensive, and it is impossible for researchers or curators

to keep pace with the ever-swelling number of papers that

are being published. Automatic extraction of chemical–dis-

ease relations (CDRs) should solve these problems, but

previous attempts have met with limited success. One of

the difficulties that has to be addressed is the identification
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of relevant concepts, i.e. chemicals and diseases (5, 6).

Concept identification goes beyond concept recognition in

that not only the mention of a chemical or a disease has to

be recognized, but that in addition a unique identifier has

to be assigned, which links the concept to a source that

contains further information about it (7). Also the detec-

tion of relationships between the identified chemicals and

diseases remains a challenging task (8–10), partly because

available annotated corpora to train and evaluate extrac-

tion algorithms are limited in size (11, 12).

In BioCreative V, one of the challenge tasks is the auto-

matic extraction of CDRs from biomedical literature (13).

The CDR task comprises two subtasks. The first subtask

involves automatic disease-named entity recognition and

normalization (DNER) from a set of Medline documents,

and can be considered as a first step in CDR extraction.

The second subtask consists of extracting chemical-

induced diseases (CIDs) and delivering the chemical-dis-

ease pairs per document.

Our team participated in both CDR subtasks. For the

DNER subtask, we used our concept recognition tool

Peregrine (14), in combination with several optimization

steps. For the CID subtask, we applied the optimized

Peregrine system for disease concept recognition; for chem-

ical concept recognition, we used tmChem (15), a chemical

concept recognizer that was provided by the challenge or-

ganizers. A relation extraction module was trained on a

rich feature set, including features derived from a graph

database containing prior knowledge about chemicals and

diseases, and linguistic and statistical features derived from

the training corpus documents.

In the following, we describe the systems that we de-

veloped for the BioCreative challenge, as well as several

post-challenge improvements, and present evaluation re-

sults for both subtasks on the CDR training and test sets.

Methods

Figure 1 shows the different steps in our workflow for

CDR extraction from biomedical abstracts. The data,

methods for entity recognition and normalization, and re-

lation extraction methods are described below.

Data

The CDR task data consist of a training, a development

and a test set, each containing 500 Medline abstracts.

Chemicals and diseases in the abstracts were manually

annotated in the form of text offset, text span, and

Medical Subject Headings (MeSHs) identifier (13).

Chemical-disease interactions were annotated at the docu-

ment level as MeSH-identifier pairs, but only if a

mechanistic relationship between a chemical and a disease

was explicitly mentioned in the abstract (16). Therapeutic

relationships between chemicals and diseases were not

annotated. Table 1 shows the number of annotated

(unique) identifiers of chemicals and diseases, and the

number of annotated relationships.

Entity Recognition and Normalization

Chemical concept recognition was carried out using the

tmChem chemical recognizer system (15). The tmChem

system was one of the best performing systems in the previ-

ous BioCreative IV chemical-named entity recognition

(CHEMDNER) challenge (17). It includes a dictionary

look-up to map recognized chemicals to MeSH identifiers.

tmChem is an ensemble system that combines two CRF-

based systems, of which we only used the one that per-

formed best in the CHEMDNER challenge. We trained

this system on the 1000 documents in the CDR training

and development sets.

For the recognition and normalization of diseases, we

employed our dictionary-based concept recognition system

Peregrine (14). Peregrine employs a user-supplied diction-

ary and splits the terms in the dictionary into sequences of

tokens. When such a sequence of tokens is found in a docu-

ment, the term and the concept associated with that term,

is recognized in the document. Peregrine removes stop-

words (we used the PubMed stopword list [http://www.

ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.

stopwords]) and tries to match the longest possible text

phrase to a concept. It uses the Lexical Variant Generator

tool of the National Library of Medicine to reduce a token

to its stem before matching (18). Peregrine is freely avail-

able (https://trac.nbic.nl/data-mining/).

We constructed a dictionary with concepts and corres-

ponding terms taken from four biomedical vocabularies, as

contained in the Unified Medical Language System

(UMLS) (19) 2015AA edition. These are: MeSH; Medical

Dictionary for Regulatory Activities; Systematized

Nomenclature of Medicine, Clinical Terms, and International

Classification of Diseases, Tenth Edition, Clinical Mod-

ification. The MetamorphoSys tool (19) was used to only in-

clude concepts that belong to the semantic group ‘Disorders’

(20), and to discard terms that are flagged as suppressible in

the UMLS.

After a document was processed with Peregrine, several

post-processing steps were executed. We extracted all ab-

breviations and their corresponding long forms (21), and

made sure that any combination of abbreviation and long

form was tagged with the same concept. Adjacent term

spans that were identified as the same concept were

merged. For our challenge submission on the test set, we
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filtered out terms that Peregrine had tagged erroneously in

the training and development data (false-positive terms).

After the challenge, we refined this approach by only

removing false-positive terms if the ratio of true-positive to

false-positive terms was lower than 0.3. This threshold was

heuristically set based on the training data to prevent that

an occasional false-positive detection would cause the re-

moval of terms that were generally correctly recognized.

Moreover, we performed a term-frequency analysis by

indexing a random set of one million Medline abstracts

and manually checking the 2000 top-ranking terms found

by Peregrine. Erroneously recognized terms were also

removed. Finally, we added all terms that Peregrine had

missed in the training set (false-negative terms) to the

dictionary.

The UMLS identifiers of the concepts that resulted from

the indexing and post-processing steps were mapped to

MeSH identifiers with the IntraMap tool (22). IntraMap

contains a precompiled mapping table that links each

UMLS concept to the semantically closest MeSH header.

Relation Extraction

We formulated the relation extraction task as a binary de-

cision problem: for each possible pair of chemicals and dis-

eases found in a document, determine whether there is a

relationship. To train the relation extraction algorithm, we

constructed training instances based on the perfect (gold-

standard) entity annotations of the training data. Of the

10 693 possible pairs of annotated chemicals and diseases,

2050 were labeled as positive instances because the pair

had been annotated as a relationship by the reference.

The other 8643 pairs were labeled as negative instances.

Co-occurrence pairs were allowed to cross the title-

abstract border. For each instance, three sets of features

were generated, based on prior knowledge and on statis-

tical and linguistic information from the document.

Prior knowledge features

To generate features based on existing, prior knowledge,

we used a graph database, the Euretos Knowledge

Platform (http://euretos.com/). The Euretos Knowledge

Platform is a commercial system and not freely available,

but life-science researchers can request free browsing ac-

cess. We have obtained an academic license to use a local

installation of the system. The graph database contains

entities and relations from (curated) structured databases,

such as UniProt, the Comparative Toxicogenomics

Database and UMLS, and from scientific abstracts (seman-

tic Medline (23)). Each connection between entities can

have a set of named relations or predicates. Attached to
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Figure 1. Workflow for CDR extraction. The chemical and disease entities in a Medline abstract are recognized and mapped to their corresponding

MeSH identifiers by tmChem (for chemicals) and Peregrine (for diseases). For each possible combination of chemicals and diseases that are found in

the document, features are generated based on prior knowledge from a knowledge platform, and based on statistical and linguistic information from

the document. The features are fed to an SVM classifier to detect CIDs.

Table 1. Characteristics of the CDR corpus

Data Training Development Test Total

Abstracts 500 500 500 1500

Chemical mentions 5203 5347 5385 15 935

Unique chemical identifiers 1467 1507 1435 4409

Disease mentions 4182 4244 4424 12 850

Unique disease identifiers 1965 1865 1988 5718

CDRs 1038 1012 1066 3116
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each predicate is provenance information, including the

different sources in which the relation was found and, per

source, the number of records or abstracts with the rela-

tion. Euretos provides an application programming inter-

face that was used to query the database for paths between

two given entities. A path can be direct (i.e. the entities

have a direct, one-directional (causal) or two-directional

(non-causal), relationship) or indirect (the entities are con-

nected through one intermediate entity; if the two relation-

ships involved are one-directional, one relationship should

point towards the intermediate entity and the other should

point away from it). For each path, a confidence score

based on provenance information is computed that indi-

cates how strongly the entities are related. If two entities

are connected through both direct and indirect paths, the

latter are ignored. If there are multiple paths of the same

length, the total score and total provenance count are

taken as the maximum of the path scores and path proven-

ance counts, respectively. The provenance count of an in-

direct path is taken as the minimum of the provenance

counts of the two predicates involved. For each chemical-

disease pair, we determined the path type (direct, indirect

or no path), the confidence score, the number of paths, the

set of predicates involved and the provenance count.

Statistical features

The statistical feature set contains, for each chemical-dis-

ease pair at the document level, the number of mentions of

the chemical and of the disease and number of possible

chemical-disease pairs in the document (i.e. number of

chemical mentions times number of disease mentions). The

ratios of these numbers to the numbers of all chemical

mentions, all disease mentions and all possible chemical-

disease pairs in the document are also taken as features.

Additional features capture the minimal sentence and

word distance between the mentions of the chemical and

the disease. Binary features indicate whether the chemical,

the disease or both were mentioned in the document title.

The MeSH identifiers of the chemical and disease are

included as nominal features.

Linguistic features

We used the Stanford CoreNLP parser version 3.4.1 with

the English PCFG parsing module to generate dependency

trees of the sentences of each document, and determined

‘governing verbs’ of chemicals and diseases, and ‘relating

words’ of chemical-disease pairs (Figure 2). The governing

verb of a word is defined as the first verb in the parse tree

that is encountered when the tree is traversed from the

word towards the root. The relating word of a chemical-

disease pair is defined as the first word in the parse tree

that the chemical and disease have in common. If the

chemical and disease mentions appear in different sen-

tences, the relating word is undefined.

Two sets of linguistic features are used. For the first set,

only one pair of chemical and disease mentions in the

document is considered. The pair is selected on the basis of

the following heuristics. A pair with the chemical and dis-

ease mentions in the same sentence has precedence over a

pair with mentions in different sentences, and a pair where

no other chemical-disease pair can be found lower in the

parse tree has precedence over a pair for which this is not

true. If there are only pairs with mentions in different sen-

tences, the last pair with the chemical mention before the

disease mention is selected. If no such pair exists, the first

chemical and disease mentions in the document are se-

lected. The following features are derived: governing verb

of the chemical and of the disease, relating word, and gov-

erning verb of the relating word. Note that if the chemical

and the disease occur in different sentences, the governing

verbs are taken from different parse trees and the relating

word and its governing verb are undefined. Further fea-

tures indicate whether the chemical is mentioned before

the disease, and whether another chemical-disease pair can

be found lower in the parse tree. After the challenge, we

added four features that signify whether the relating word

and the governing verb of the chemical, of the disease, and

of the relating word, are negated. Negation was assessed

by the presence of negation modifiers in the parse tree.

Three more post-challenge features indicate whether the

chemical is the same as the relating word, whether the gov-

erning verb of the disease is the same as the relating word,

and whether both governing verbs are the same as the

relating word.

For the second set of linguistic features, we aggregated

information about the governing verbs and relating words

from all possible pairs of chemical and disease mentions in

the documents. This set contains one numeric feature for

each governing verb or relating word encountered in the

training set, indicating how many times that word is found

as a governing verb or relation word for the chemical-

disease pairs in the document.

Machine learning

Various machine-learning algorithms were explored, utiliz-

ing Weka machine learning libraries (http://www.cs.wai

kato.ac.nz/ml/weka/). Performance was estimated by 10-

fold cross-validation.

In a preliminary analysis in which we compared various

classification algorithms, support vector machines (SVMs)

proved to have superior performance. Therefore, we
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continued to optimize parameters for the SVM classifica-

tion model. We used C-support vector classification with

radial basis function kernel type, initially with default

settings for cost (1.0) and gamma (0.0).

All numeric features were normalized to scale between

zero and one. Because of the class imbalance the cost ma-

trix of the SVM was set to 5:1, giving extra weight to the

minority class. Utilizing the best performing feature set, we

tuned the cost and gamma parameters by performing a

grid search, again applying 10-fold cross-validation.

During the grid search, we used a fixed decision threshold

of 0.5 for the SVM. We subsequently varied the decision

threshold to optimize the F-score of the SVM.

Evaluation

For each document, the disease concepts and the disease–

chemical relationships found by our systems were com-

pared with the gold-standard annotations, resulting in

true-positive, false-positive and false-negative detections.

Micro-averaged precision, recall and F-score were then

computed over the whole document set. We implemented

our final challenge systems as web services, which the

CDR task organizers utilized for online system evaluation

on the test set.

Results

DNER task

Table 2 shows the performance of the Peregrine challenge

system and the system with post-challenge modifications

on the DNER test set. The challenge system obtained an

F-score of 0.757. The modified system performed consider-

ably better achieving an F-score of 0.828, well above the

average F-score (0.760) of the 16 teams participating in the

DNER task (13).

To get insight in the cause of the remaining errors of the

modified Peregrine system, we randomly selected and ana-

lyzed 50 false-positive and 50 false-negative detections.

Table 3 shows that almost half of the false-positives were

due to incorrectly recognized terms, e.g. in the form of an

erroneous synonym (‘patch’ for ‘plaque’) or a term that is

no disease (‘glucose tolerance curve’). The largest group of

false-negatives resulted from missing synonyms in the ter-

minology. Interestingly, many of these synonyms were pre-

sent in other vocabularies in the UMLS than the ones that

we selected for building our terminology. Smaller number

terms were correctly recognized, but were mapped to the

Figure 2. Example dependency parse tree for a sentence about the chemical ‘acetaminophen’ and the disease ‘anaphylaxis’. The governing verb of

the disease is ‘produce’; the governing verb of the chemical is ‘demonstrated’, which is also the relating word.

Table 2. Performance of the Peregrine challenge and post-

challenge systems for disease normalization on the test set

System Recall Precision F-score

Peregrine, challenge 0.772 0.737 0.757

Peregrine, post challenge 0.839 0.818 0.828

Table 3. Error analysis of 50 false-positive and 50 false-nega-

tive errors of the post-challenge Peregrine system

Error type False-

positive

False-

negative

Term mapped to incorrect MeSH identifier 8 6

Term incorrectly on exclusion list - 5

Term partially recognized 13 15

Term incorrectly recognized 23 -

Term not recognized - 20

Annotation error 6 4
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wrong MeSH identifier, or were excluded because their

true-/false-positive ratio was below the threshold of 0.3.

Partial recognition of terms, e.g. ‘carcinoma’ in ‘cervical

carcinoma’ or ‘ethanol abuse’ in ‘cocaine and ethanol

abuse’, resulted in considerable numbers of false-positives

as well as false-negatives. Finally, we encountered a num-

ber of gold-standard annotation errors. For example, in

the term ‘ST depression’, an electrocardiographic concept,

‘depression’ had been annotated as a psychological dis-

order. As another example, a mention of the term ‘death’

had not been annotated, whereas the annotation guidelines

explicitly state that this term should be annotated.

CID Task

Table 4 shows the results of different relation extraction

systems on the CDR training and development data, using

the gold-standard chemical and disease annotations to gen-

erate all possible chemical-disease pairs.

A baseline system based on sentence co-occurrence of

entities gave an F-score of 0.437 with a recall of 0.725,

indicating that more than a quarter of the relations

spanned more than one sentence. The application of prior

knowledge, assuming that a relation was present if a chem-

ical and a disease were directly connected in the Euretos

Knowledge Platform by a non-treatment predicate, re-

sulted in an F-score of 0.503. When the SVM was trained

with all the challenge features (i.e. without the negation

and word correspondence features that we defined post-

challenge), we achieved an F-score of 0.760. Including all

our features further improved the F-score to 0.801. To as-

sess the performance contribution of the different features

sets, we retrained the system after removing each feature

set in turn. Removal of the prior knowledge features or the

statistical features resulted in a similar drop of perform-

ance (F-scores of 0.728 and 0.726, respectively). Leaving

out the linguistic features reduced performance to some

lesser extent (F-score 0.765).

Table 5 shows the performance results of the SVM clas-

sifier, using tmChem and Peregrine for entity normaliza-

tion, on the CDR test set. For the CDR challenge, we

submitted three runs using the SVM trained on the chal-

lenge features, in combination with tmChem and the

Peregrine challenge system: one run used the decision

threshold of 0.30 that resulted from our cross-validation ex-

periments, the other two runs used thresholds of 0.20 and

0.40. The best F-score was 0.569, which was achieved for a

threshold of 0.2. This result is higher than the F-score of

0.526 reported in the CDR challenge proceedings (13, 24).

The reason is that the server showed occasional race-

conditions during the challenge, which we only discovered

and fixed after the challenge. Our system, which we named

RELigator, ranked second among the systems of 18 partici-

pating teams in the CDR task (the best team achieved an

F-score of 0.570) (13). Use of the improved, post-challenge

Peregrine system only slightly improved performance (F-

score 0.557 vs. 0.563 at a threshold of 0.3). However, the

system trained with the additional post-challenge features

yielded a considerably improved F-score of 0.602. For com-

parison, we also evaluated this SVM using the gold-standard

entity annotations. This resulted in an F-score of 0.702.

Discussion

We described our Peregrine-based system for disease nor-

malization, and the RELigator system for CDR extraction.

RELigator achieved an F-score of 0.526 for the CID chal-

lenge, which ranked second among 18 participating teams.

Several post-challenge modifications of the systems re-

sulted in a substantially improved F-score of 0.602 for

CID, currently outperforming the best challenge submis-

sion. Evaluation of CID extraction using gold-standard en-

tity annotations illustrates that the quality of entity

recognition is still an important limitation.

Regarding the CDR extraction, our results indicate that

knowledge-based features, statistical features and linguistic

Table 4. Performance of different relation extraction systems on the CDR training and development data,

given perfect entity annotations

System Threshold* Recall Precision F-score

Co-occurrence at sentence level n/a 0.725 0.313 0.437

Knowledge base n/a 0.664 0.405 0.503

SVM, all challenge features 0.30 0.840 0.693 0.760

SVM, all post-challenge features 0.34 0.854 0.753 0.801

without prior knowledge features 0.33 0.765 0.695 0.728

without statistical features 0.39 0.775 0.683 0.726

without linguistic features 0.38 0.842 0.701 0.765

*Probability threshold for the SVM to decide whether there is a relationship.
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features each contribute to the final system performance,

and thus contain at least partly complementary

information.

Our original Peregrine system (F-score 0.757) was out-

performed in the challenge by CRF-based disease recogni-

tion systems, with an F-score of 0.865 for the best

performing system. The post-challenge modifications of

Peregrine resulted in a substantial performance improve-

ment (F-score 0.828). This result compares favorably with

the F-score of 0.698 that we obtained in a previous study

in which we also used Peregrine for disease concept recog-

nition in a set of Medline abstracts (5). The lower perform-

ance in that study may partly be explained by the more

demanding task to recognize disease concepts from any vo-

cabulary in the UMLS, not just from MeSH like in this

study.

Our error analysis revealed that most disease recogni-

tion errors were terminology-related. Inclusion of other

vocabularies from the UMLS to increase the coverage of

synonyms in combination with filtering on semantic types

and manual term curation, may further improve

Peregrine’s performance.

Remarkably, the gain in Peregrine performance before

and after the challenge hardly increased the performance

of the relation extraction pipeline (F-score rose from 0.557

to 0.563, using the challenge feature set and a 0.3 decision

threshold of the SVM classifier). There may be several rea-

sons for this. First, relation extraction performance is de-

pendent on the performance of both the disease concept

recognition and the chemical concept recognition.

Improved disease recognition alone will therefore only be

partially reflected in improved relation extraction. Second,

disease recognition performance is based on the annota-

tions of all unique disease mentions in the abstracts,

whereas relation-extraction performance is based on dis-

ease annotations at the document level. The test contains

1988 gold-standard annotations of unique disease men-

tions and 865 gold-standard disease annotations that are

part of CDRs. Again, improved performance of the disease

recognition step is likely to be only partially reflected in

improved relation extraction.

Despite the noisy entity data for instance generation, we

still performed second in the challenge for CID extraction.

Because the performance of relation extraction is not eval-

uated independently of entity recognition, it is hard to put

the CID results into perspective. The task, in-part inspired

by the needs of CTD curators, did not distinguish between

DNER and CID performance, while this seems essential to

bring this task forward.

The inter-annotator agreement (IAA) for the CID cor-

pus is not known. Wiegers et al. (25) report a surrogate

IAA score of 77% for annotation of chemical-gene inter-

actions. This IAA averages agreement of each annotator

against a gold standard, created by disagreement reso-

lution, which presumably overestimates the true IAA. Our

system has a micro-averaged F-score of 70% using gold-

standard annotations, and may come within reach of the

IAA. However, formal assessment of CID IAA needs to be

performed.

Several improvements of the final model can be envis-

aged. The scope of syntactically connected chemical–dis-

ease pairs could be expanded through anaphora resolution.

Governing and relating words could be encoded as word

embeddings instead of nominal values, giving them a more

compact and semantically rich representation. Simple

token features in a window around chemical and disease

could provide further context. Finally, the CDR annota-

tions that we used to train our models were provided at the

document level. We did not attempt to annotate the rela-

tion mentions in the document texts, which might have

yielded stronger features.
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Table 5. Performance of relation extraction systems on the CDR test data, for different entity annotations

System Entity annotation Threshold* Recall Precision F-score

SVM, all challenge features tmChem, Peregrine challenge 0.20 0.601 0.540 0.569

SVM, all challenge features tmChem, Peregrine challenge 0.30 0.537 0.579 0.557

SVM, all challenge features tmChem, Peregrine challenge 0.40 0.467 0.605 0.527

SVM, all challenge features tmChem, Peregrine post-challenge 0.30 0.556 0.569 0.563

SVM, all post-challenge features tmChem, Peregrine post-challenge 0.34 0.570 0.637 0.602

SVM, all post-challenge features Gold standard 0.34 0.731 0.676 0.702

*Probability threshold for the SVM to decide whether there is a relationship.
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