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Abstract

Identifying chemical–disease relations (CDR) from biomedical literature could improve

chemical safety and toxicity studies. This article proposes a novel syntactic and semantic

information exploitation method for CDR extraction. The proposed method consists of a

feature-based model, a tree kernel-based model and a neural network model. The fea-

ture-based model exploits lexical features, the tree kernel-based model captures syntac-

tic structure features, and the neural network model generates semantic representations.

The motivation of our method is to fully utilize the nice properties of the three models to

explore diverse information for CDR extraction. Experiments on the BioCreative V CDR

dataset show that the three models are all effective for CDR extraction, and their combin-

ation could further improve extraction performance.

Database URL: http://www.biocreative.org/resources/corpora/biocreative-v-cdr-corpus/.

Introduction

Understanding the relations between chemicals and dis-

eases is relevant to many areas of biomedical research and

health care, e.g. drug discovery and safety surveillance (1).

Biomedical researchers have studied a great amount of as-

sociations between chemicals and diseases, and published

their studies in the biomedical literature. However, manu-

ally extracting these relations is expensive and time-con-

suming, and it is impossible to keep up-to-date. Automated

natural language processing (NLP) methods could extract

the chemical–disease relation (CDR) to keep pace with the

fast growth of biomedical literature.

The BioCreative V (2) proposes a challenge task of

automatic CDR extraction from the biomedical literature

by text mining technique. There are two specific subtasks:

(i) disease named entity recognition and normalization

(DNER) and (ii) chemical-induced diseases relation extrac-

tion (CID). This paper focuses on the CID subtask. For the

task, a total of 1500 PubMed articles (3): 500 each for the

training, development and test set are prepared.

Previous research on relation extraction (RE) can be

divided into two categories: rule-based methods and ma-

chine learning-based methods. Rule-based methods extract

CDR by adopting prototypical relation patterns. Lowe
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et al. (4) develop a simple pattern-based system to find

chemical-induced disease relations within the same sen-

tence and achieve 52.20% F-score on the BioCreative V

CDR Task. Rule-based methods could make full use of

syntactic information and have achieved good performance

in the existing resource, but the extracted rules are hard to

develop to a new dataset.

As for machine learning-based RE, feature-based meth-

ods and kernel-based methods are widely used. Feature-

based methods focus on designing effective features includ-

ing lexical, syntactic and semantic information. Gu et al. (5)

utilize rich lexical features for CID task and achieve 55.3%

F-score on the development set of BioCreative V CDR Task.

Bui et al. (6) generate flat features from a suitable syntactic

structure to improve the performance of drug–drug inter-

action extraction. Knowledge-based features derived from

the database containing prior knowledge about chemicals

and diseases are also applied for CDR extraction. Xu et al.

(7) employ various drug-side-effect resources to generate

knowledge-based features, and achieve the highest F-score

of 57.03% in BioCreative V CDR Task. Pons et al. (8)

also use knowledge-based features, and get the second best

reported result (52.6% F-score). Feature-based methods

are simple and could achieve good results. However, the

traditional lexical and flat syntactic features are ‘one-hot’

representations, which could not adequately capture the

deep semantic and syntactic structure information.

Kernel-based methods are more effective than feature-

based methods for capturing syntactic structure informa-

tion, which compute the structure similarity between two

trees by tree kernel function (9). The representation of the

tree structure is an essential prerequisite for kernel-based

methods in state-of-the-art RE systems (10–12). Zhang

et al. (10) investigate five tree spans of a phrase tree for

general RE task, among which the Path-enclosed Tree (PT)

achieves the best performance. The phrase tree represents

constituent of neighbors, which is suitable for capturing

local syntactic information. Meanwhile, the dependency

tree reflects semantic modification relationships of words

in a sentence, which compactly represents global syntactic

information. To grasp global and local syntactic informa-

tion connecting chemical and disease entities, Zhou et al.

(13) integrate phrase and dependency trees to improve the

performance for the CDR task.

As for semantic information, deep learning techniques

have recently shown to be superior in some NLP tasks. Deep

neural networks, such as recurrent neural network (RNN)

(14), convolution neural network (CNN) (15, 16) and RNN

with long short-term memory (LSTM) units (17), are success-

fully applied to semantic representations of surface sequences.

Liu et al. (18) adopt CNN to learn the representation of the

shortest dependency path (SDP) between two entities.

Nguyen et al. (19) demonstrate that semantic representations

are effective on the tree kernel-based RE system. They obtain

semantic representations of entity pairs by concatenating the

word representations of the two entity heads, and use them

as features to learn a feature-based model. Xu et al. (17) first

propose to use LSTM to pick up semantic information along

the SDP for RE. LSTM is designed to cope with the gradients

vanishing or exploding problem of RNN (20, 21).

Each of the above three machine learning-based meth-

ods shows heterogeneous superiority for CDR extraction.

This article integrates a feature-based model, a kernel-

based model and a neural network model into a unified

framework to exploit deep syntactic and semantic informa-

tion for CDR extraction. Our study shows that surface lex-

ical features with the feature-based model, structured

syntactic features with the kernel-based model and seman-

tic representations with the neural network model are all

effective for CDR extraction. And their combination could

further improve the performance significantly. We espe-

cially study how to combine the three models to optimize

the performance of the hybrid system.

Materials and methods

To simplify CDR task, we ignore CDR across sentences and

only identify CDR in a sentence. Each chemical–disease pair

in a sentence is regarded as a candidate instance. The CDR

corpus is preprocessed with GENIA Tagger (http://www.nac

tem.ac.uk/GENIA/tagger/), Berkeley Parser (http://nlp.cs.ber

keley.edu/software.shtml) and Gdep Parser (http://people.ic

t.usc.edu/~sagae/parser/gdep) to get lexical information,

phrase trees and dependency trees, respectively.

The architecture of the hybrid system is shown in Figure

1, which consists of a training phase and a testing phase. In

the training phase, we extract flat features and structure

features from the training data, and learn semantic repre-

sentations by deep learning. Thus, the feature-based

model, the kernel-based model and the neural network

model are obtained. Two categories of neural networks,

LSTM and CNN, are used to compute semantic represen-

tations of CDR pairs.

In the testing phase, the three models are applied to ex-

tract CDR. The predicted results of the three models are

combined finally.

Feature-based model

The feature-based model is learned from flat features with

polynomial kernel. We select widely used basic features for

CDR extraction as shown below. These features reflect the
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characteristic of chemical entities, disease entities and their

relations between them.

Context: word, stem, POS and chunk of two entities in

the window [-3, 3].

Entity: head, POS and chunk.

Position: the positional relationship of two entities. If

the chemical entity is before disease, the feature value is set

to ‘before’. Otherwise the feature value is set to ‘after’.

Distance: the number of words between two entities. If

there are fewer than three words between two entities, the

feature value is set to ‘LessThree’. The other feature values

include ‘MoreThreeLessSix’, ‘MoreSixLessNine’,

‘MoreNineLessTwelve’ and ‘MoreTwelve’.

Verb: if there are verbs before, between and after the

two entities.

Tree kernel-based model

One of the core problems in tree kernel-based RE is how

to represent the tree structure. Bunescu and Mooney

(22) demonstrate that SDP between two entities could

capture the predicate–argument sequences, which pro-

vide strong evidence for relation classification. We lever-

age the shortest dependency path tree (SDPT) to

generate structured dependency features (SDF), struc-

tured phrase features (SPF) and flattened dependency

features (FDF)

Shortest dependency path tree

SDPT is the shortest path subtree linking two entities in

dependency tree. Taking Sentence 1 as an example, there is

a chemical entity denoted by wave line and four disease

entities denoted by underline. The chemical entity ‘fen-

tanyl’ is associated with the four disease entities.

Sentence 1: Various reported side effects of fentanyl ad-

ministration include ‘chest wall rigidity’, ‘hypotension’,

‘respiratory depression’ and ‘bradycardia’.

For the fragment of dependency tree (Sentence 1) shown

in Figure 2A, SDPT of the candidate ‘fentanyl’ and ‘hypo-

tension’ is shown in Figure 2B. SDPT is the most direct

syntactic representation connecting the two entities.

SDF based on SDPT

For the SDPT shown in Figure 2B, tree kernel cannot cap-

ture dependency relation on the arcs (e.g. ‘dobj’ relation

between node ‘include’ and ‘hypotension’). To capture de-

pendency relation, we use the dependency relation labels

to replace the corresponding word–POS pairs on the nodes

of original SDPT as shown in Figure 2C. Then, make the

POS tags as the children of the corresponding relation

nodes, the fathers of their associated words.

Extended SDF based on SDPT

To enrich the context information, SDF is extended with

the dependent nodes of all nodes in SDPT to construct ex-

tended SDF (shown in Figure 2D and E).

SPF based on SDPT

To capture constituents and exclude redundancy of two

entities with long distance, we propose SPF based on

SDPT. For the fragment of phrase tree for Sentence 1

shown in Figure 3A, SPF of the candidate ‘fentanyl’ and

‘hypotension’ is shown in Figure 3B. SPF is a subtree con-

sisting of the words in SDPT (denoted by underline in

Figure 1. Hybrid system architecture.
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Figure 3A) and their ancestral constituents (highlighted in

bold).

FDF based on SDPT

As the root word of SDPT is important for CDR extrac-

tion, we use the root features about SDPT as the FDF as

follows:

Position: the root word of the SDPT locates before, be-

tween or after the two entities.

Context: word, POS and chunk features in the window

[-1, 1].

Neural network model

Specifically, we use LSTM to generate semantic representa-

tions of CDR pairs. LSTM introduces a gating mechanism,

which comprises four components: an input gate it, a for-

get gate ft, an output gate ot and a memory cell ct. For the

standard LSTM, each of the three gates receives the infor-

mation from the inputs at current time step and the outputs

at previous time step. Many LSTM variants have been pro-

posed for NLP problems. We adopt a variant, which adds

the ‘peephole connections’ to the architecture (23) (shown

in Figure 4) to let the memory cell ct�1 directly control the

gates as follows:

it ¼ rðWðiÞxt þUðiÞht�1 þ VðiÞct�1 þ bðiÞÞ; (1)

ft ¼ rðWðf Þxt þUðf Þht�1 þ Vðf Þct�1 þ bðf ÞÞ; (2)

ct ¼ ft
� ct�1 þ it

� tanhðWðcÞxt þUðcÞht�1 þ bðcÞÞ; (3)

where W, U and V are the transition matrices for the input

xt, the hidden state vector ht�1 and the memory cell ct�1,

Figure 2. SDPT. (A) The fragment of dependency tree for Sentence 1. (B) SDPT. (C) SDF based on SDPT. (D) Extended SDPT. (E) Extended SDF based

on SDPT.

Figure 3. SPF based on SDPT. (A) The fragment of phrase tree for Sentence 1. (B) SPF based on SDPT.

Page 4 of 10 Database, Vol. 2016, Article ID baw048

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

048/2630338 by guest on 21 M
ay 2024

Deleted Text: )
Deleted Text: Flattened dependency features (
Deleted Text: )
Deleted Text: flattened dependency features (
Deleted Text: )
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: <italic><sub>-</sub></italic>
Deleted Text: <italic><sub>-</sub></italic>
Deleted Text: ,
Deleted Text: <italic><sub>-</sub></italic>


respectively. b is a bias term for the hidden state vector, r

represents the sigmoid function, and � denotes compo-

nent-wise multiplication.

The current hidden state value ht is controlled by the

output gate ot, which is applied to the result of the applica-

tion of a nonlinearity to the memory cell contents:

ot ¼ rðWðoÞxt þUðoÞht�1 þ VðoÞct þ bðoÞÞ (4)

ht ¼ ot
�tanhðctÞ: (5)

The hidden state ht at current time step is used for the

acquisition of htþ 1 at next time step. That is, LSTM proc-

esses the word sequence by recursively computing its in-

ternal hidden state ht at each time step. The hidden

activations of the last time step could be considered as the

semantic representation of the whole sequence and used as

input to classification layer.

To explore deep semantic information behind CDR

pairs, we adopt the following input methods to learn se-

mantic representations from the surface sequences.

WORD

This method inputs the word sequences between chemical

and disease entities into LSTM to capture semantic repre-

sentations of CDR pairs. The dimension of word represen-

tations xw 2 Rd is d.

WORD-POS

Besides the word sequences, this method additionally in-

puts POS tags of the word sequences. The representations

of each word w and its POS p are concatenated to form a

vector representation xw;xp 2 R2d.

HEAD

Compared with WORD, this method replaces all chemical

and disease entities with their head words to enhance the gen-

eralization capacity. This representation is inherited from

Nguyen et al. (19) that only concatenate the word

representations of the two entity mention heads, whereas our

method captures the semantic representation of the whole

sequence.

SDP-dep

This method inputs a sequence of words and dependency

relations of SDP as shown in Figure 5A. This is motivated

by Liu et al. (18), which adopt CNN to learn the semantic

representations behind SDP. Note that the sequence fol-

lows the left-to-right order in SDP. The dimensions of

word representations xw 2 Rd and relation representation

xr 2 Rd are both d.

SDP-seq

This method also inputs a sequence of words and depend-

ency relations of SDP. However, the sequence follows the

natural order of words in a sentence as shown in Figure

5B. We consider that this order could reflect the actual se-

mantic information in context.

We also try applying CNN to produce semantic repre-

sentations of CDR pairs. The performance comparison be-

tween LSTM and CNN is given in the ‘Results and

discussion’ section.

Hybrid CDR extraction system

We propose a hybrid CDR extraction system integrating

the feature-based model F(vi), weighted by a, the tree ker-

nel-based model K(ti), weighted by b, and the neural net-

work model N(si), weighted by 1� a� b.

Figure 4. Detailed architecture of the peephole LSTM.

Figure 5. SDP sequences. (A) SDP-dep sequence. (B) SDP-seq

sequence.
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The predicted results of the feature-based and tree ker-

nel-based models are the distances between the instances

and the separating hyperplanes, whereas those of the neu-

ral network model are the probabilities of the test data. We

adopt the sigmoid function in our experiments to trans-

form the distance into a probability and extract CDR with

a uniform framework:

PðRiÞ ¼ a � rðFðviÞÞ þ b � rðKðtiÞÞ þ ð1� a� bÞ �NðsiÞ
(6)

where vi, ti and si are the lexical features, the structure fea-

tures and semantic representations of the CDR pair Ri in test

data, respectively. The parameters a 2 ½0;1� and b 2 ½0;1�
could be controlled to investigate the impacts of lexical fea-

tures vs. structure features vs. semantic representations. The

sigmoid function is monotonic, and the point Pðy ¼ 1jf Þ
¼ 0:5 occurs at the separating hyperplanes f ¼ 0 (24).

Therefore in our experiments, the boundary probability to

separate relations from non-relations is simply set to 0.5.

Results and discussion

Experiments are conducted on the BioCreative V CDR

Task corpus. We train the system on the training and the

development sets, and evaluate it on the test set. The

evaluation of CDR extraction is reported by official evalu-

ation toolkit (http://www.biocreative.org/tasks/biocrea

tive-v/track-3-cdr/), which adopts Precision (P), Recall (R)

and F-score (F) to measure the performance. SVM-

LIGHT-TK toolkit (http://disi.unitn.it/moschitti/Tree-

Kernel.htm) is used to construct the feature-based and

tree kernel-based models. Neural network model (LSTM

model and CNN model) is developed based on Theano

system (25). We systematically evaluate the effectiveness

of the feature-based model, the tree kernel-based model

and the neural network model for CDR extraction. In

addition, we investigate their complementarities by com-

bining them with different weighting parameters. Note

that all the performances are achieved by using golden

standard entities.

Effects of flat features

The detailed performances of the feature-based model with

different flat feature sets are summarized in Table 1. From

the results, we can see that:

1. The feature-based model with only context features

achieves acceptable results. With other basic features (en-

tity, position, etc.) added one by one, the performance is

improved continuously and reaches 53.70% F-score. All

of the basic features are effective for CDR extraction.

2. When adding the FDF features derived from SDPT, the

performance is further improved. However, the im-

provement is slight. Thus, it can be seen that the flat-

tened syntactic features are helpful for CDR extraction,

but they are unable to represent the rich syntactic struc-

ture character.

Effects of structure features

Table 2 shows the CDR extraction performance of the ker-

nel-based model with structure features. From Table 2, we

can see that the sole SDF or sole SPF with tree kernel is

comparable to the sole context features. And their combin-

ation could improve the performance. These indicate that

SDF and SPF are effective and complementary for CDR ex-

traction. Tree kernel-based model can capture useful syn-

tactic structure information inherent in parsing trees.

We also compare our SDF with the other syntactic

structure features, PT (10) and Extended SDF, in Table 3.

Both of them perform worse than SDF, which shows that

SDF could represent concise as well as precise syntactic

structure connecting the two entities.

Table 1. Performance of the feature-based model with flat

features

Flat features P (%) R (%) F (%)

Basic

Context 59.07 44.00 50.43

þEntity 60.73 45.40 51.96

þPosition 60.95 45.68 52.23

þDistance 61.99 46.81 53.34

þVerb 62.15 47.28 53.70

FDF

þContext 62.39 47.47 53.92

þPosition 62.86 47.47 54.09

Table 2. Performance of kernel-based model with structure

features

Structure features P (%) R (%) F (%)

SDF 57.86 44.18 50.11

SPF 59.08 42.12 49.18

SDFþSPF 59.70 44.18 50.78

Table 3. Comparison with other structured syntactic

representation

Structure features P (%) R (%) F (%)

SDF 57.86 44.18 50.11

PT 63.00 41.37 49.94

Extended SDF 61.17 42.12 49.89
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Effects of semantic representations

In our experiments, the initial word representation is pre-

trained by the Word2Vec tool (https://code.google.com/p/

word2vec/) (26) instead of randomly sampling. The dimen-

sion d of Word2Vec is 200, whereas the other parameters

are set as default. We first provide the performance of

LSTM model to investigate the different input methods as

shown in Table 4.

From Table 4, we can conclude:

The sole WORD with only the word sequences has

achieved an acceptable result by learning word representations.

When the POS tags (WORD-POS) are added into the

word sequences, the performance improves. The reason

may be that POS information could be encoded into word

representations and used as additional information.

The generalization of the entities (HEAD) is effective

for improving CDR extraction.

The semantic representations based on SDP (SDP-dep,

SDP-seq) perform better than those based on the word se-

quences. This indicates that SDP contains more important

information while diminishing less relevant noise. In add-

ition, SDP-seq outperforms SDP-dep, suggesting that the

natural order of words is more suitable for LSTM architec-

ture to capture the semantic representation of sequences.

The combination of SDP-seq with either HEAD or POS

further improves performance. The best performance is

achieved when the HEAD and POS representations are uti-

lized at the same time, reaching an F-score of 53.10%.

HEAD and POS seem to capture different information.

Then, we experiment another neural network model

(CNN model) to produce semantic representations of CDR

pairs. The window size and the number of feature maps of

convolution layer are set to 3 and 200, respectively.

Traditional max-pooling layer is used to capture the most

useful information to represent the entity pairs.

Experimental results are given in Table 5. It is somewhat

disappointing that CNN model does not perform as well as

LSTM model, which shows superior power of LSTM in

modeling semantic representations of surface sequences.

Effects of weighting parameters

We investigate the impact of the parameters a, b (Hybrid

CDR extraction system section) that control the weighting

of feature-based model vs. tree kernel-based model vs. neu-

ral network model. The weighting parameters of the three

models are optimized with a grid search procedure using 5-

fold cross-validation experiments, which is conducted on

the corpus consisting of training set and development set.

The best feature sets of the feature-based and kernel-based

models and the best representation method of the LSTM

model are used in the hybrid system. From Figure 6, the

best performance weighting area (purple) is in the middle,

and therefore all the three models are effective for CDR ex-

traction. Apparently, the high weight of feature-based

model enables increasing extraction performance. The best

performance is obtained with the set of a¼ 0.68 and b¼
0.15. This set of parameters is used in the following experi-

ments for the hybrid extraction system.

Statistical analysis is also performed via 5-fold cross-

validation on the corpus consisting of training set and de-

velopment set. The weighting parameters for the combin-

ation of the three models are varied from 0 to 1 with an

Table 4. Performance of LSTM model with the different input

methods

Methods P (%) R (%) F (%)

WORD 47.08 56.00 51.16

WORD-POS 52.96 50.28 51.59

HEAD 48.41 55.82 51.85

SDP-dep 50.44 53.85 52.09

SDP-seq 54.08 51.03 52.51

SDP-seqþPOS 54.06 51.22 52.60

SDP-seqþHEAD 54.33 51.22 52.73

SDP-seqþPOSþHEAD 54.91 51.41 53.10

Table 5. Performance of CNN model with the different input

methods

Methods P (%) R (%) F (%)

WORD 49.25 46.44 47.80

WORD-POS 46.54 50.47 48.92

HEAD 49.57 48.97 49.27

SDP-dep 42.00 53.66 47.12

SDP-seq 47.64 47.28 47.46

SDP-seqþPOS 49.56 47.28 48.39

SDP-seqþHEAD 46.97 48.03 47.50

SDP-seqþPOSþHEAD 41.13 55.25 47.16

Figure 6. Performance of different weightings of the three models (fea-

ture-based model: top, kernel-based model: left, LSTM model: right).

‘1’ indicates the maximum; ‘O’ indicates the minimum.
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interval of 0.1. Table 6 reports the average performances

of the different weighting parameters over all five cross-

validation folds and the P-values for comparisons between

different combination methods. From the table, we can see

that the differences between the combination of the three

models (FKL) and that of the two models (FK, FL, KL)

are all statistically significant (P< 0.05). The analysis dem-

onstrates that by combining the three models, we can get

better syntactic or semantics information for CDR

extraction.

Effects of post-processing

Our hybrid system with the set of a¼ 0.68 and b¼ 0.15 is

evaluated on the test set. The evaluation result in Table 7

shows that the hybrid system achieves a high precision of

64.89%, but low recall (49.25%). To further pick the

most likely CDR, the following two kinds of common

post-processing techniques are applied to the results from

the hybrid system one by one, and the effects of post-pro-

cessing are also shown in Table 7.

Causal relation rules

It is difficult to extract causal relationships between chem-

icals and diseases by machine learning-based methods.

rules to extract causal relations.

• Chemical<related>Disease

• Disease<during>Chemical

• Chemical<caused>Disease

• Chemical<associated>Disease

• Chemical<induced>Disease

• Chemical Disease

Focused chemical rules

When no CDR is matched in an abstract, the focused

chemical rules is applied to find likely relations.

All chemicals in the title are associated with all diseases

in the entire abstract.

When there is no chemical in the title, the most-fre-

quently mentioned chemical in the abstract is associated

with all diseases in the entire abstract.

Added post-processing rules to the hybrid system, the

recall increases significantly, and the F-score is improved

from 56.00% to 61.31%. In particular, the focused chem-

ical rules effectively help the hybrid system to pick some

missed CDRs from the abstracts where no CDR is found

by the hybrid system. As a supplement to the hybrid sys-

tem, post-processing has a very strong effect.

Comparison with related work

Table 8 compares our systems with the top three systems

in the Biocretive V CDR task. It shows that our system

achieves 61.31% F-score by using golden standard entities.

Compared with the state-of-the-art systems, we recognize

the disease and chemical entities with tmChem (27) and

Dnorm (28, 29) toolkits, and then use our hybrid system to

extract CDR. Our final F-score drops to 45.96%, which

does not catch up with the performance of the state-of-the-

art systems. The highest performance from DNorm re-

quires the UMLS Metathesaurus to provide lexical hints to

BANNER and also Ab3P to resolve abbreviations (from

the readme.txt of DNorm installation document).

However, we do not install the UMLS Metathesaurus suc-

cessfully. Therefore, quite a few disease names are not rec-

ognized or normalized correctly, and the corresponding

CDR could not be extracted. By contrast, the top three sys-

tems all perform DNER by their own. The results of

DNER directly influence the performance of CDR

extraction.

For CDR extraction, Xu et al. (7) and Pons et al. (8)

both use large-scale prior knowledge about chemicals and

diseases, and, respectively, achieve the highest F-score of

57.03% and the second highest F-score of 52.56% in

BioCreative V CDR Task. However, our system has not

Table 6. Statistical analysis of different systems. (feature-

based, kernel-based and LSTM models are shorted as F, K

and L, respectively)

Combination systems P (%) R (%) F (%) P-values

FKL 60.30 49.19 54.18

FK 64.64 43.94 52.31 0.025

FL 57.36 50.46 53.83 0.032

KL 57.39 50.07 53.48 0.011

Table 7. Effects of post-processing on the test set

System P (%) R (%) F (%)

Hybrid system 64.89 49.25 56.00

þ Causal relation rules 62.99 51.41 56.61

þ Focused chemical rules 55.56 68.39 61.31

Table 8. Comparison with related work

System P (%) R (%) F (%)

Ours (golden) 55.56 68.39 61.31

Ours (NER) 42.59 49.91 45.96

Xu et al. (7) 55.67 58.44 57.03

Pons et al. (8) 51.34 53.85 52.56

Lowe et al. (4) 52.62 51.78 52.20
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used any external resources. Lowe et al. (4) predefine

many rules to find CDR simply by a rule-based system.

Their system achieves 52.20% F-score, but the hand-

crafted rules are hard to develop to a new dataset.

Compared with these systems, our system is more robust

and does not heavily rely on knowledge bases or prede-

fined rules. Our framework makes full use of lexical, syn-

tactic and semantic information, and could be further

extended by incorporating other effective information.

Error analysis

We perform an error analysis on the output of Ours (NER)

(row 2 in Table 8) to detect the origins of false positives

(FP) and false negatives (FN) errors, which are categorized

in Figures 7 and 8, respectively.

For FP (Figure 7), some main error types are listed as

follows:

False positive entity: Among the 717 CDR that are ex-

tracted incorrectly, 24.82% is caused by false positive dis-

ease or chemical entities, which are not in the gold-

standard named entities but recognized by tmChem (26)

and Dnorm (27, 28) toolkits.

Incorrect classification: In spite of the rich syntactic

structure features and the detailed semantic representa-

tions, 27.06% FP come from the incorrect classification

made by the three individual models.

Rule-based extraction error: Post-processing rules intro-

duce 345 FP, with a proportion of 48.12%.

For FN (Figure 8), some main error types are listed as

follows:

False negative entity: Among the 534 CDR that have

not been extracted, 52.81% is caused by false negative

entities, which are not recognized by tmChem (26) and

Dnorm (27, 28) toolkits.

Incorrect classification: The three single models misclas-

sify 81 positive cases as negatives due to complex syntactic

and latent semantic information of entity pairs.

Cross-sentence error: Cross-sentence CDR relation

pairs are not extracted in our system. 32.02% FN is caused

by span sentence CDRs.

Conclusions

Lexical features, syntactic structure features and semantic

representations are all particularly effective for RE, which

can be well captured by feature-based methods, kernel-

based methods and deep neural networks, respectively.

Different relation classification methods have their own

properties. In this article, we have designed a hybrid system

for RE. Benefiting from the complementary properties of

feature-based methods, kernel-based methods and neural

networks, the hybrid system could well combine lexical,

syntactic, and semantic information, and therefore

achieves significant improvements over the individual

methods. To our knowledge, this is the first research that

integrates the three methods into a uniform framework for

RE.

The most immediate extension of our work is to im-

prove the performance of CDR extraction by using add-

itional biomedical knowledge bases. This can be done by

constructing a knowledge-based system to include rich bio-

medical resources. Our future plan is to investigate the

knowledge-based method to leverage more resources, and

continue studying the hybrid approach to incorporate a

wide variety of information.
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