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Abstract

Motivation: Extensive drug treatment gene expression data have been generated in

order to identify biomarkers that are predictive for toxicity or to classify compounds.

However, such patterns are often highly variable across compounds and lack robustness.

We and others have previously shown that supervised expression patterns based on

pathway concepts rather than unsupervised patterns are more robust and can be used to

assess toxicity for entire classes of drugs more reliably.

Results: We have developed a database, ToxDB, for the analysis of the functional conse-

quences of drug treatment at the pathway level. We have collected 2694 pathway con-

cepts and computed numerical response scores of these pathways for 437 drugs and

chemicals and 7464 different experimental conditions. ToxDB provides functionalities for

exploring these pathway responses by offering tools for visualization and differential

analysis allowing for comparisons of different treatment parameters and for linking this

data with toxicity annotation and chemical information.

Database URL: http://toxdb.molgen.mpg.de

Introduction

The assessment of toxicity of compounds such as drugs, in-

dustrial chemicals, cosmetics and food ingredients is an im-

portant aspect of research with implications for patient

health, consumer protection and nutrition.

In order to identify more reliable molecular pre-

dictors of toxicity huge amounts of toxicogenomics data

have been generated worldwide, e.g. by the Japanese

Toxicogenomics project (1), the US Drug Matrix project

(2) and the European carcinoGENOMICS project (3).
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By far the largest part of toxicogenomics data targets the

transcriptome and is generated with microarrays. The

goals of these projects are to identify gene sets that are

predictive of cellular toxicity, to classify the toxic haz-

ard, and to quantify the toxic risk of the compounds.

However, the discriminatory potential of gene expres-

sion patterns is limited and lacks robustness across stud-

ies (4). Thus, we (5) and others (6) have shown

previously that the predictive power of gene expression

data could be improved when incorporating molecular

networks, in particular, pathway concepts.

In this work, we take advantage of the pathway collec-

tion of ConsensusPathDB (7), a meta-database of human

molecular interactions that integrates the content of 12

publicly accessible pathway databases with a total of 4593

human pathway concepts. Furthermore, we have previ-

ously published a method for quantifying pathway re-

sponses from gene expression data (5), and in this study we

used this method in order to provide pathway-level re-

sponse data for 437 chemical compounds across several

different experimental conditions. We have built a data-

base, ToxDB, which provides functionalities for visualiza-

tion and differential pathway analysis along with toxicity

and chemical annotation which gives researchers the possi-

bility to better characterize the functional consequences of

drug exposure.

Toxdb workflow

ToxDB builds on three components: (i) a comprehensive

collection of pathway concepts along with drug treatment

microarray data, (ii) a numerical method to compute path-

way responses from genome-scale expression data, (iii) a

web interface that enables user interaction (Figure 1).

Gene expression data and molecular pathways

ToxDB is currently based on gene expression data from

two large-scale studies comprising a total of 7464 different

experiments (437 different chemical compounds) in human

and rat tissues at different time points and with different

drug dosages. The first study (Open TG-GATES) provides

toxicity information on compounds tested in rat in vivo,

liver and kidney cells, and in human hepatocytes (8). The

second study (DrugMatrix) provides toxicogenomic pro-

files of compounds tested in rat liver, kidney, heart and

muscle tissues (2). The 4593 molecular pathway concepts

are derived from the ConsensusPathDB, release 31 (7). In

order to increase the robustness of pathway response and

exclude smaller pathways (e.g. simple reactions), selection

of pathways was restricted to those 2694 that had�5 gene

members with measured expression values.

Microarray data pre-processing

We used custom cdf files for mapping oligonucleotide

probes of the human and rat microarrays to respective

genes (9). This results in a unique assignment of a probe to

a gene locus and in a varying number of probes per gene

(�3 probes per gene).

Replicate experiments for a treatment with a certain

dosage and at a certain time-point along with the corres-

ponding control replicate experiments were grouped and

the raw data was normalized using the GC Robust

Multiarray Average method.

Orthology mapping

In the case of human data, genes could directly be related

to human pathways. In the case of rat data, genes were as-

signed to human pathways by orthology. We used the

orthology mapping of the Ensembl Biomart repository

(10). We limited the mapping to ‘one2one’ and ‘one2many’

homology relationships:

i. One2one: the rat gene has exactly one orthologous

human gene, and the corresponding rat microarray

value is assigned to that human gene.

ii. One2many: the rat gene has multiple orthologs in the

human genome, and the corresponding rat microarray

value is assigned to all human paralogs.

Pathway scoring

The pathway scoring method was previously developed by

us in the context of discriminating classes of chemicals

with respect to their carcinogenic hazard in stem cell-

derived human hepatocytes (5). We define a relative path-

way response (RPR) scoring method which computes for

each pathway a numerical value that quantifies its response

measured with gene expression microarrays (or alterna-

tively RNA-sequencing). Although we predominantly

work with gene expression data, in principle there is no re-

striction to this type of data and experimental values could

be any quantitative read-out from transcriptomics or

proteomics experiments.

A pathway pathk is defined as a set of genes Mk ¼
g1; . . . ; gnf g of size Mkj j ¼ nk. ToxDB uses the

ConsensusPathDB (htttp://consensuspathdb.org) as the

pathway resource since it summarizes the major publicly

available pathway databases.

Suppose genome-wide case-control experiments are car-

ried out with some material, e.g. human tissue, rat tissue,

cell lines including replicates. In toxicology such experi-

ments consist typically of several chemical treatments of the

cells which are compared against the untreated control cells
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Figure 1. ToxDB web interface. (A) Drug view in ToxDB. Treatment parameters can be set and the responding pathways are shown with a bar plot in

decreasing order. Number of pathways visualized can be set by the user according to RPR score with a slider; chemical information for the compound

is interlinked. (B) Gene view in ToxDB. For each pathway the corresponding genes associated with that pathway can be visualized. The statistical re-

sults derived from the series of replicated experiments are displayed in the table on top of the graph (not shown here).
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at matched time points. We apply the pre-processing

described earlier and compute a statistical test for all case-

control studies. The choice of the statistical test is dependent

on the type of data and the corresponding model for the

background distribution. Suitable test-procedures for micro-

array data could be, e.g. limma, Student’s t-test, Welch test

or Wilcoxon’s rank sum test, for RNA-sequencing data it

could be, for example DEXSeq and edgeR. In this study, we

performed Student’s t-test for each case-control experiment.

This yields for each gene gi and each chemical j, a fold-

change rij (computed as the ratio of the mean expression

values of treatment and control replicates) and a P-value

pij (judging the significance of the fold-change given the

null hypothesis of no change of expression).

We now compute a gene score sij for each gene gi and

each chemical j by:

sij ¼ jlog2rijjjlog10pijj

The gene score describes a weighted fold-change of the

gene with respect to the particular treatment, whereby the

weight is increasing with the significance of the fold-change.

Although technically, Student’s t-test procedure can be com-

puted even with very low sample sizes, it is clear that the

test has higher power the more replicates are used.

However, in most toxicogenomics studies sample sizes are

rather low, in the range of two to five replicates, which may

downsize the confidence of the significance computation.

On the other hand, using the above procedure incorporates

all expression data and avoids a statistical pre-selection of

genes based on P-values. Instead, P-values are only used for

additional weighting of expression fold-changes which

seems a more appropriate approach in these cases.

Furthermore, it should be noted that gene scores do not

distinguish between positive or negative gene expression

regulation but rather reflect whether the gene is affected by

the treatment or not.

The pathway score pathkj for pathway pathk and chem-

ical j is defined as the average gene score of all genes as-

signed to the pathway:

pathkj ¼
1

nk

X
gi2Mk

sij:

In order to make pathway scores comparable across dif-

ferent treatments, we divide each score by the median

pathway score over all pathways, pathij, and compute the

relative response score (RPR):

RPRkj ¼ log2

pathkj

median pathijji
� �

 !
:

The consequence of the transformation is that in all

treatments half of the pathways get negative RPRs and half

of them get positive ones. RPRs are comparable across dif-

ferent treatments and follow a Gaussian distribution

(Figure 2A). Thus, higher RPRs reflect significant pathway

responses to the chemical treatment. Furthermore, path-

way scores, pathkj, reflect the strength of chemical dose

(see Figure 2B) which is a necessary condition when quan-

tifying pathway responses.

Figure 2. Measuring pathway response. (A) The RPR scores are Gaussian-

distributed and comparable across different compound treatment experi-

ments. (B) Pathway scores, pathkj, reflect chemical dose. Scores derived

from ‘middle’ (X-axis) and ‘high’ (Y-axis) doses for responding pathways

across 64 different treatments increase with dosage. Drugs were classified

by Chen et al. (11) as having ‘less’ and ‘most’ concern, respectively for

drug-induced liver injury and gene expression data was taken from TG-

GATES human in vitro hepatocyte data. Line, equal response.
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It should be noted that the pathway scores are fairly ro-

bust across different subsets of data and, thus, that the dis-

tribution of all RPR scores can serve as a background

distribution for judging significance of individual RPR

scores (Supplementary Materials). In the web interface the

user is thus provided with the background distribution

derived from the entirety of RPR scores when inspecting

individual responses.

Web interface

The backend of the ToxDB is composed of a PostgreSQL

database (version 9.2.4) running on an Apache/2.4.4

(64-bit Unix) server. The frontend HTML is designed using

Flask (version 0.10.1), a web framework for Python (ver-

sion 3.4.1). Pathway data are currently based on release 31

of the ConsensusPathDB and will be updated regularly.

Plots in the web interface are drawn using JavaScript and

the Google Visualization tools.

The ToxDB web interface provides functionalities that

allow exploration of different aspects of drug treatment data.

Search function

On the front page, users can do a comprehensive search of all

drugs, pathways, and genes in the database. Singular words,

logical operators as well as several specific IDs are accepted.

Compare

Here, treatments can be compared by assigning them to

groups and the differences of the two groups are quantified by

Student’s t-test. This feature can be used for example when

inferring pathways that are affected differentially by different

sets of drugs, in different target organs or different species.

Browse drugs

Users can select from the list of available drugs. The result-

ing view shows chemical annotation of this compound as

well as a menu where experimental conditions can be

fixed, e.g. study, cell type, dosage and time point. After set-

ting the conditions, the corresponding expression data are

assessed and the resulting pathway concepts are shown

ordered by their RPR scores. A slider can be used to specify

the number of displayed pathways. By clicking on a

specific pathway, users can switch from the pathway

(Figure 1A) to the gene view (Figure 1B) displaying all

genes that are annotated for the pathway and for which ex-

pression data are available. Gene fold-changes from the ex-

periment (treatment vs normal) are displayed as bar plots.

Browse pathway

Conversely, if the user is interested in a certain pathway,

e.g. when evaluating a specific functional assay, a single

pathway can be selected and the resulting response scores

of this pathway are displayed across all compounds and

treatments. Additionally, toxicity information from two in-

dependent reviews (11, 12) is overlaid.

Download

Tables and plots resulting from the described tools are

made available for download in various formats in order

to use the data in further analyses. Additionally, we pro-

vide a download section for the use cases reported in this

study (Supplementary Materials).

External links and additional information

Compound information is made available along with ex-

ternal links to several other resources:

Chemical Abstracts Service registry number

Drug information according to several databases

(KEGG, DrugBank, ChEMBL, PubChem compound and

substrate and the ChemAgora meta-database).

diXa warehouse for chemical safety information and

for experimental data download (13).

Toxicity information—for judging liver toxicity of the

compounds we included two assignment procedures: the

first was defined by the FDA using box readings and litera-

ture mining (11) and the second uses structure–affinity re-

lationships (12).

Future updates

ToxDB will be updated on a regular basis, approximately

every six months. Updates will include pathway concepts

from the ConsensusPathDB (7) as well as gene ID and

orthology mappings from the Ensembl database (10).

Currently, ToxDB features expression data from two

studies, Open TG-GATEs (1) and DrugMatrix (2), but

additional sources like carcinoGENOMICS (3) and

Connectivity Map (14) are planned to be incorporated.

Furthermore, additional statistical tests for pre-processing

the microarray data are planned that take into account

not only individual case-control studies but rather the full

time series and dosage administrations. Additionally, a

future update of the web interface will include the possi-

bility of uploading user-defined pathway signatures that

could then be screened for similarity across the body of

characterized compounds with a connectivity map-based

approach (14).

Application

In order to exemplify work with ToxDB we have con-

ducted several use cases, in which we investigate the effects

of different drug treatments on cellular pathway responses.
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In the first use case we investigated five drugs with

known hepatotoxic or cardiotoxic effects, respectively. By

investigating drug-induced gene and pathway responses in

ToxDB we can confirm information on toxicity and modes

of action derived from literature and other databases, like

ChEMBL. These results encourage inspecting other, less

well-studied drugs in ToxDB and their effects on genes and

pathways.

In the second use case we approach the problem of iden-

tification potential modes of action in the opposite way.

Here, we start from certain disease-related pathways and

infer the drugs that mostly affect the pathway. We focus

on the ‘cytochrome P450 pathway’ and on ‘non-alcohilc

fatty liver disease’, which both play a role in hepatotox-

icity. We find that they are indeed mostly affected by drugs

known to promote liver disease, e.g. rifampin (11).

Although this serves as a confirmation of previous studies,

the same approach can be used to identify other drugs that

have not been shown to be hepatotoxic. Similarly, one can

look at completely different pathways related to other dis-

eases (e.g. cancer).

Full details of the use cases are reported in the

Supplementary Materials.

Conclusion

ToxDB is a resource that analyzes drug-induced gene

expression changes at the pathway level. Although the

current approach is focused on drug treatment data, the

pathway analysis approach can be applied to more gen-

eral scenarios where case-control studies are given (e.g.

disease vs control states, tumor vs normal). By elevating

analyses from the gene to the pathway level it is pos-

sible to gain more general information on functional

changes and more robust biomarkers what ultimately

contributes to the improvement of drug development

pipelines.

Supplementary data

Supplementary data are available at Database Online.
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