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Abstract

We describe the development of a chemical entity recognition system and its application

in the CHEMDNER-patent track of BioCreative 2015. This community challenge includes

a Chemical Entity Mention in Patents (CEMP) recognition task and a Chemical Passage

Detection (CPD) classification task. We addressed both tasks by an ensemble system that

combines a dictionary-based approach with a statistical one. For this purpose the per-

formance of several lexical resources was assessed using Peregrine, our open-source

indexing engine. We combined our dictionary-based results on the patent corpus with

the results of tmChem, a chemical recognizer using a conditional random field classifier.

To improve the performance of tmChem, we utilized three additional features, viz. part-

of-speech tags, lemmas and word-vector clusters. When evaluated on the training data,

our final system obtained an F-score of 85.21% for the CEMP task, and an accuracy of

91.53% for the CPD task. On the test set, the best system ranked sixth among 21 teams

for CEMP with an F-score of 86.82%, and second among nine teams for CPD with an ac-

curacy of 94.23%. The differences in performance between the best ensemble system

and the statistical system separately were small.
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Introduction

Exploration of the chemical and biological space covered

by patents is essential in the early stages of activities in the

field of medicinal chemistry (1). Analyzing patents can

help to understand compound prior art and to pinpoint al-

ternative starting points for chemical research (2).

Important tasks in patent analysis are the recognition of

chemical names, the identification of chemical structure

images, and the conversion of the extracted names and

images into a structure-searchable form (3). Other types of

entities in medicinal chemistry patents, such as genes and

proteins, diseases, or particular numerical values, may also

be relevant to extract and to relate to chemical entities (4).

The extracted information is often compiled in structured

databases that are easy to query and facilitate computa-

tional analysis.

Usually, patent information is manually extracted (5).

This process is laborious and expensive due to the length

of chemical patent texts, which may take hundreds of

pages, and their complexity (mixture of scientific, technical

and legal language, typographical errors, optical character

recognition errors, etc.). These problems are aggravated by

the sheer number of medicinal chemistry patents (1, 6).

Automatic methods to recognize chemicals in patents can

help to ease this process, but have proven to be elaborate

and demanding (7, 8). One of the impediments is that very

few large annotated gold-standard corpora for algorithm

training and testing are available (9).

The automatic extraction of chemical and biological

data from medicinal chemistry patents was addressed in

the CHEMDNER-patents track of BioCreative V (10). The

track was organized as a community challenge to stimulate

the development and comparative assessment of chemical

and biological entity recognizers, and consisted of three

tasks: (i) Chemical Entity Mention in Patents (CEMP),

focusing on chemical entity recognition in patents; (ii)

Chemical Passage Detection (CPD), focusing on the classi-

fication of patent titles and abstracts according to whether

they contain chemical entities; and (iii) Gene and Protein

Related Object (GPRO), focusing on the recognition of

gene and protein mentions in patents. Our team partici-

pated in the CEMP and CPD tasks.

Previous text-mining research mostly concentrated on

chemical name recognition in scientific literature (4, 11).

Recently, a large-scale patent resource, SureChEMBL (12),

has become available, which contains compounds ex-

tracted from the full-text, images and attachments of pa-

tents, and provides comprehensive search capabilities.

Chemical entity recognition is the first step in the

SureChEMBL data extraction pipeline, but performance

figures have not been presented as yet (12). A variety of

systems to extract chemicals from Medline abstracts were

developed and evaluated as part of the previous

BioCreative IV CHEMDNER task (11). The top-ranking

systems in that challenge used machine-learning techniques

based on conditional random fields (CRFs) (11). However,

some systems that combined dictionary-based and rule-

based approaches also achieved competitive results (13,

14). For the current challenge, we combined a dictionary-

based approach with a statistical, CRF-based approach,

and investigated the performance of the ensemble system

for the CEMP and CPD tasks on the CHEMDNER-patents

data.

Materials and methods

Data

The CHEMDNER-patent corpus (10) was used for the de-

velopment and evaluation of our system. The corpus com-

prises a training corpus of 14 000 manually annotated

patent records (each record consisting of a title and an ab-

stract), divided into a training set and a development set of

7000 records each, and a test set of 40 000 patent records,

of which only 7000 were manually annotated. The annota-

tion process and guidelines were largely similar to the ones

used for the BioCreative IV CHEMDNER corpus, and

have been described extensively (10, 15). Table 1 summar-

izes the number of annotated chemicals and chemical-

related titles and abstracts. Only the annotations of the

training and development sets were made available to the

participants in the challenge. For evaluating the perform-

ance of their system on the test set, teams could submit up

to five runs. To produce the evaluation results, we used the

BioCreative evaluation software (www.biocreative.org/re

sources/biocreative-ii5/evaluation-library/) and focused on

micro-averaged recall, precision and F-score to assess sys-

tem performance for the CEMP task, and on sensitivity

(¼recall), specificity and accuracy for the CPD task. Given

the number of true-positive (TP), false-positive (FP),

false-negative (FN) and true-negative (TN) detections,

these metrics were computed as follows: recall¼TP/

Table 1. Characteristics of the CHEMDNER patent corpus

Training Development Test Total

Patent records 7000 7000 7000 21 000

Manual chemical

annotations

33 543 32 142 33 949 99 634

Unique chemical

annotations

11 977 11 386 11 433 34 796

Chemical-related titles

and abstracts

9152 8937 9270 27 359
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(TPþ FN), precision¼TP/(TPþ FP), F-score¼ 2*preci-

sion*recall/(precisionþ recall), specificity¼TN/(TNþ FP)

and accuracy¼ (TPþTN)/(TPþ FNþFPþTN). We also

used the Markyt prediction analysis toolkit (www.markyt.

org/biocreative/analysis) to visualize the results.

Dictionary-based approach

We used Peregrine, our open-source indexer (16), to ana-

lyze the performance of the different chemical dictionaries.

Tokenization was done with a tokenizer previously de-

veloped by Hettne et al. (17). Term matching was carried

out by partial case-sensitive matching: case-sensitive for

abbreviations (defined as terms of which the majority of

characters consists of capitals and digits), case-insensitive

for all other terms.

Dictionaries

To construct our dictionaries, we selected seven well-

known, publicly available chemical databases covering a

wide range of compounds, namely: Chemical Entities of

Biological Interest (ChEBI) (18), ChEMBL (19), DrugBank

(20), the Human Metabolome Database (HMDB) (21), the

NCGC Pharmaceutical Collection (NPC) (22), PubChem

(23) and the Therapeutic Target Database (TTD) (24). For

each database record, we gathered all chemical terms

(available from possibly different record fields). Chemical

terms were only extracted from records that had associated

chemical structures in the form of MOL files (25). In the

following, we briefly describe the databases and the fields

from which identifiers were extracted.

ChEBI is concerned with molecular entities, focusing on

small chemical compounds (18). It provides an ontological

classification with parent and child relationships. We ex-

tracted data for all three-star (i.e. manually annotated)

compounds from ChEBI SD files. This included synonyms,

ChEBI names, brand names, International Nonproprietary

Names (INNs) and International Union of Pure and

Applied Chemistry (IUPAC) names.

ChEMBL contains information on drug-like bioactive

compounds (19). In addition to literature-derived data,

ChEMBL also contains Food and Drug Administration

(FDA) approved drugs. The data available through

ChEMBL have been manually extracted and standardized

(26). Extracted fields include preferred names, synonyms,

FDA alternative names, INNs, United States Adopted

Names (USANs) and United States Pharmacopoeia (USP)

names.

DrugBank provides information regarding drugs,

including chemical, pharmacological and pharmaceutical

data, and their targets (27). DrugBank data are curated by

a curation team, which relies on primary literature sources.

During production and maintenance, all synonyms and

brand names within DrugBank are extensively reviewed

and only the most common synonyms are kept (20). We

extracted brand names, generic names, synonyms,

Chemical Abstracts Service (CAS) numbers, and IUPAC

names from the DrugBank SD files and DrugCards.

HMDB lists small-molecule metabolites found in the

human body (21). The database links chemical, clinical,

molecular-biology and biochemistry data. HMDB is both

automatically and manually curated (21). All generic

names, synonyms, CAS numbers and IUPAC names were

extracted from the HMDB SD files and MetaboCards.

NPC provides information on clinically approved drugs

from USA, Europe, Canada and Japan for high-throughput

screening (22). We extracted preferred names and syno-

nyms using the NPC browser 1.1.0.

PubChem provides information on the biological activity

of small molecules (23). It consists of three different data-

bases: a compound database, a substance database and a

bioassay database. We extracted structures and all corres-

ponding IUPAC identifiers and synonyms for a subset of

compounds that had structure–activity relationships or

other biological annotations. This subset of compounds was

introduced by Muresan et al. (1) and is the same subset of

PubChem compounds that we used in our previous study on

chemical entity recognition (13). The PubChem compound

database does not contain synonyms. This information is

available through the PubChem substance database. The re-

lations between PubChem substance identifiers (SIDs) and

compound identifiers (CIDs), which have been created by

PubChem through in-house chemical structure standardiza-

tion (23), are specified in the ‘PubChem_CID_associations’

tag available in the downloadable structure data files. We

used the relations between SIDs and CIDs to extract the

synonyms from the substance database and assign them to

the corresponding compounds.

TTD contains information about therapeutic protein

and nucleic acid targets of drugs, corresponding pathways

and targeted diseases (24). All trade names, drug names,

CAS numbers and synonyms were extracted.

Dictionary construction and combination

For each database, a dictionary consisting of the extracted

chemical terms was constructed. Each term was linked to

one or possibly more (in case of ambiguity) compounds,

represented by their MOL files. Dictionaries were com-

bined by merging the identifiers of all compounds in the

dictionaries. To determine which compounds in different

dictionaries were the same, we used the same approach

as in previous studies (28, 29). Briefly, we compared

MOL files by converting them into InChI strings, which

provide unique textual representations of the MOL files.
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Compounds with identical InChI strings were considered

the same, and the corresponding identifiers were merged.

Term exclusion

To improve the precision of the dictionary-based ap-

proach, we applied an exclusion list of terms as previously

described (13). Briefly, the list contains common English

words, like ‘about’, ‘all’ and ‘make’, and ambiguous terms,

such as ‘acid’, ‘crystal’ and ‘lead’. We expanded this list

with exclusion terms mentioned in the annotation guide-

lines for the CEMP task.

We also removed terms that were false-positive detec-

tions in the training data, but only if the ratio of true-posi-

tive to false-positive detections was lower than 0.3. This

threshold was heuristically set based on the training data

in order to prevent erroneous removal of overall correctly

recognized terms because of an occasional false-positive

detection. When testing on the development set, exclusion

ratios were calculated for all false-positive terms in the

training set; when evaluating on the test set, ratios were

computed for all false-positive terms in the combined train-

ing and development sets.

Term inclusion

We identified all missed terms (false negatives) in the train-

ing set and re-indexed the texts for these terms. Only those

terms that, after re-indexing, did not result in false-positive

detections in the training set or had an exclusion ratio

larger than 0.5 were added to the dictionary. When evalu-

ating on the test set, the combined training and develop-

ment sets were used to collect the false negatives and to

determine whether they should be included in the

dictionary.

Machine-learning approach

We used the tmChem chemical recognizer system (30), one

of the best performing systems in the previous BioCreative

CHEMDNER challenge (11). The tmChem system is an

ensemble system that combines the output of two CRF-

based systems. The first system is a modified version of the

BANNER system (31), the second is based on the tmVar

system (32), which employs CRFþþ libraries (https://

taku910.github.io/crfpp/). Previous results of tmChem

showed that the second system outperformed the first as

well as the ensemble system (30). We therefore only used

the second system.

Pre-processing

The tmChem system transliterates non-ASCII Unicode char-

acters to a similar ASCII equivalent. As some non-ASCII

Unicode characters were not handled (causing a system

crash when encountered in text), we expanded the translit-

eration capacities as necessary. We also replaced a vertical

bar enclosed by parentheses or brackets (e.g. [j]), because

these combinations caused tmChem to crash as well.

Features

Our initial feature set consisted of all features extracted by

tmChem, including stemmed words, prefixes and suffixes,

character counts (digit, uppercase, lowercase), semantic

affixes (such as trivial rings) and chemical elements (30).

Three additional types of features were determined

and used to train tmChem: part-of-speech (POS) tags,

lemmas and word-vector clusters. We used the BioC nat-

ural language processing pipeline (33) to generate POS

tags with MaxentTagger (34) and lemmas with

BioLemmatizer (35). Recent studies have shown that fea-

tures based on clusters of word vectors can improve clas-

sification performance (36, 37). We used the word2vec

tool (https://code.google.com/p/word2vec/) to generate

clusters of word vectors. Word2vec employs K-means

clustering. The number of the cluster to which a word be-

longed was taken as a feature.

We generated separate word clusters during the devel-

opment phase and the test phase of the challenge. During

development, the clusters were generated from the 14 000

titles and abstracts in the training and development sets.

These data were extended with 200 full-text chemical pa-

tents that had been used in a previous study (9). We experi-

mented with different numbers of clusters (K¼ 300, 500,

1000). For testing our final system, clusters were generated

using all 54 000 records in the corpus plus the 200 full-text

patents, with K¼ 1000.

Post-processing

For the machine-learning approach, the tmChem post-pro-

cessing steps were applied (30). These include enforcing

tagging consistency (for each term that was found by the

CRF at least twice within an abstract, any term mention in

the abstract that the CRF had not identified was also

tagged), abbreviation resolution (tagging corresponding

abbreviations and long forms), boundary revision (adding

or removing unbalanced brackets or parentheses) and

finding chemical database identifiers (through regular

expressions).

We experimented with different sets of dictionaries for

the dictionary-based approach and different sets of fea-

tures for the machine-learning approach. All terms recog-

nized by the dictionary-based system or the statistical

system were taken as the output of the final ensemble

system.
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Text classification

For the CPD task (classification of patent titles and ab-

stracts as chemical-related or not), we used a straightfor-

ward approach based on the output of the CEMP task. If

our system recognized any chemical term in a text (title or

abstract), the text was categorized as a chemical-related.

Note that the title and abstract of each record were classi-

fied separately.

Results

Table 2 shows the number of compounds and the number

of unique identifiers in the chemical databases. Clearly,

PubChem is by far the largest database. The number of

identifiers that are shared between pairs of databases is

shown in Table 3. Although PubChem contains >90% of

the identifiers in ChEMBL, DrugBank and TTD, the other

databases are much less well covered by PubChem. The

majority of identifiers in DrugBank is covered by NPC and

TTD, but the overlap between all other pairs of databases

is relatively low.

Table 4 shows the performance of the dictionary-based

approach on the development set, with and without use of

the list of exclusion terms. Use of the exclusion list gives a

substantial precision improvement for most dictionaries.

The PubChem dictionary demonstrates the highest recall

among the individual dictionaries, which may be explained

by the large size of the PubChem dictionary and the fact

that it contains the majority of terms from the other dic-

tionaries. The dictionaries from ChEMBL and DrugBank

had the highest precision, which is likely due to the fact

that these databases are highly curated. The low recall of

the dictionaries can be explained by their low coverage of

systematic names and chemical family names. Of the 9194

systematic names that were annotated in the development

corpus, recognition rates ranged from 7.5% for TTD to

53.8% for PubChem (median 31.0%). For family names,

which form the largest annotation group (n¼ 11 710), rec-

ognition rate varied between 3.3% and 20.4% (median

9.1%).

Table 4 also shows the performance of several combin-

ations of dictionaries. As to be expected, the combination

of all dictionaries after term exclusion has the highest re-

call (49%), but the lowest precision (54%). The combin-

ation of dictionaries from ChEBI and HMDB, which we

used in the previous BioCreative CHEMDNER task (13),

gave a recall of 35% and a precision of 78%. The combin-

ation of ChEMBL and DrugBank resulted in the highest

precision (83%).

Table 5 shows the incremental performance of the en-

semble system trained on the training corpus and evaluated

on the development corpus, when different feature sets and

term-processing steps were added. We only present diction-

ary-based results for the combination of ChEMBL and

DrugBank as this combination produced the highest F-score

on the training data when combined with the CRF. For the

CEMP task, all incremental steps improved the F-score, ex-

cept when terms that were missed in the training set were

included in the dictionary. The best ensemble system at-

tained an F-score of 85.21% with a precision of 84.88%

and a recall of 85.55%. For the CPD task, the system that

comprised all processing steps, including the addition of

missed terms, achieved the best performance with an accur-

acy of 91.84% (sensitivity 97.00%, specificity 82.74%).

When we only used the CRF-based system (trained on

all features) to process the development set, we obtained

an F-score of 84.78% (precision 86.14%, recall 83.47%)

on the CEMP task, and an accuracy of 90.96% (sensitivity

94.23%, specificity 85.19%) on the CPD task.

Table 2. Number of compounds and unique identifiers in

chemical databases

Database No. of compounds No. of identifiers

ChEBI 23 240 82 612

ChEMBL 22 245 28 411

DrugBank 6516 31 948

HMDB 40 199 228 907

NPC 14 666 128 153

PubChem 4 235 189 19 049 175

TTD 3196 121 744

Table 3. Number of unique identifiers that overlap between pairs of chemical databases

Database ChEBI ChEMBL DrugBank HMDB NPC PubChem

ChEMBL 1209 (4.3)

DrugBank 2444 (7.6) 3931 (13.8)

HMDB 4885 (5.9) 2293 (8.1) 5946 (18.6)

NPC 3406 (4.1) 6508 (22.9) 23 865 (74.7) 7444 (5.8)

PubChem 45 021 (54.5) 26 251 (92.4) 28 943 (90.6) 52 533 (22.9) 69 873 (54.5)

TTD 4481 (5.4) 4507 (15.9) 18 028 (56.4) 6503 (5.3) 23 901 (19.6) 119 819 (98.4)

The percentage coverage of the identifiers in the smallest sized database of each pair is given in parentheses.
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Table 6 shows the performance for both tasks on the

test set. We submitted runs of the ensemble systems with

and without the addition of missed terms. For comparison,

we also submitted a run for the statistical system alone

(including all features and post-processing).

For the CEMP task, the statistical system performed

best (F-score 86.82%), slightly better than the ensemble

system without the addition of missed terms (F-score

86.55%). For CPD, the ensemble system with missed terms

reached the best performance (accuracy 94.23%), slightly

better again than the system without missed terms

(93.93%). Our best systems ranked sixth among 21 partic-

ipating teams for the CEMP task, and second among nine

teams for the CPD task.

Discussion

We investigated the combination of dictionary-based and

statistical approaches for chemical entity recognition in pa-

tents. Our results show that the recall of the chemical dic-

tionaries on the CEMP task is low, and even a combination

of all dictionaries gives a recall and precision of only around

50%. The low recall can be explained by the fact that many

systematic chemical terms and chemical family names were

lacking in our lexical resources. Meanwhile, the machine-

learning approach yielded a much higher precision and re-

call (86% and 83%, respectively). In order to maintain the

high precision of the ensemble system, we used the diction-

ary combination with the highest precision (ChEMBL and

DrugBank). For the CEMP task, this supplied us with a

Table 4. Performance of different dictionaries and dictionary combinations with and without removal of exclusion terms

Without exclusion With exclusion

Dictionary Precision Recall F-score Precision Recall F-score

ChEBI 56.51 29.47 38.74 78.87 28.42 41.79

ChEMBL 84.53 20.46 32.94 85.11 19.87 32.22

DrugBank 68.20 17.28 27.58 85.15 16.89 28.19

HMDB 66.11 29.38 40.68 79.59 28.19 41.63

NPC 30.90 44.85 36.59 55.23 30.61 39.39

TTD 66.89 14.07 23.24 80.90 13.89 23.71

PubChem 34.30 47.11 39.69 67.03 45.64 54.30

All combined 30.85 50.32 38.25 53.66 48.59 51.00

ChEBI–HMDB 55.46 36.98 44.37 78.12 35.45 48.77

ChEMBL–DrugBank 70.51 23.94 35.74 83.02 23.16 36.21

Table 5. Performance of the ensemble system trained on the training set and tested on the development set

CEMP task CPD task

System Precision Recall F-score Sensitivity Specificity Accuracy

Dictionary-based (ChEMBL-DrugBank) 70.51 23.94 35.74 50.63 88.41 64.29

þ Exclusion list 83.02 23.16 36.21 44.29 94.37 62.40

þ Term removal (exclusion ratio 0.3) 88.85 23.09 36.65 42.14 97.12 62.02

þ CRF original features 84.96 83.83 84.39 95.11 85.33 91.57

þ Post-processing (CRF) 84.50 84.91 84.70 95.39 85.01 91.64

þ POS and lemmatization features 84.72 85.09 84.90 95.40 85.25 91.73

þWord-vector cluster features 84.88 85.55 85.21 95.31 84.87 91.54

þMissed terms (exclusion ratio 0.5) 75.88 88.63 81.76 97.00 82.74 91.84

Table 6. Performance of different systems on the test set

CEMP task CPD task

System Precision Recall F-score Sensitivity Specificity Accuracy

Statistical 86.83 86.81 86.82 96.13 88.67 93.61

Statistical þ dictionary without missed terms 84.92 88.25 86.55 97.00 87.91 93.93

Statistical þ dictionary with missed terms 77.76 90.84 83.79 98.03 86.79 94.23
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system that slightly improved machine-learning perform-

ance on the development set, but not on the test set. Thus,

there was no performance gain for this task by the use of a

combined dictionary-based and statistical approach over a

statistical approach alone. For the CPD task, the ensemble

system performed better than the statistical system alone,

both on the development set and on the test set. This may

be explained by the 1.9 percentage point higher sensitivity

of the ensemble system, in combination with a similar de-

crease in specificity. As the majority of titles and abstracts in

the development and test sets are chemical-related (see

Table 2), sensitivity weighs more heavily than specificity in

the accuracy. For both tasks, our results on the test set were

better than those on the development set, indicating that

overtraining did not occur.

Contrary to our expectation, the inclusion of false-nega-

tive terms in the dictionary decreased the performance for

the CEMP task, both on the development set and on the test

set. This may partly be explained by tokenization issues that

split chemical terms in multiple parts. Some of these parts

were then erroneously matched with the newly added dic-

tionary terms, resulting in a drop in precision. For the CPD

task, the increase in sensitivity more than compensated for

the decrease in specificity, yielding a slightly improved ac-

curacy of the ensemble system using the missed terms.

Although furnishing structure information about the

recognized chemicals was not part of the challenge, this in-

formation is often important in practical applications. We

are able to readily associate dictionary terms with struc-

tures because we only extracted terms from chemical re-

cords with structure information. Of the chemical terms in

the development set, 23% is found by the dictionary-based

approach and can be linked to structures. For the machine-

learning approach, the mapping of recognized terms to

structures is less straightforward, but part of these terms

will consist of systematic chemical identifiers. These can

also be converted into chemical structures using chemical

naming conversion software (28, 29).

Considering that annotated patent corpora are scarce, the

CHEMDNER corpus of annotated patent titles and abstracts

is a highly valuable and important resource for further devel-

opment and comparative assessment of algorithms. Recently,

we have reported on the creation of another corpus of 200

annotated full-text patents, which is publicly available (9).

We plan to use this corpus to evaluate and possibly improve

the performance of our systems on full-text patents.
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