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Abstract

The article describes a knowledge-poor approach to the task of extracting Chemical-

Disease Relations from PubMed abstracts. A first version of the approach was applied

during the participation in the BioCreative V track 3, both in Disease Named Entity

Recognition and Normalization (DNER) and in Chemical-induced diseases (CID) relation

extraction. For both tasks, we have adopted a general-purpose approach based on ma-

chine learning techniques integrated with a limited number of domain-specific know-

ledge resources and using freely available tools for preprocessing data. Crucially, the

system only uses the data sets provided by the organizers. The aim is to design an easily

portable approach with a limited need of domain-specific knowledge resources. In the

participation in the BioCreative V task, we ranked 5 out of 16 in DNER, and 7 out of 18 in

CID. In this article, we present our follow-up study in particular on CID by performing fur-

ther experiments, extending our approach and improving the performance.

Introduction

Manual curation of chemical-disease relations (CDRs) from

the literature is expensive and it is difficult to keep up with

the growing amount of relevant literature. Hence, automatic

CDR extraction is of high interest for its potential practical

application as an aid for curators. However, the task of cur-

ation presents a few characteristics that do not make the

adoption of standard relation extraction (RE) approaches a

straightforward task, like e.g. Ref. (33). In natural language

processing (NLP), RE usually requires considering the men-

tions of given entities in the document, and to decide whether

two specific mentions are connected by a relation. On the

other hand, typical curation applications only need to know

whether a given text mentions some entities and whether the

text supports the existence of a given relation between them.

In the spirit of better matching the actual requirements

of practical applications, we decided to approach the tasks

in the CDRs track at BioCreative-V, which are different in

a few respects from the usual named entity recognition

(NER) and RE tasks.

The first difference concerns the ability of the systems

to return results within fixed time constraints. Participants
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were required to setup a web service that was queried by

the organizers. This forced the participants to implement a

complete system (instead of different, manually connected

modules, as it often happens in similar competitions).

In regard to the NER task, recognizing diseases and

chemical entities is quite different from annotating more

usual entities such as proper names of person (e.g. John

Smith) and places (e.g. New York). In fact, chemicals

can consist of long multiword expressions (e.g. N-[4-(5-

nitro-2-furyl)-2-thiazolyl]-formamide) with large spelling

variability (e.g. 10-Ethyl-5-methyl-5,10-dideazaaminop-

terin vs 10-EMDDA) that requires particular adaptations

to the existing methods for NER. In addition, using infor-

mation like the initial letter capitalization, which proved

useful for identifying proper names, cannot be successfully

used with diseases and chemical entities given that they

often appear in lowercase letters in the text (e.g. nephroli-

thiasis, triamterene).

As for the RE task, there are two additional crucial dif-

ferences. First, the entities involved in a relation may ap-

pear in separate sentences (according to the task

organizers, this happens at least one-fourth of all cases).

Second, in the data set the relations are specified making

reference to the entities (i.e. their IDs) and not to the men-

tions of the entities. These characteristics pose some chal-

lenges and require a different approach with respect to the

ones usually adopted in the literature on RE.

As mentioned above, the chemical-induced disease

(CID) task is assessed at the level of the entities in the en-

tire document and not at the level of the specific mentions.

This required the adaptation of standard RE approaches to

the specificities of the task.

Over the years, a wide variety of RE approaches have

been proposed for identifying drug side effects. They

applied different strategies: co-occurrence-based statistics,

(2, 3) pattern-based approaches (4); machine learning

approaches (5) and knowledge-based approaches.

In 2015, the Journal of Biomedical Informatics published

a Special Issue on Mining the Pharmacovigilance Literature

(6). The 13 articles appearing in the special issue establish

the state of the art regarding NLP systems and resources

related to pharmacovigilance. Among this material, we are

interested in the research concerning three tasks, i.e. text

classification, NER and RE, when applied to the detection

of Adverse Drug Reactions and Drug-Drug Interactions.

Current RE research has been mostly focused on intra-

sentential relations, i.e. relations holding between entities

appearing in the same sentence. The motivation behind

such a choice is that usually the vast majority of the rela-

tions involves entities appearing both in the same sentence.

This is confirmed by the few papers discussing cross-sen-

tential relations (i.e. relations involving entity mentions

beyond sentence boundaries) (7, 8). For example, in Ref.

(8) the authors report that 90.6% of the total number of

relations in the ACE03 corpus (a RE benchmark in the

news domain) are intra-sentential. The authors in Ref. (9)

describe a support vector machine (SVM)-based approach

to RE that is applied to both intra-sentential and inter-sen-

tential relations.

One of the approaches to address inter-sentential rela-

tions consists in the use of co-reference resolution algo-

rithms. For example, this approach was adopted by one of

the participants in the CID task (10).

An aspect characterizing the different approaches is the

quantity and the nature of the considered a priori know-

ledge. In fact, in specific domains, including the biomedical

one, domain knowledge is essential for the overall system

performance. In our case, for example, as the entities we

are looking for consist of chemicals and of diseases, and

only relations between such pairs are of interest, the system

needs to know possible diseases and chemicals to perform

the task. Although this information could in principle be

extracted from the training set, a really huge amount of

data would be required. On the other hand, resources con-

taining such information are expensive, and cannot be

available for every possible task. A workable trade-off

should therefore be found, depending on the task at hand

and on the available knowledge sources.

In the BioCreative competition, several resources have

been exploited by the best-performing systems. As for dis-

ease named entity recognition and normalization (DNER),

the best performing system (11) exploited NCBI Disease

corpus and MEDIC; the second best (12) used medicine’s

medical subject headings (MeSH) and Disease Ontology;

the third (13) benefitted from MeSH, Disease Ontology,

OMIM, Comparative Toxicogenomics Database (CTD)

and UMLS. Other domain-specific resources included

MedDra, Snomed-CT, ICD10-CM, JoChem, PubChem.

Concerning CID, the best performing system (14) exploited

CTD, MEDI and SIDER; the second (15) made use of

BRAIN (a database containing entities and relations from

curated structured databases and Medline texts for almost

every concept in UMLS); the third (12) was based on pat-

terns developed manually, requiring an expensive adapta-

tion to the task. In general, it is therefore interesting to

analyse the performance of a system exploiting as little ex-

ternal knowledge as possible, in order to assess how far we

can get without additional resources. Such knowledge-poor

strategy characterizes not only our system, but also the sys-

tem that ranked fourth (10) which only considered CTD.

A first version of the system described in this article

(16) has been presented at the BioCreative V workshop.

Starting from that work, we describe here different ways

that we explored to improve it:
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1. First of all, we fixed a few bugs, and obtained a better

performance.

2. We added three new features, which produced a further

performance improvement.

3. We introduced word-embedding features.

4. We integrated the classifier designed on the whole ab-

stract with a sentence level classifier and tried four dif-

ferent strategies to integrate the two outputs.

In the following section, we discuss more in detail the

specificities of the task we are considering. System archi-

tecture section is devoted to the description of the ap-

proach, by considering all different modules. In

experiments section, we present the experimental assess-

ment of all the variants of the system. A final section dis-

cusses the obtained results and possible future research

directions.

Task description

In this section, we briefly present the BioCreative V track 3

(17, 18), from which the approach described in the article

originates. The task consists of the automatic extraction of

(CDR) from PubMed articles. It includes two subtasks:

DNER and CID RE.

The data set consists of 1500 PubMed abstracts ran-

domly selected from the CTD-Pfizer corpus (1400 articles)

and from a new set of curated articles (100 articles). The

CTD-Pfizer corpus consists of over 150 000 chemical-dis-

ease relations in 88 000 articles (19, 20). For the CDR

task, the organizers split data into training, development

and test sets with 500 articles in each set. They annotated

the data set with diseases and chemicals using PubTator

tool (21) and facilitated human annotation with automatic

systems such as DNorm (22) and tmChem (23). The anno-

tation includes both the mention text spans and normal-

ized concept identifiers. The concept identifiers are defined

using the National Library of MeSH controlled vocabu-

lary. The entities were annotated independently by two an-

notators. The average inter-annotator agreement scores are

88.75% and 96.31% for the disease and chemicals, re-

spectively, in the test set according to the Jaccard similarity

coefficient (24).

The DNER task consists of recognizing and normalizing

Diseases, which is an intermediate step for the automatic

CDR extraction. For this task, participating systems were

given raw PubMed abstracts as input and asked to provide

normalized disease concept identifiers.

The CID task includes finding the chemical-induced dis-

ease relations. For this task, the same input (i.e. raw

PubMed abstracts) was used and the systems were asked to

return a list of<chemical, disease> pairs with normalized

concept identifiers for which chemical-induced disease are

associated in the abstract.

In Table 1, we present some figures about the data set.

In both training and development set the distribution of

chemicals and diseases is around 55% and 45%, respect-

ively. In the last two columns of Table 1, we present the

number of mentions and the number of associated entities

(within parenthesis) for chemicals and diseases respectively.

More details on the task can be found in Refs (17) and (18).

Final evaluation of the participants’ systems was per-

formed by comparing their output against manually anno-

tated entities and relations using precision, recall and F1.

DNER results were evaluated by comparing disease con-

cepts only, whereas CID results were evaluated by compar-

ing chemical-disease relations.

System architecture

For both tasks, we have adopted a general-purpose ap-

proach using freely available tools for preprocessing data.

While the CID step is based on a machine learning ap-

proach, DNER combines machine learning and pattern

matching. As a design choice, the system only uses the data

sets provided by the organizers. We preprocessed the data

set with the Stanford CoreNLP pipeline that extracted the

base forms of words, their parts of speech, and performed

sentence segmentation. For the DNER task, the features in-

clude knowledge extracted from the CTD, morphological

regularities obtained by extracting prefixes and suffixes of

the words, and context-based features extracted in a local

context where the entities appear. The implemented system

recognizes both diseases and chemical entities. For the CID

task, our approach extracts features from the CTD along

with other linguistic features. Different feature configur-

ations have been compared. For the official submission the

Table 1. Summary of the BioCreative V track 3 data set

Data set No.

of. doc.

No.

of rel.

No. of

unique rel.

No. of avg.

token per doc.

No. of avg.

token per title.

No. of Avg.

token per abs.

No. of chemical

mention (ID)

No. of disease

mention (ID)

Train 500 1039 928 216.75 13.52 203.23 5203 (1467) 4182 (1965)

Dev 500 1012 889 215.33 13.61 201.72 5347 (1507) 4244 (1865)

Test 500 1066 941 226.57 13.42 212.59 5385 (1435) 4424 (1988)
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configuration using lemma and stop word filtering was

chosen. Figure 1 shows the system architecture. In the fol-

lowing, we provide the details of each step.

Preprocessing

We use Stanford CoreNLP (http://nlp.stanford.edu/software/

corenlp.shtml) (25) to obtain the base form of the words,

their part of speech (POS) and lemma, and to perform sen-

tence segmentation. The Snowball tool is used for producing

the stem of the words (http://snowball.tartarus.org/).

Comparative toxicogenomics database

As a domain-specific resource we have exploited the CTD

(20), a publicly available database that aims to advance

understanding about how environmental exposures to

chemicals affect human health. It provides manually cura-

ted information about chemicals, and diseases that, in our

approach, are used to capture the different ways the enti-

ties are mentioned in texts. During the preprocessing,

chemical and disease terms (names, symbols and syno-

nyms) are first extracted from the database, and then con-

verted into regular expression patterns. In this way, we

extracted 533 646 regular expressions for Chemicals and

92 024 for Diseases, which we used for matching 1138

Chemicals and 876 Diseases in the training set. After that,

we use Flex, a tool for generating programs which recog-

nize lexical patterns in text (http://flex.sourceforge.net/).

Flex generates the scanners to recognize the mention pat-

terns which are used further for training the classifier. We

also use the chemical-disease relationships database. It in-

cludes chemical-disease pairs and it has been exploited in

the CID subtask to know the entities in texts that have a re-

lation in the CTD.

Named entity recognition

DNER is performed in two steps: (i) detecting the mentions

of the entities in text (mention detection) and (ii) selecting

the best-matching MeSH ID (normalization).

‘Mention detection’ is complex because an entity can ap-

pear in texts in many different ways. For example, ‘acetyl-

salicylic acid’ could be reported using the systematic

nomenclature (typically multiword terms with large spelling

variability), describing the compound in terms of its structure

(i.e. ‘2-(Acetyloxy)benzoic acid’), rather than non-systematic

nomenclature (i.e. ‘aspirin’) or synonyms like ‘acetylsalicy-

late’. To classify mentions we combine three approaches:

• ‘Dictionary matching’ consists in finding a mention in

text by comparing it with a dictionary. We use the scan-

ners generated by Flex during the preprocessing to recog-

nize both Chemicals and Diseases.

• ‘Exploiting morphological regularities’ is done by using the

prefixes and suffixes of the tokenized words, and the stem

of the word. The suffix -emia is, for example, typical of

diseases (e.g. ischemia), whereas the prefix meth- is useful

for chemicals discrimination (e.g. methylxanthine)

Preprocessing  

CTD 

Selegiline  1  0  10  Selegiline  selegilin  NNP 
-    2  10  11  -    -   :  
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Figure 1. System architecture.
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• ‘Context-based features’ are implemented by considering

a window of length 4 consisting of the current token,

one token before and two tokens after.

Such approaches are combined by means of YamCha,

an open source customizable text chunker based on SVMs

(http://chasen.org/taku/software/yamcha/). With YamCha

it is possible to redefine the feature sets (window-size) and

we considered whether or not the token matches with the

vocabulary. The system also considers the POS of the

token before the current token, the prefixes/suffixes of the

two following tokens, and the entity labels assigned during

the tagging to the two tokens before.

‘Normalization’ selects the best-matching MeSH ID by

means of ‘dictionary matching’ based on CTD (see the

pseudocode in Algorithm 1).

One of the major issues of the normalization task is the

ambiguity between identifiers that happens when one men-

tion refers to many identifiers (e.g. psychosis Disease was

identified six times with D011618 and twice with

D011605 in the training set). However, with regard to our

specific task, case reports of this phenomenon are rare,

with only five cases observed in the training set. Our

method addresses this problem by returning the identifier

that has been most frequently associated with the given en-

tity in the training set (e.g. D011618 is the identifier as-

signed to psychosis). The same approach was also used to

map the mentions in texts with the terms extracted from

CTD.

Finally, it is worth mentioning another problem that

often comes up with Named Entity Recognition in biomed-

ical texts, and that requires to identify and resolve

composite named entities, where a single span refers to

more than one concept (e.g. neurological and cardiovascu-

lar toxicity). In this regard, only 1% of disease and chem-

ical mentions are composite mentions in the provided data

set, and so we do not use any specific resource (e.g.

SimConcept tool) to deal with such cases.

Relation extraction

As mentioned above, it is not straightforward to apply

standard RE approaches in the CID RE task due to the spe-

cific characteristics of the task. In NLP, the relations are

usually annotated at the level of the mentions of the enti-

ties involved and they connect entities appearing in the

same sentence. In CID both limitations do not hold. First,

the relations are annotated at the level of the entire ab-

stract, involving entities (and not specific mentions).

Second, the relations may involve entities not appearing in

the same sentence (�25% of the annotated relations in the

data set). These characteristics require an approach that

combines two interconnected perspectives. On one hand, a

binary classification task considers the whole abstract, tak-

ing as input a pair of entities, and gives a positive output

when the two entities are in relation. On the other hand,

from the perspective usually applied in the NLP field, a re-

lation is realized between pairs of mentions rather than be-

tween pairs of entities, and only involves the sentence

where the two mentions appear rather than the entire

abstract.

Therefore, we could not limit our analysis to sentences

in isolation. However, considering larger chunks of text

Algorithm 1. Pseudocode for Mention Normalization. pred_mentions are the mentions recognized by the NE system.

gold_mentions, ctd_chemical, ctd_disease are dictionaries in which mentions are associated with MeSH IDs

Input: gold mentions; ctd chemical; ctd disease;pred mentions

Output: normalized mentions

procedure normalization(gold mentions; ctd chemical; ctd disease;pred mentions)

for all mentioni 2 pred mentions do

if mentioni 2 gold mentions then

mentioni id  gold mentions:getMostFrequentIDðmention iÞ
else if mentioni ¼ chemical&mentioni 2 ctd chemical then

mentioni id  ctd chemical:getMostFrequentIDðmention iÞ
else if mentioni ¼ disease&mentioni 2 ctd disease then

mentioni id  ctd disease:getMostFrequentIDðmention iÞ
else

mentioni id  �1

end if

end for

end procedure
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would imply including a much larger set of mention pairs,

and therefore a considerable increase in computational ef-

fort. We therefore decided to limit the latter perspective to

the single sentence: we refer to it as Sentence Level

Classifier (SLC), and always consider its integration with a

Document Level Classifier (DLC), which involves entity

pairs in the entire abstract. The goal of the DLC consists in

determining whether the abstract states that two given

entities are connected by a relation. Each entity can be rep-

resented by one or more mentions occurring in the text.

Features

Classification is performed in a Vector Space Model, where

the Feature Vector (FV) corresponding to each potential re-

lation is constructed by the juxtaposition of the FVs corres-

ponding to the two entities, together with a set of ‘relation

features’, which take into account both entities. In this

way, the classifier directly decides whether a relation exists

between the two entities.

In the first version of the system that participated in the

BioCreative V CDR task (16), we only considered a DLC,

which takes such a FV built from the abstract for every pair

of chemical and disease entities. As each entity is associated

with one or more mentions, we define a FV for each men-

tion, and then combine them by OR operation to obtain the

FV of the entity. On the other hand, each relation is linguis-

tically realized between two mentions rather than between

the two entities. Therefore, we want to integrate the DLC

with another one, which considers every pair of mentions

compatible with a relation and occurring inside one sentence.

Although we cannot consider this alone, because in the train-

ing set about one-fourth of all relations connect mentions

occurring in different sentences, we want to check whether

such a classification can help to improve the performance.

All in all, we therefore consider a FV for each mention

and then combine them in a FV for each entity for the DLC

while we consider them separately for the SLC. All the fea-

tures considered here are Boolean, and mention FVs are

combined by means of an OR operation into entity FVs.

Again, each mention FV is built by considering the OR of

each token FV, which are based on a set of Boolean fea-

tures that signal the occurrence of given patterns in the

token. These features include:

• the first and the last characters,

• word prefixes and suffixes of length from 3 to 5,

• whether the first character is a capitalized letter, an unca-

pitalized letter, or a number,

• whether the word contains one or more uncapitalized

letters or is only composed by capitalized or only by

uncapitalized letters and

• whether the token contains a dot, a comma or a hyphen.

A set of features is also represented by word and POS

unigrams, bigrams and trigrams from a window of length

five centered in the token (i.e. the current token, two

tokens to its left and two tokens to its right).

In addition to these features, in some configurations of

our system we also considered Barrier Features (BFs) (26),

which are based on the set of trigger POS tags and corres-

ponding endpoints listed in Table 2. POS tags are taken

from the Penn Treebank tag set. Given a token whose POS

tag corresponds to a trigger, we consider the closest token

at its left having the endpoint POS tag. The set of POS tags

included between them is collected, and each BF is defined

by the following triple: trigger, endpoint and set of

included tags.

Moreover, by following the indications in (14), we com-

pleted the representation of each entity involved in the re-

lation with the following three features:

1. Does the Chemical appear in the title of the document?

2. Does the Disease appear in the title of the document?

3. Is the Chemical a Core Chemical (i.e. either it is the

most frequent in the document or it appears in the

title)?

Last, but not least, we also included ‘word-embedding

features’, which have recently been very popular in several

NLP tasks. Word embeddings, also known as context pre-

dictive model or neural language model, are new tech-

niques to design distributional semantic models (DSMs),

which differ from traditional DSMs where co-occurrence

counts are used (27). In word embedding, distributed vec-

tor representations are learned from a large corpus by neu-

ral network training, and represent them in a low

dimensional continuous space. It has been proven that

such representation better capture semantic and syntactic

relationships (28).

To design word-embedding models, we collected full-

text of articles from the PubMed Central Open Access sec-

tion (ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/), till the 24

Table 2. Trigger and endpoint pairs for barrier features

Endpoint Trigger

JJ JJR

DT NN, NNP

PRP NNS

JJ RBR

DT, IN VB

IN VBP

DT, MD, VB, VBP, VBZ, TO VBD, VBN

PRP VBZ
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October 2015, containing 1 35 7 967 articles. Part of the

articles is in nxml format, which we converted into raw

texts using a specific tool (https://github.com/spyysalo/

nxml2txt). The raw texts are then sentence splitted and

tokenized using the Stanford CoreNLP tool to prepare the

data for designing the word-embedding model. We utilized

word2vec toolkit for training (https://code.google.com/p/

word2vec/), which is an implementation by Mikolov et al.

(29), and contains both continuous bag-of-words (CBOW)

and skip-gram algorithms. We designed our model using

the CBOW approach with a size of the FV 500, a context

window size 5, negative-sampling with a value of k¼10.

The resulting trained word-embedding model contains 6

billions words with a vocabulary of size 1.8 millions.

Differently from the other features, word embeddings

are composed by real numbers. We used two different

approaches to obtain features for each relation example.

The first approach computes similarity between the sets of

words respectively referring to chemical and disease by uti-

lizing the word-embedding model’s similarity measure and

then uses it as a feature. In this way, we added a new feature

evaluating how much the two entities are similar when con-

sidered by word embeddings. The rational under this is that

two related entities will be more similar than unrelated ones.

In the second approach, we call C and D the set of dif-

ferent words occurring in chemical and disease mentions

respectively and we define a set of words by T ¼ C [D,

for the entity pair of a training example. Then, we extract

the FV for each word from the word-embedding model.

After that we compute the average of word vectors to have

an equal sized vector for each training instance. For ex-

ample, if we have a set of 10 words of a chemical-disease

relation then we obtain a matrix of size 10� 500. By tak-

ing an average we obtain a FV of size 1� 500. Using this

approach we add 500 features.

Our approaches towards utilizing the word-embedding

features are in a very early stage. Since word embeddings

have recently proven to be useful in different NLP tasks,

we plan to try different feature representations to feed into

the classifier as a future work.

All features considered above regard the entities. As

mentioned above, we also consider four binary relation

features, depending on both entities, defined as follows:

1. Is the entity pair listed as a positive chemical-disease re-

lation in the CTD (20)?

2. Do the mentions of both entities appear in the same

sentence?

3. Do the mentions of both entities appear in the same

sentence in the title?

4. Do the mentions of both entities appear in the same

sentence in the abstract?

Note that the first one is the only feature based on an

external knowledge source. As relation features are more

likely to predict the existence of an actual relation, we

overweigh them with respect to entity features by introduc-

ing a relation features weight (RFW) greater than 1.

‘Feature selection’ is needed because of the potentially

very large number of n-grams and BFs. To address this

issue, we prune all features not occurring or occurring with

not enough instances in a different data set. As such feature

selection strategy is more effective when the external data

set well describes the task at hand, we consider the corpus

used for the BioCreative IV Chemical compound and drug

name recognition (CHEMDNER) task (30), consisting of

27 000 documents (both titles and abstracts). The thresh-

old to decide which features to prune is set to the mean of

all counters. This results in a feature set of 102 297

features.

Classification

Classification is performed using SVMlight (http://

svmlight.joachims.org/) (31). Note that this classifier asso-

ciates a margin to every output: if the margin is positive,

the output will be positive, and negative in the opposite

case. The larger the absolute value of the margin, the more

the classification decision is reliable.

Moreover, we apply a post-processing phase on the out-

put of the automatic RE system. The goal of the post-pro-

cessing is to increase recall, at the cost of some degradation

in precision. As a preliminary step, we build a chemical-

induced disease relation dictionary using the positive ex-

amples in the training and development data. In the post-

processing phase, we first check whether any entity pair in

the test set is identified by the automatic RE system or not.

If not, then, we use the CID relation dictionary and check

if the candidate entity pair matches an entry in the diction-

ary. If there is a match, then we label such an entity pair as

a positive example.

Combination of the basic classifiers

At this point we have a single DLC and several SLCs, one

for each entity pair which is compatible with the relation,

and we want to combine them to obtain the complete clas-

sification. First of all, we can separately consider the two

levels: the DLC directly produces the requested classifica-

tion, while we can combine the SLCs with an OR oper-

ation, that is the classification is positive whenever at least

one SLC gives a positive response. However, this combin-

ation of SLCs would miss all cross-level relations, which

were about the 25% in training data. We therefore try to

combine the two level classifiers together.
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The most straightforward strategy for such a combin-

ation is to consider the OR of the outputs of the two classi-

fiers. In other words, we consider a relation as positive

whenever either the DLC or the SLC does so. We refer to

this strategy as S1. Another possibility involves adding the

output of the SLC as a feature for DLC: this is S2. The last

two strategies consider a linear combination of the output

of the two classifiers. While S3 takes equal weights for the

two levels, S4 considers the number p of SLCs returning a

positive margin: in this case the weight associated to the

DLC is given by 1
pþ1, and therefore the one associated to

the SLC is p
pþ1.

Even in cases where we have a constraint on execution

times, as was the case in the BioCreative V workshop, this

approach is viable because the two classifiers can be run in

parallel and all the four combination strategies we consider

require a very small overhead.

Experiments

During the official participation in the task, to find the best

system configuration and to assess the system performance,

we trained both the systems for DNER and CID on the

provided training data set and tested it on the development

set. For the official submission, we trained both the sys-

tems for DNER and CID on the training and development

sets and applied them to the test set.

The experiments performed after the official submission

(and the release of the gold standard test set) have been

performed directly training the system on the training and

development sets and applying the learned model to the

test set.

In Tables 3 and 4, we present a brief overview of the

different experimental strategies/settings used for DNER

and CID tasks. More details of these strategies/settings can

be found in the next two sections.

Disease named entity recognition and

normalization

Given that the data set contains annotations for both

chemical and disease entities, we have implemented a sin-

gle system for recognizing both the entity types in the

DNER and CID subtask even though DNER does not re-

quire it. Table 5 reports the results of chemical-disease

mention detection and normalization on the development

set. The results were obtained by the default configuration

of the system described in named entity recognition, and

compared with two baselines: baseline#1_CTD is calcu-

lated by matching the chemical and disease mentions in the

texts with the CTD and by normalizing them with the

MeSH ID associated to those mentions in the CTD; base-

line#2_w/o_res is calculated by training the system on the

tokenized articles in the training set without any additional

Table 4. Different experimental strategies of the CID task,

including feature level analysis and classifier combinations

Strategy Description

DLC Entity pair in the entire abstract

SLC Entity pair within a single sentence

Combo (S1) OR of the outputs of the two classifiers DLC

and SLC

Combo (S2) The output of SLC is added as a feature for

DLC

Combo (S3) Linear combination of the output of the two

classifiers with equal weights

Combo (S4) Linear combination of the output of the two

classifiers with weights computed as in com-

bination of the basic classifiers

Basic feats Features of the two entities þ binary relation

features

All-feats Added three new features (Chemical in title;

Disease in title; Core Chemical)

BFs (see Features)

Word embeddings (i) 1 feature (ii) 500 features (see Features)

Table 3. Different experimental strategies of the DNER task,

including with/without external resources and feature

analysis

Strategy Description

Default configuration Dictionary matching (CTD) þ
morphological regularities þ
context based features

Baseline#1_CTD Dictionary matching (CTD) only

Baseline#2_w/o_res ML system on the training set without

any additional resource

�Dictionary matching

(CTD)

w/o dictionary matching

�Context-based

features

w/o context-based features

�Morphological

regularities

w/o morphological regularities

Table 5. Results of entity normalization and mention detec-

tion (in brackets) on the development set

P R F1

Chemical 88.11(92.24) 88.05(86.95) 88.08(89.51)

Disease 84.31(83.50) 77.57(80.75) 80.80(82.10)

ChemicalþDisease 86.09(88.32) 82.26(84.20) 84.13(86.21)

baseline#1_CTD 76.03(81.07) 64.01(69.47) 69.51(74.82)

baseline#2_w/o_res 88.14(78.40) 64.13(64.21) 74.24(70.60)
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source of information. Finally, we retrained the system on

the training set plus the development set and evaluated it

on the test set. The results obtained are shown in Table 6.

In this regard we ranked 5 out of 16 participants.

To measure the impact of the different sources of infor-

mation on the final system performance on the develop-

ment set, we removed one type of information at a time

from the system default configuration. Table 7 reports

these results.

Chemical-induced diseases relation extraction

As for the CID subtask, we compared the performance of

different configurations on the test set, after training on

the union of training and development sets. The data set is

characterized by a strong unbalance between positive and

negative items. To address the data set skewness, we opti-

mized the cost-factor parameter on the development set

(see Ref. (16)). As a result of such optimization, in the offi-

cial submission, we considered a cost-factor of 4.3.

Furthermore, we set RFW to 5, apply lemmatization to

deal with data sparseness and consider the linear kernel for

SVM. As for the choice whether to use BFs and a list of

stopwords, the mentioned preliminary experiments

showed that all four possible settings perform very simi-

larly. For the sake of both efficiency and robustness, we

therefore tried to minimize the number of features and

introduced the stopword filtering, but not the BFs.

In Table 8, we present a performance comparison of

our system with the one built for the official competition

(16), which consisted of a DLC only. Of course, a direct

comparison is meaningful only considering the perform-

ance with Automatically Recognized Entities (ARE). To as-

sess the performance of the RE system per se, we also

report performance with Gold Standard Entities (GSE).

Although the system labelled as ‘basic feats’ in the table is

actually the same used for the task participation, perform-

ance is a bit better because after the official submission at

the competition, we fixed a few bugs in the software. The

new system is labelled ‘all-feats’ to underline the fact that

we added three new features, as discussed in system archi-

tecture. These new features produced a further improve-

ment in performance, both when GSE are considered and

in the more realistic case when they have been automatic-

ally recognized.

The results obtained by the inclusion of word-embed-

ding features can be evaluated by considering the perform-

ance reported in Table 9 and comparing them with those

reported in Table 8. Not only the performance of the two

versions of these features is very similar, but it is also very

similar to those obtained without such features.

The second block of columns in Table 8 reports the per-

formance of the SLC, which has been newly introduced in

the work presented in the article. Sentence level classifica-

tion remarkably improves precision, both with basic and

complete features and both with GSE and ARE.

Unfortunately, this occurs at the cost of a larger decrease

in recall, so that the F1 value is always worse than for the

DLC. This difference in F1 between DLC and SLC is im-

pressively larger for ARE.

The third block of columns in the same table reports the

performances of the combinations of DLC and SLC with

strategy S1. It should be considered together with Table 10

where the different combination strategies introduced in

system architecture are reported for the system with the

complete feature set. Note that the first line of this table

Table 7. Variation in results of entity normalization and mention detection (in brackets) when we remove one type of information

at a time

P R F1

ChemicalþDisease entities

�Dictionary matching (CTD) þ1.84(�1.32) �17.62(�5.95) �9.62(�3.81)

�Context-based features �3.46(�9.41) �0.3(�2.26) �1.84(�5.82)

�Morphological regularities �1.63(�0.43) þ0.59(�0.23) �0.43(�0.48)

Disease entities

�Dictionary matching (CTD) þ0.89(�2.66) �13.94(�4.57) �7.95(�3.66)

�Context-based features �2.53(�10.53) �0.75(�4.03) �1.58(�7.30)

�Morphological regularities �0.89(�0.39) þ0.70(�0.61) �0.04(�0.50)

Table 6. Results of entity normalization and mention detec-

tion (in brackets) on the test set

P R F1

Chemical 88.57(93.50) 88.57(89.71) 88.57(91.57)

Disease 86.82(84.15) 81.84(82.21) 84.26(83.17)

ChemicalþDisease 87.58(89.24) 84.66(86.33) 86.09(87.76)

In bold the system’s official results
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reports the same numbers reported in Table 8. Also in this

case we obtain two different patterns with GSE and ARE:

in the former case, the strategy which performs better is

the linear combination of the two outputs with equal

weights (S3), while with ARE the OR combination (S1)

should be preferred. In both cases, however, the perform-

ance of strategy S2 is really bad, even worse than SLC

alone. In this case, the output of SLC classifier is given as

input to the DLC: evidently it pushes the performance to a

behaviour similar to the SLC.

For the sake of a deeper analysis of the experimental re-

sults, we also report the absolute number of errors, distin-

guishing between False Negatives (FNs), that is, the

number of relations in the ground truth which have not

been detected by the classifiers (Table 11), and False

Table 9. Results with word-embedding features

Document-level Sentence-level Combo (S1)

P R F1 P R F1 P R F1

GSE

Chemical-Disease similarity (1 feature) 44.66 79.55 57.20 49.35 56.85 52.83 43.30 80.39 56.29

Average of the FVs of words (500 features) 44.79 79.36 57.26 49.35 57.04 52.92 43.68 80.39 56.61

ARE

Chemical-Disease similarity (1 feature) 39.65 63.60 48.85 53.79 19.32 28.43 39.47 63.79 48.76

Average of the FVs of words (500 features) 39.89 63.13 48.89 53.75 19.51 28.63 39.67 63.23 48.75

Table 8. Results of different configurations of the RE system

Document-level Sentence-level Combo (S1)

P R F1 P R F1 P R F1

GSE

Basic feats 42.41 77.39 54.79 47.96 56.37 51.83 40.33 80.30 53.70

All-feats 44.18 79.08 56.69 49.47 57.22 53.06 43.05 80.01 55.98

ARE

BioCreative V 35.39 56.47 43.51

Basic feats 37.98 61.06 46.83 52.01 19.41 28.27 37.54 61.81 46.72

All-feats 40.31 63.03 49.17 53.94 19.23 28.35 40.14 63.22 49.10

Basic features: the ones used for the official submission; All features: includes the three new features (Chemical in title; Disease in title; Core Chemical).

Table 10. Results of different combination strategies of the

two classifiers

P R F1

GSE

S1 43.05 80.01 55.98

S2 43.18 50.84 46.70

S3 44.39 76.92 56.29

S4 43.05 80.01 55.98

ARE

S1 40.14 63.22 49.10

S2 51.12 16.97 25.49

S3 24.49 70.63 36.37

S4 24.39 71.01 36.31

Table 11. Number of FNs in the results of the two classifiers

Tot Same sent. Other

GSE

DLC 261 96 165

SLC 551 183 368

ARE

DLC 431 216 215

SLC 947 579 368

Table 12. Number of FPs in the results of the two classifiers

Tot Same sent. Other

GSE

DLC 1002 671 331

SLC 506 506 0

ARE

DLC 930 242 688

SLC 96 96 0
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Positives (FPs), that is the number of spurious relations

introduced by the system (Table 12). We separately con-

sider the two classifiers, SLC and DLC. Note that the data

presented in Tables 11 and 12 do not depend on any post-

processing phase (differently from the performance in the

previous tables). This has been done in an effort to better

assess the effect on FNs and FPs and separate it from the

effect of the post-processing phase.

The DLC tends to be propositive, meaning that the

number of FNs it introduces is much lower than the num-

ber of FPs, while the SLC is much more conservative, and

introduces fewer FPs with respect to the number of FNs.

Furthermore, in both tables we separately consider the

number of errors due to relations connecting entities in the

same sentence. As all hypotheses generated by the SLC are

of this type, only FPs involving entities within the same

sentence are introduced by this classifier. On the other

hand, it misses all the relations which do not involve enti-

ties appearing in the same sentence, and therefore the num-

ber of FNs of this kind does not depend on the fact that we

are considering the GSE or ARE case.

In general, we note relevant differences between the per-

formance with GSE and with ARE. To better analyse such

difference, in addition to the standard performance meas-

ures (precision, recall and F1), we computed ‘pairs com-

pleteness’ (32). This measure is particularly relevant when

evaluating the performance of the combination of a named

entity recognizer and of an RE system. Pairs completeness

measures the upper-bound on recall for the RE task, inde-

pendently from the specific algorithm used for extracting

relations. Pairs completeness is defined as the ratio be-

tween the number of positive examples produced by our

generative procedure and the total number of positive ex-

amples in the annotated corpus. Note that pairs complete-

ness can be calculated only if manually annotated relations

are available. The value of Pairs Completeness using our

DNER system is 78.96.

Conclusions and future work

We considered different possible improvements on the sys-

tem presented in the Ref. (16), and in fact the final system

has better performance with respect to the one presented

there. Further experimentation is required to optimize the

choice of the most effective features by means of a compos-

ition of feature design and feature selection. Moreover, we

plan to apply different approaches as SLC (e.g. the one pro-

posed in the Ref. (33)). Furthermore, syntactic features can

help in improving performance. They can be included in the

system either as word pairs constructed on the basis of a de-

pendency parsing analysis, or as a complete constituency

parsing to analyse by means of a tree kernel SVM (34). Last,

but not least, a more sophisticated choice of potential rela-

tion candidates among all possible entity pairs can be intro-

duced to help improve the performance. For example, we

could introduce an a priori probability for each of the candi-

date pairs. Such a priori probabilities can be either extracted

from a probabilistic ontology if available or evaluated from

data. For example, we could estimate such probability by

backing off to super-classes for the two entities.
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