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Abstract

MODEM is a comprehensive database of maize multidimensional omics data, including

genomic, transcriptomic, metabolic and phenotypic information from the cellular to indi-

vidual plant level. This initial release contains approximately 1.06 M high quality SNPs

for 508 diverse inbred lines obtained by combining variations from RNA sequencing on

whole kernels (15 days after pollination) of 368 lines and a 50 K array for all 508 individ-

uals. As all of these data were derived from the same diverse panel of lines, the database

also allows various types of genetic mapping (including characterization of phenotypic

QTLs, pQTLs; expression QTLs, eQTLs and metabolic QTLs, mQTLs). MODEM is thus de-

signed to promote a better understanding of maize genetic architecture and deep func-

tional annotation of the complex maize genome (and potentially those of other crop

plants) and to explore the genotype–phenotype relationships and regulation of maize

kernel development at multiple scales, which is also comprehensive for developing novel

methods. MODEM is additionally designed to link with other databases to make full use

of current resources, and it provides visualization tools for easy browsing. All of the ori-

ginal data and the related mapping results are freely available for easy query and down-

load. This platform also provides helpful tools for general analyses and will be continu-

ally updated with additional materials, features and public data related to maize genetics

or regulation as they become available.
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Introduction

Maize (Zea mays L.) is one of the most important crops

worldwide. Also, as a model organism, maize promotes

our understanding of plant genetics and genomes. With

high-throughput techniques (including genotyping by

array, RNA sequencing, metabolite identification and

phenotypic measurement) maturing in recent years, there

has been rapid growth in related maize multidimensional

omics data (1–3). This large dataset will allow association

mapping that will advance understanding of the genetic

architecture of specific phenotypes, which, in turn, will

allow deep annotation of the complex maize genome.

While genetic and genomic research is progressing rapidly

in maize, the related database resources have lagged behind

and are limited for next level analyses—functional genome

studies such as QTL mapping. Panzea (4), for example,

contains genotype and morphological phenotype informa-

tion from several populations. However, a multi-dimen-

sional database including multiple levels of omics data,

especially for the same panel, is urgently needed. Such a

database should include abundant high-quality data on

genomic variations, reliable quantitation of gene expres-

sion, detailed measurement of cellular metabolites, high-

throughput characterization of morphological phenotypes

for large, representative and diverse populations. In add-

ition, mapping results based on these data and produced

with different methods will directly contribute to further

studies in the scientific community. The resource should

also provide a user-friendly mechanism for retrieving data,

convenient visualization tools and comprehensive annota-

tion information.

We created the MODEM database to meet all these

goals. Through wide collaboration, we have collected 527

maize elite inbred lines from which we have generated mul-

tiple omics-level datasets for examining variation or quan-

tification of the genome, transcriptome, metabolism and

phenome (Table 1). Importantly, we produced useful QTL

mapping results based on these data with the linear mixed

model. MODEM was developed to provide standardized

data that can easily be retrieved and visualized, to better

serve researchers.

Materials collection, data generation,
processing and evaluation

Plant germplasm

Currently, we have assembled a global germplasm collec-

tion with 527 elite inbred lines (association mapping panel,

AMP) released from the major temperate and tropical/sub-

tropical breeding programs of China, CIMMYT and the

Germplasm Enhancement of Maize (GEM) project in the

US, which were chosen to be representative of maize gen-

etic diversity and/or for their promise in maize improve-

ment. All of the lines were previously assayed by the 50K

Maize SNP array (5, 6) (commercially available from

Illumina). To further explore the genetic mechanisms con-

trolling yield and to increase the yield of maize, deep RNA

sequencing was also performed on 368 of the 527 lines

using kernels harvested 15 days after pollination (DAP).

Sampling and RNA library construction and

sequencing

All 368 lines were planted in two replicate one-row plots

in an incompletely randomized block design in Jingzhou,

Hubei province of China in 2010 (2). Six to eight ears in

each block were self-pollinated, and five immature seeds

from three to four ears in each block were collected at 15

DAP. The collected immature seeds from the two replicates

were bulked for total RNA extraction, and three additional

lines (SK, Han21 and Ye478) were made for biological rep-

licates. Total RNA was extracted using the Bioteke RNA

Extraction kit (Bioteke, Beijing, China) according to the

manufacturer’s protocol and cDNA libraries were con-

structed according to the manufacturer’s standard protocol

(Illumina, Inc.). Libraries were amplified by 15 cycles of

PCR with Phusion DNA polymerase (New England

Biolabs, Inc.) and primers containing barcode sequences to

distinguish different libraries during sequencing and data

analysis. The average fragment size of each prepared li-

brary was 322 bp. Before loading libraries onto the flow-

cell, the libraries were quantified by qPCR, denatured with

sodium hydroxide and diluted to 2.5 pM. Cluster forma-

tion, sequencing primer hybridization and 91 cycles of

paired-end sequencing were carried out using reagents that

Illumina supplied according to the standard protocol.

Reads mapping, SNP calling and quality control

The 368 maize inbred lines were sequenced using 90-bp

paired-end Illumina sequencing (raw RNA sequencing data

have been deposited in NCBI Sequence Read Archive (SRA)

under accession SRP026161). After trimming the adapter se-

quences and filtering out reads with low sequencing quality

(>20 for base quality at leading and trailing ends, and at

least 36 bp left in length), the RNA sequencing (RNA-seq)

produced 70.1 million reads for each sample, totalling 25.8

billion high-quality reads. Short Oligonucleotide Alignment

Program 2 (7) was used to map the reads against the B73

reference genome (AGPv2) with default parameters. Only

reads that mapped uniquely to the genome were retained for

further variation calling. On average, 71.0% of the reads

were mapped to the B73 reference genome and 70.3% of
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the reads mapped to the maize annotated genes (filtered-

gene set, release 5b). Among the genes with RNA-seq reads,

71.6% have coverage of>50% of the gene length. Of all

the reads mapped to the genome, 83.5% were mapped

uniquely and these reads were used to build the consensus

sequence for each sample using SAMtools (8). Briefly, a

two-step procedure was used to detect SNPs by carefully

considering the characteristics of the RNA-seq data. In the

first step, we identified the polymorphic loci in our popula-

tion, and the population SNP-calling algorithm realSFS (9)

was used to calculate the likelihood of variation for each

covered nucleotide from the combined data of all of the 368

inbred lines. The variations with probability<0.99 or total

depth<50 were filtered out. In the second step, we ex-

tracted consensus base, reference base, consensus quality,

SNP quality and sequencing depth of each polymorphic

locus for each inbred line using the Pileup command (8),

and then considered the consensus base as the individual

genotype with the following requirements: if the consensus

base was different from the reference base, the non-

reference allele must be the same as the non-reference allele

detected from the population and the SNP quality must be

�20. If the consensus base was the same as the reference

base, the consensus quality must be equal to or >20 and the

minimal depth must be �5. For sites that failed to pass these

criteria, we regarded the consensus genotype as unreliable

and assigned the individual genotype of those sites as miss-

ing. The 1 026 244 SNPs with missing rates<0.6 were then

left to infer missing genotypes using fastPHASE (10).

Heterozygous genotypes were masked as missing and all

SNPs were named according to their physical positions in

the reference genome (B73 AGPv2). Altogether, 558 629

SNPs with minor allele frequency (MAF) >5% remained

for the subsequent QTL mapping analysis (the analysis

using genomic variation for the purpose of finding which

genes/regions associated with corresponding trait). The con-

cordance rates were >99% between each pair of replicates

and 98.6% when compared with overlapping genotypes

determined by the MaizeSNP50 BeadChip. Among the 1

026 244 SNPs, 931 484 (90.8%) were mapped to within the

23 106 genes (filtered-gene set, release 5b). On average,

there were 40.3 SNPs per gene. Whereas this SNP set in-

cludes 69.7% of SNPs reported in a previous study (11) on

a nested association mapping population, it contains 7.5

times more exonic SNPs. This not only increases the prob-

ability that markers identified possess high linkage disequi-

librium with target genes, but also helps in identification of

causal variations. Finally, SNPs with a MAF< 5% were fil-

tered out and the resulting 525 105 SNPs were then merged

with 56 110 SNPs from the MaizeSNP50 BeadChip to pro-

duce the merged set of 558 650 SNPs, and the genotypes

from Chip is preferred if inconsistent between the two sets.

Gene expression profiles

To quantify the expression of known genes, reads that

uniquely mapped to each gene within the reference genome

(filtered-gene set, B73 AGPv2) were summed and normal-

ized according to RPKM (reads per kilobase of exon model

per million mapped reads). On average, there were 1540.7

reads for each whole gene for each individual. Genes hav-

ing mapped sequencing reads (expressed) in more than half

of the maize lines (28 769) were used for further eQTL

mapping (the analysis for the purpose of finding which

locus associated with gene’s expression variation). The ex-

pression values of each gene were then normalized using a

normal quantile transformation to meet the assumption of

detecting eQTLs through a linear mixed model that the

Table 1 Multi-omics data involved in MODEM

Index Data description

Germplasm resources 527 inbreds for association mapping panel (AMP) with different populations (143 lines for NSS,

non-stiff-stock; 33 for SS, Stiff-stock; 232 for TST, Tropical and Semi-tropical; and the left

119 are regared as MIXED)

Genomic variation �50K SNPs from MaizeSNP50 BeadChip for AMP (513 lines), of which 368 have >1.03 mil-

lion SNPs by RNA-Seq with 0.56 million passed the MAF > 0.05 filtering. The whole 513

panel is finally imputated to 0.56M SNPs

Transcriptome quantification 28 769a genes’ quantitative expression of maize whole kernel (15 days after pollination, 15

DAP)

Phenotype measurement nearly agronomic 50 traits including yield, response to drought, floods and diseases with 4–8 lo-

cations and multiple years (ranging from 2007 to 2012) of the whole AMP

Metabolomics 983 metabolic profiling of AMP and 17 amino acid components identified within 2 location for

AMP

Mapping results Mapping results of association analysis for different traits (including expression levels)

aGenes filtered as expressed in> 50% lines; there are 38 850 genes expressed in at least one line also could be obtained in DOWNLOAD page.
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expression values follow a normal distribution. This quan-

tile transformation does not fully solve the problem, which

only ensures that the phenotype is normal overall but not

necessarily normal within each genotype class. However, it

is a simple, sensible way to guard against strong departures

from modelling assumptions with the small effect sizes typ-

ical in genetic association studies.

Maize kernel metabolome profiling, identification

and annotation

To extract metabolites of maize kernels, the association

panel lines were planted in one-row plots in an incom-

pletely randomized block design at three locations in

China: Hainan (Sanya, E 109�510, N 18�250) in 2010 and

Yunnan (Kunming, E 102�300, N 24�250) and Chongqing

(E 106�500, N 29�250) in 2011 (3). All inbred lines were

self-pollinated and ears of each plot were hand-harvested

at their respective physiological maturity, followed by air

drying and shelling. For each line, ears from five plants

were harvested at the same maturity and 12-well growth

kernels were randomly selected from five plants and

bulked for grinding by using a mixer mill (MM 400,

Retsch) with zirconia beads for 2.0 min at 30 Hz. The pow-

der of each genotype was partitioned into two sample sets

and stored at �80�C until extraction. One sample set was

extracted for lipid-soluble metabolites, while the other was

extracting for water-soluble metabolites. One hundred mg

of powder and 1 ml absolute methanol, which contained

0.1 mg/l each of lincomycin and lidocaine, were used for

lipid-soluble metabolites (or 70% methanol for water-

soluble metabolites). Samples were extracted overnight at

4�C. After centrifugation at 10 000 g for 10 min, 0.4 ml of

each extract was combined and filter spun using 0.22-lm

filters (ANPEL, Shanghai, China, http://www.anpel.com.

cn/) before analysis using an LC-ESI-MS/MS system. The

metabolite quantification and annotation was performed

by our newly developed method (12). To facilitate the

identification/annotation of detected metabolites by our

widely targeted metabolomics approach, accurate m/z of

each Q1 was obtained, if possible. To this end, extracted

ion chromatograms of the ESI-QqTOF-MS data for each

of Q1 (m/z 6 0.2 Da) of the 983 transitions in the MS/MS

library were manually evaluated for the presence of the tar-

get substances by analysing corresponding mass spectra,

and accurate m/z values were obtained. For each of the

corresponding accurate m/z, a fragmentation pattern was

obtained by running the analysis under targeted MS/MS

mode using three different collision energies of 10, 20 and

30 eV. The accurate m/z was assigned to the corresponding

Q1 if similar fragmentation patterns were obtained be-

tween the ESI-Q TRAP-MS/MS and the ESI-QqTOF-MS/

MS. Eventually, an accurate mass of 245 of Q1 was ob-

tained. The MS/MS library was annotated based on the

fragmentation pattern (delivered by ESI-Q TRAP-MS/MS

and/or the accurate m/z value delivered by ESI-QqTOFMS/

MS) and the retention time of each metabolite. Based on

the annotation, commercially available standards were

purchased and analysed using the same profiling procedure

as the extracts. By comparing the m/z values, the retention

time and the fragmentation patterns with the standards, 49

metabolites were identified, including amino acids, flavon-

oids and fatty acids (such as a-linolenic acid), and some

phytohormones. For the metabolites that could not be

identified by available standards, peaks in the MS/MS li-

brary, especially the peaks having similar fragmentation

patterns with the metabolites identified by authentic stand-

ards, were used to query the MS/MS spectral data taken

from the literature or to search the databases (MassBank,

KNApSAcK, HMDB, MoTo DB and METLIN). Best

matches were then searched in the Dictionary of Natural

products and Kyoto Encyclopaedia of Genes and Genomes

for possible structures. In all, 184 metabolites were identi-

fied and more than four different pathways were detected.

Population structure, relatedness matrix and

association analysis

A subset of 16 338 SNPs with<20% missing data and

MAF> 5% were used to estimate population structure and

kinship coefficients. STRUCTURE (13) was used to infer

population structure with 10 000 replications for burn-in and

MCMC processes, and five runs were performed at k¼ 3.

The samples were divided into three subgroups, as previously

suggested for this panel. The kinship matrix was calculated

using the method introduced in Loiselle et al. (14). The asso-

ciations between the extracted SNPs with MAF> 5% and all

measured traits (including morphological phenotypes, kernel

metabolome and transformed expression traits; Table 1) were

analysed using the linear mixed model (LMM) (15) incorpo-

rating population structure and kinship using TASSEL (16).

The significance cut off was set generally to 1/N, where N is

the number of markers used, and all the results were provided

to be displayed. The top six hidden confounding factors

determined to be contributing to expression variability by

Bayesian factor analysis (implemented in PEER) (17) were

additionally included in the mixed model, in addition to

population structure, to examine the validity of association

significance for eQTL mapping.

Database features and web interface

The Struts 2 framework (18) and B/S development pattern

were used to develop MODEM. The back end of
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MODEM is implemented in JAVA and the web interface is

implements using JSP, JavaScript, HTML5 Canvas and

AJAX technologies. Apache Tomcat is used as the server to

provide the webpage access service. These technologies

allow the user to search and display their assignments con-

veniently by combining multiple types of data. All scripts

involved in this study have been deposited into github

(https://github.com/liujianxiao/MODEM).

Genome browser for genotype and expression

variation

JBrowse (19), built with JavaScript and HTML5, which is

fast and embeddable, was used to build the genome browser

of MODEM. The original sequencing reads and the qualita-

tive and quantitative RNA-seq data were incorporated. Kinds

of tracks (Table 2) could be selected to display. Reference se-

quence, with the translated amino acid sequence in six pos-

sible reading frames, can be displayed and are useful,

especially when zooming in to the single gene level

(Figure 1A). The structure and strand of both the gene and all

transcripts can be viewed for the whole genome (Figure 1B),

and specific information, including biotype, combined func-

tion annotation and sequences (for whole gene or each intron

and exon) can be obtained by left-clicking on the gene body.

The functional annotations were selected and combined from

maizeGDB (20) and BioMart of Ensembl Plant (21). SNP at-

tributes, such as referenced and variegated alleles, allele fre-

quency and the potential functional consequences, especially

of candidate eQTLs for other genes, can be viewed by click-

ing on the SNP ID after adding the SNP track. Further, users

can obtain the original sequence and quality of each read

after adding the BAM track and the coverage distribution

along the chromosome with COVERAGE tracks (Figure 1C).

MODEM also provides both density and X–Y plots to de-

scribe the expression quantitation in the QUANTITATIVE

panel. In addition to being able to select or zoom in on a gene

by right-clicking on the gene symbol, users can also choose

the EXPRESSION COMPARISON option to compare all of

the lines in a histogram, however, for those genes that were

not expressed or did not meet our filtering criteria, a link can

redirect the user to the Maize eFP Browser (22, 23) in

maizeGDB to examine the expression pattern of these genes

during the maize life cycle. JBrowse provides flexible sliding

and scaling options, and for each track, more specific options

can be selected, such as ‘Hide reads with missing mate pairs’

in the BAM track (Figure 1D).

Displaying specific information about materials/

germplasms

Specific information, including the materials origins, popu-

lation structure and pedigrees of the AMP can be searched,

displayed and downloaded by the user. From this simple

implementation, users can easily get a basic understanding

and macro-impression of the germplasms.

Search for genotypes by physical region or gene

symbol

MODEM provides two sets of genotype data, the original

and the filtered (by MAF< 5%) data sets. The former is

primarily supplied for searching and genome browser func-

tions, and the latter can be downloaded on the

DOWNLOAD page. Information on SNPs can be queried

by genomic region or gene symbol. For example, a region

search with ‘chr1:12345.67890’ would display the SNPs

between 12 345 bp and 67 890 bp on chromosome 1. The

gene symbols should agree with common standards, such

as GRMZM2G22222. SNPs from the RNA-seq are identi-

fied as ‘chr1.S_1000282’, where ‘chr’ indicates the

chromosome, ‘S’ stands for SNP and 1000282 is the phys-

ical location of this variation. SNPs from the MaizeSNP50

BeadChip retain their original ID. The search results for

the filtered genotype can be displayed in a table or saved as

hapmap format.

Displaying expression quantitation and eQTL

results of whole maize kernels (15 DAP)

For the strict filtering of expressed genes, which were ex-

pressed in at least 50% of the lines, 28 769 genes were re-

tained, and the list can be downloaded on the

TRANSCRIPTOME page. The expression data is also

available with RPKM normalization and further normal

quantile transformation (Q–Q normed), and both can be

searched and downloaded when a list of gene symbols pro-

vided. MODEM also provides a histogram in the genome

browser for comparison of gene expression levels among

individuals (described in detail above). Moreover, the

RPKM-normalized data for the 38 769 genes that are ex-

pressed in at least one genotype are provided on the

DOWNLOAD page. This data set may be more useful in

some cases. It is also easy to search for eQTLs of interest

on this page, and an approach for eQTL visualization is

being explored.

Search for phenotypes by trait name, location

and year

In the MODEM interface, users can examine phenotypes

of different populations or individuals by selecting trait

name, germplasm of interest, corresponding year and/or lo-

cation. The user can choose to display specific original

phenotypes or use the selected results for BLUP
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calculation. The individuals of each phenotype are actual

values (average 3–5 individuals/repeats), which may not

show normal distribution. Details of the evaluation

method of each phenotype and the working principles of

our measurement system can be found on the

MODEM webpage. Researchers can carry out genetic

mapping themselves with downloaded phenotype data

(including those with BLUP values), or they can search and

download the pre-existing mapping results directly from

the platform.

Displaying association mapping results

Results for both association mapping and linkage mapping

are obtained through selecting trait name, chromosome,

year and location. Multiple traits can be simultaneously se-

lected by holding down the CTRL key. MODEM provides

intuitive visualization tools, zooming capabilities for much

more detail and the ability to download publishable images

in several familiar formats (PDF, PNG, JPG and SVG). In

addition, the HIGHCHARTS technology (http://www.high

charts.com/) has been integrated to display the dynamic

interactive JavaScript charts.

Metabolomic data and related mapping results

We have identified significantly metabolite-associated loci

through metabolite-based genome-wide association studies

(GWAS, to identify particular variants that are associated

with the phenotype at the population level) and linkage

mapping (to identify loci that cosegregate with the trait

within families). Detailed metabolite information can be ac-

cessed and downloaded, including the list of 983 metabolite

features (Figure 2A), the significant loci identified by GWAS

across three environments (E1, E2 and E3), the linkage map-

ping summary based on the B73�BY804 (BB) and

Figure 1. Genome Browser embedded in MODEM. (A) Sequence and six possible reading frames along the reference. (B) Gene and transcripts struc-

ture and SNP index, take GEMZM2G179703 as an example. (C) Original reads and coverage distribution of the gene referred above. (D) More options

for each track in the drop-down menu, take BAM track as example.

Table 2. List and description of tracks in Genome Browser

Category name Track(s) included Description

Reference sequence Reference sequence Reference sequence and amino acids from six possible reading frames

Miscellaneous GFF3 Gene structure annotation and expression comparison

SNP SNPs from MaizeGo lab SNP information including ID, effect type, eQTL information,

allele frequency and alleles for each individual

Original reads B73-sorted BAM Sequences from original reads covered selected regions

Coverage B73-sorted Coverage Reads coverage for specific region in histogram

Quantitative Density/XYPlot BigWig Density/XYPlot Reads coverage for specific region in density plot or XYPlot
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ZONG3�YU87-1 (ZY) recombinant inbred line (RIL)

populations and the list of candidate genes (Figure 2B). By

either typing the compound name or selecting from the

menu list, the features of LS-MS/MS identification (with

pre-computed graphs) and the distribution in the AMP and

the two RILs can also be shown in a barplot (Figure 2C).

Additional tools assist further research

MODEM also provides some tools that may be needed in

other types of analyses. For example, it is useful to know

which variation within a particular region contributes to a

known or even unknown genetype(s). To achieve this goal,

an expedite tool called ‘T-test’ has been included. Users as-

sign a region of interest and select a group of lines and

hypothetical phenotypes. The tool divides the lines into

subgroups based on the different genotype of each SNP,

and a Student’s t-test is used to see if the selected pheno-

type shows significant differences between the subgroups.

A matrix is generated that displays the P-value of each

SNP on each phenotype, with significance indicating that

the variation likely contributes to the specific trait.

Figure 2. Original data and mapping results of metabolites. (A) Detailed spectrums features of L-Threonine (ID: n0006) based on LC-MS/MS analysis.

(B) Significant QTL identified by linkage and association mapping and candidate genes of metabolite n0006. aThe number in the middle represents

physical position of the peak marker, flanked by the left and right markers of the confidential interval of each QTL, respectively. bLOD value for corres-

ponding QTLs. cThe phenotypic variation explained by corresponding QTLs. dBB and ZY correspond to linkage mapping conducted with B73/By804

and Zong3/Yu87-1 RIL populations, respectively. (C) Distribution of metabolite content within different experiments (E1�E3: three biological repeats

in three different locations) of each line (here represented anonymous by Lþ#ID), take AMP as example.
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Additional tools, such as VENN plot capabilities, will be

described on the website as they become available.

Seed management

MODEM includes a seed information function, mainly to

help with internal administration of seed storage, delivery

and harvest. However, this information is also available to

external researchers. Information about the seed species/

line, source, and remaining quantity of each line available

for loan can be retrieved and downloaded. For the admin-

istrator, they have more right on the management oper-

ations, such as importing, modifying or deleting seed

information and the corresponding data. They also need to

response to any requirement when received the email on

the moment of submission finished. All the management

operations can through single or bulk way and each record

was kept and could be directly printed if linking to the

printer.

Download management

MODEM also includes a download management function

that allows multidimensional omics data to be downloaded

in the .csv, .txt and .xls formats. This aspect provides users

with more information than is available on the SEARCH

page.

Conclusion and future work

MODEM integrates high-throughput maize multidimen-

sional omics data, including information about genomic

and transcriptomic variation, the metabolome of cellular

traits and morphological phenotypes in a diverse sample

set and provides related mapping results. It is a user-

friendly, easily accessible, open interface with multiple

functions to help researchers store, search and analyse

data, thus promoting maize genetics research. The

MODEM platform could also be modified to be applied to

other systems or species.

This platform mainly focused on the functional gen-

omics of maize and will continue to be optimized and, and

in the future, more data and tools will be included and de-

veloped, including higher density variant map (for example

by adding genotypes from 600K and GBS strategies; Liu

et al., in revision) and diverse variation (such as structural

variation and presence and absence variation of TE), more

phenotypes and related mapping results (like disease-

related and drought-related traits) (24, 25), tool for primer

design by considering diverse variant and interfaces to R

(https://www.r-project.org/) to rapid construct haplotypes

and gene regulatory network. We also will integrate other

public data sets focused on the reference genome, such as

expression pattern along different tissues also measured by

RNA-seq (26), mapping results (especially GWAS) from

other groups, and epigenetic modifications including dif-

ferentially methylated regions (DMRs) (27) or even

MNase-hypersensitive regions (means open chromatin)

(28) to together promote maize genetic studies.
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