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Abstract

Duplication of information in databases is a major data quality challenge. The presence

of duplicates, implying either redundancy or inconsistency, can have a range of impacts

on the quality of analyses that use the data. To provide a sound basis for research on this

issue in databases of nucleotide sequences, we have developed new, large-scale vali-

dated collections of duplicates, which can be used to test the effectiveness of duplicate

detection methods. Previous collections were either designed primarily to test efficiency,

or contained only a limited number of duplicates of limited kinds. To date, duplicate de-

tection methods have been evaluated on separate, inconsistent benchmarks, leading to

results that cannot be compared and, due to limitations of the benchmarks, of question-

able generality. In this study, we present three nucleotide sequence database bench-

marks, based on information drawn from a range of resources, including information

derived from mapping to two data sections within the UniProt Knowledgebase

(UniProtKB), UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. Each benchmark has distinct

characteristics. We quantify these characteristics and argue for their complementary

value in evaluation. The benchmarks collectively contain a vast number of validated bio-

logical duplicates; the largest has nearly half a billion duplicate pairs (although this is

probably only a tiny fraction of the total that is present). They are also the first bench-

marks targeting the primary nucleotide databases. The records include the 21 most heav-

ily studied organisms in molecular biology research. Our quantitative analysis shows

that duplicates in the different benchmarks, and in different organisms, have different

characteristics. It is thus unreliable to evaluate duplicate detection methods against any

single benchmark. For example, the benchmark derived from UniProtKB/Swiss-Prot

mappings identifies more diverse types of duplicates, showing the importance of expert

curation, but is limited to coding sequences. Overall, these benchmarks form a resource

that we believe will be of great value for development and evaluation of the duplicate
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detection or record linkage methods that are required to help maintain these essential

resources.

Database URL: https://bitbucket.org/biodbqual/benchmarks

Introduction

Sequencing technologies are producing massive volumes of

data. GenBank, one of the primary nucleotide databases,

increased in size by over 40% in 2014 alone (1). However,

researchers have been concerned about the underlying data

quality in biological sequence databases since the 1990s

(2). A particular problem of concern is duplicates, when a

database contains multiple instances representing the same

entity. Duplicates introduce redundancies, such as repeti-

tive results in database search (3), and may even represent

inconsistencies, such as contradictory functional annota-

tions on multiple records that concern the same entity (4).

Recent studies have noted duplicates as one of five central

data quality problems (5), and it has been observed that de-

tection and removal of duplicates is a key early step in bio-

informatics database curation (6).

Existing work has addressed duplicate detection in bio-

logical sequence databases in different ways. This work

falls into two broad categories: efficiency-focused methods

that are based on assumptions such as duplicates have

identical or near-identical sequences, where the aim is to

detect similar sequences in a scalable manner; and quality-

focused methods that examine record fields other than the

sequence, where the aim is accurate duplicate detection.

However, the value of these existing approaches is unclear,

due to the lack of broad-based, validated benchmarks; as

some of this previous work illustrates, there is a tendency

for investigators of new methods to use custom-built col-

lections that emphasize the kind of characteristic their

method is designed to detect.

Thus, different methods have been evaluated using sep-

arate, inconsistent benchmarks (or test collections).

The efficiency-focused methods used large benchmarks.

However, the records in these benchmarks are not necessar-

ily duplicates, due to use of mechanical assumptions about

what a duplicate is. The quality-focused methods have used

collections of expert-labelled duplicates. However, as a result

of the manual effort involved, these collections are small and

contain only limited kinds of duplicates from limited data

sources. To date, no published benchmarks have included

duplicates that are explicitly marked as such in the primary

nucleotide databases, GenBank, the EMBL European

Nucleotide Archive, and the DNA DataBank of Japan. (We

refer to these collectively as INSDC: the International

Nucleotide Sequence Database Collaboration (7).)

In this study, we address these issues by accomplishing

the following:

• We introduce three benchmarks containing INSDC du-

plicates that were collected based on three different prin-

ciples: records merged directly in INSDC (111 ,826

pairs); INSDC records labelled as references during

UniProtKB/Swiss-Prot expert curation (2 465 891 pairs);

and INSDC records labelled as references in UniProtKB/

TrEMBL automatic curation (473 555 072 pairs);

• We quantitatively measure similarities between dupli-

cates, showing that our benchmarks have duplicates with

dramatically different characteristics, and are comple-

mentary to each other. Given these differences, we argue

that it is insufficient to evaluate against only one bench-

mark; and

• We demonstrate the value of expert curation, in its iden-

tification of a much more diverse set of duplicate types.

It may seem that, with so many duplicates in our bench-

marks, there is little need for new duplicate detection meth-

ods. However, the limitations of the mechanisms that led to

discovery of these duplicates, and the fact that the preva-

lences are so very different between different species and re-

sources, strongly suggest that these are a tiny fraction of the

total that is likely to be present. While a half billion dupli-

cates may seem like a vast number, they only involve

710 254 records, while the databases contain 189 264 014

records (http://www.ddbj.nig.ac.jp/breakdown_stats/dbgro

wth-e.html#ddbjvalue) altogether to date. Also, as sug-

gested by the effort expended in expert curation, there is a

great need for effective duplicate detection methods.

Background

In the context of general databases, the problems of quality

control and duplicate detection have a long history of re-

search. However, this work has only limited relevance for

bioinformatics databases, because, for example, it has

tended to focus on tasks such as ensuring that each real-

world entity is only represented once, and the attributes of

entities (such as ‘home address’) are externally verifiable.

In this section we review prior work on duplicate detection

in bioinformatics databases. We show that researchers

have approached duplicate detection with different as-

sumptions. We then review the more general duplicate
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detection literature, showing that the issue of a lack of

rigorous benchmarks is a key problem for duplicate detec-

tion in general domains and is what motivates our work.

Finally, we describe the data quality control in INSDC,

UniProtKB/Swiss-Prot and UniProtKB/TrEMBL, as the

sources for construction of the duplicate benchmark sets

that we introduce.

Kinds of duplicate

Different communities, and even different individuals, may

have inconsistent understandings of what a duplicate is.

Such differences may in turn lead to different strategies for

de-duplication.

A generic definition of a duplicate is that it occurs when

there are multiple instances that point to the same entity.

Yet this definition is inadequate; it requires a definition

that allows identification of which things are ‘the same en-

tity’. We have explored definitions of duplicates in other

work (8). We regard two records as duplicates if, in the

context of a particular task, the presence of one means that

the other is not required. Here we explain that duplication

has at least four characteristics, as follows.

First, duplication is not simply redundancy. The latter

can be defined using a simple threshold. For example, if

two instances have over 90% similarity, they can arguably

be defined as redundant. Duplicate detection often regards

such examples as ‘near duplicates’ (9) or ‘approximate du-

plicates’ (10). In bioinformatics, ‘redundancy’ is commonly

used to describe records with sequence similarity over a

certain threshold, such as 90% for CD-HIT (11).

Nevertheless, instances with high similarity are not neces-

sarily duplicates, and vice versa. For example, curators

working with human pathway databases have found re-

cords labelled with the same reaction name that are not du-

plicates, while legitimate duplicates may exist under a

variety of different names (12). Likewise, as we present

later, nucleotide sequence records with high sequence simi-

larity may not be duplicates, whereas records whose se-

quences are relatively different may be true duplicates.

Second, duplication is context dependent. From one per-

spective, two records might be considered duplicates while

from another they are distinct; one community may consider

them duplicates whereas another may not. For instance,

amongst gene annotation databases, more broader duplicate

types are considered in Wilming et al. (13) than in Williams

et al. (14), whereas, for genome characterization, ‘duplicate

records’ means creation of a new record in the database

using configurations of existing records (15). Different attri-

butes have been emphasized in the different databases.

Third, duplication has various types with distinct char-

acteristics. Multiple types of duplicates could be found

even from the same perspective (8). By categorizing dupli-

cates collected directly from INSDC, we have already

found diverse types: similar or identical sequences; similar

or identical fragments; duplicates with relatively different

sequences; working drafts; sequencing in progress records;

and predicted records. The prevalence of each type varies

considerably between organisms. Studies on duplicate de-

tection in general performance on a single dataset may be

biased if we do not consider the independence and underly-

ing stratifications (16). Thus, as well as creating bench-

marks from different perspectives, we collect duplicates

from multiple organisms from the same perspectives.

We do not regard these discrepancies as shortcomings

or errors. Rather, we stress the diversity of duplication.

The understanding of ‘duplicates’ may be different be-

tween database staff, computer scientists, biological cur-

ators and so on, and benchmarks need to reflect this

diversity. In this work, we assemble duplicates from three

different perspectives: expert curation (how data curators

understand duplicates); automatic curation (how auto-

matic software without expert review identifies dupli-

cates); and merged-based quality checking (how records

are merged in INSDC). These different perspectives reflect

the diversity: a pair considered as duplicates from one per-

spective may not be so in another. For instance, nucleotide

coding records might not be duplicates strictly at the DNA

level, but they might be considered to be duplicates if they

concern the same proteins. Use of different benchmarks

derived from different assumptions tests the generality of

duplicate detection methods: a method may have strong

performance in one benchmark but very poor in another;

only by being verified from different benchmarks can pos-

sibly guarantee the method is robust.

Currently, understanding of duplicates via expert cur-

ation is the best approach. Here ‘expert curation’ means

that curation either is purely manually performed, as in

ONRLDB (17); or not entirely manual but involving ex-

pert review, as in UniProtKB/Swiss-Prot (18). Experts use

experience and intuition to determine whether a pair is du-

plicate, and will often check additional resources to ensure

the correctness of a decision (16). Studies on clinical (19)

and biological databases (17) have demonstrated that ex-

pert curation can find a greater variety of duplicates, and

ultimately improves the data quality. Therefore, in this

work we derive one benchmark from UniProtKB/Swiss-

Prot expert curation.

Impact of duplicates

There are many types of duplicate, and each type has dif-

ferent impacts on use of the databases. Approximate or
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near duplicates introduce redundancies, whereas other

types may lead to inconsistencies.

Approximate or near duplicates in biological databases is

not a new problem. We found related literature in 1994 (3),

2006 (20) and as recently as 2015 (http://www.uniprot.org/

help/proteome_redundancy). A recent significant issue was

proteome redundancy in UniProtKB/TrEMBL (2015).

UniProt staff observed that many records were over-

represented, such as 5.97 million entries for just 1692 strains

of Mycobacterium tuberculosis. This redundancy impacts se-

quence similarity searches, proteomics identification and

motif searches. In total, 46.9 million entries were removed.

Additionally, recall that duplicates are not just redun-

dancies. Use of a simple similarity threshold will result in

many false positives (distinct records with high similarity)

and false negatives (duplicates with low similarity). Studies

show that both cases matter: in clinical databases, merging

of records from distinct patients by mistake may lead to

withholding of a treatment if one patient is allergic but the

other is not (21); failure to merge duplicate records for the

same patient could lead to a fatal drug administration error

(22). Likewise, in biological databases, merging of records

with distinct functional annotations might result in incor-

rect function identification; failing to merge duplicate re-

cords with different functional annotations might lead to

incorrect function prediction. One study retrieved corres-

ponding records from two biological databases, Gene

Expression Omnibus and ArrayExpress, but surprisingly

found the number of records to be significantly different:

the former has 72 whereas only 36 in latter. Some of the re-

cords were identical, but in some cases records were in one

but not the other (23). Indeed, duplication commonly

interacts with inconsistency (5).

Further, we cannot ignore the propagated impacts of

duplicates. The above duplication issue in UniProtKB/

TrEMBL not only impacts UniProtKB/TrEMBL itself, but

also significantly impacts databases or studies using

UniProtKB/TrEMBL data. For instance, release of Pfam, a

curated protein family database, was delayed for close to 2

years; the duplication issue in UniProtKB/TrEMBL was the

major reason (24). Even removal of duplicates in

UniProtKB/TrEMBL caused problems: ‘the removal of bac-

terial duplication in UniProtKB (and normal flux in pro-

tein) would have meant that nearly all (>90%) of Pfam

seed alignments would have needed manual verification

(and potential modification) . . . This imposes a significant

manual biocuration burden’ (24).

Finally, duplicate detection across multiple sources pro-

vides valuable record linkages (25–27). Combination of in-

formation from multiple sources could link literature

databases, containing papers mentioning the record; gene

databases; and protein databases.

Duplicate detection methods

Most duplicate detection methods use pairwise compari-

son, where each record is compared against others in pairs

using a similarity metric. The similarity score is typically

computed by comparing the specific fields in the two re-

cords. The two classes of methods that we previously intro-

duced, efficiency-focused and quality-focused, detect

duplicates in different ways; we now summarize those

approaches.

Efficiency-focused methods

Efficiency-focused methods have two common features.

One is that they typically rest on simple assumptions, such

as that duplicates are records with identical or near-

identical sequences. These are near or approximate dupli-

cates as above. The other is an application of heuristics to

filter out pairs to compare, in order to reduce the running

time. Thus, a common pattern of such methods is to assume

that duplicates have sequence similarity greater than a cer-

tain threshold. In one of the earliest methods, nrdb90, it is

assumed that duplicates have sequence similarities over

90%, with k-mer matching used to rapidly estimate similar-

ity (28). In CD-HIT, 90% similarity is assumed, with

short-substring matching as the heuristic (11); in starcode,

a more recent method, it is assumed that duplicates have se-

quences with a Levenshtein distance of no> 3, and pairs of

sequences with greater estimated distance are ignored (29).

Using these assumptions and associated heuristics, the

methods are designed to speed up the running time, which

is typically the main focus of evaluation (11,28). While

some such methods consider accuracy, efficiency is still the

major concern (29). The collections are often whole data-

bases, such as the NCBI non-redundant database (Listed at

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_

TYPE¼BlastSearch) for nucleotide databases and Protein

Data Bank (http://www.rcsb.org/pdb/home/home.do) for

protein databases. These collections are certainly large, but

are not validated, that is, records are not known to be du-

plicates via quality-control or curation processes. The

methods based on simple assumptions can reduce redun-

dancies, but recall that duplication is not limited to redun-

dancy: records with similar sequences may not be

duplicates and vice versa. For instance, records INSDC

AL592206.2 and INSDC AC069109.2 have only 68%

local identity (measured in Section 3.2 advised by NCBI

BLAST staff), but they have overlapped clones and were

merged as part of the finishing strategy of the human gen-

ome. Therefore, records measured solely based on a simi-

larity threshold are not validated and do not provide a

basis for measuring the accuracy of a duplicate detection

method, that is, the false positive or false negative rate.
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Quality-focused methods

In contrast to efficiency-focused methods, quality-focused

methods tend to have two main differences: use of a

greater number of fields; and evaluation on validated data-

sets. An early method of this kind compared the similarity

of both metadata (such as description, literature and biolo-

gical function annotations) and sequence, and then used

association rule mining (30) to discover detection rules.

More recent proposals focus on measuring metadata using

approximate string matching: Markov random models

(31), shortest-path edit distance (32) or longest approxi-

mately common prefix matching (33), the former two for

general bioinformatics databases and the latter specifically

for biomedical databases. The first method used a 1300-re-

cord dataset of protein records labelled by domain experts,

whereas the others used a 1900-record dataset of protein

records labelled in UniProt Proteomes, of protein sets from

fully sequenced genomes in UniProt.

The collections used in this work are validated, but

have significant limitations. First, both of the collections

have <2000 records, and only cover limited types of dupli-

cates (46). We classified duplicates specifically on one of

the benchmarks (merge-based) and it demonstrates that

different organisms have dramatically distinct kinds of du-

plicate: in Caenorhabditis elegans, the majority duplicate

type is identical sequences, whereas in Danio rerio the ma-

jority duplicate type is of similar fragments. From our case

study of GC content and melting temperature, those differ-

ent types introduce different impacts: duplicates under the

exact sequence category only have 0.02% mean difference

of GC content compared with normal pairs in Homo sapi-

ens, whereas another type of duplicates that have relatively

low sequence identity introduced a mean difference of

5.67%. A method could easily work well in a limited data-

set of this kind but not be applicable for broader datasets

with multiple types of duplicates. Second, they only cover

a limited number of organisms; the first collection had two

and the latter had five. Authors of prior studies, such as

Rudniy et al. (33), acknowledged that differences of dupli-

cates (different organisms have different kinds of duplicate;

different duplicate types have different characteristics) are

the main problem impacting the method performance.

In some respects, the use of small datasets to assess

quality-based methods is understandable. It is difficult to

find explicitly labelled duplicates. Typically, for nucleotide

databases, sources of labelled duplicates are limited. In

addition, these methods focus on the quality and so are un-

likely to use strategies for pruning the search space, mean-

ing that they are compute intensive. These methods also

generally consider many more fields and many more pairs

than the efficiency-focused methods. A dataset with 5000

records yields over 12 million pairs; even a small data set

requires a large processing time under these conditions.

Hence, there is no large-scale validated benchmark, and

no verified collections of duplicate nucleotide records in

INSDC. However, INSDC contains primary nucleotide

data sources that are essential for protein databases. For

instance, 95% of records in UniProt are from INSDC

(http://www.uniprot.org/help/sequence_origin). A further

underlying problem is that fundamental understanding of

duplication is missing. The scale, characteristics and im-

pacts of duplicates in biological databases remain unclear.

Benchmarks in duplicate detection

Lack of large-scale validated benchmarks is a problem in

duplicate detection in general domains. Researchers sur-

veying duplicate detection methods have stated that the

most challenging obstacle is lack of ‘standardized, large-

scale benchmarking data sets’ (34). It is not easy to identify

whether new methods surpass existing ones without reli-

able benchmarks. Moreover, some methods are based on

machine learning, which require reliable training data. In

general domains, many supervised or semi-supervised du-

plicate detection methods exist, such as decision trees (35)

and active learning (36).

The severity of this issue is illustrated by the only super-

vised machine-learning method for bioinformatics of

which we are aware, which was noted above (30). The

method was developed on a collection of 1300 records. In

prior work, we reproduced the method and evaluated

against a larger dataset with different types of duplicates.

The results were extremely poor compared with the ori-

ginal outcomes, which we attribute to the insufficiency of

the data used in the original work (37).

We aim to create large-scale validated benchmarks of

duplicates. By assembling understanding of duplicates

from different perspectives, it becomes possible to test dif-

ferent methods in the same platform, as well as test the ro-

bustness of methods in different contexts.

Quality control in bioinformatics databases

To construct a collection of explicitly labelled duplicates,

an essential step is to understand the quality control pro-

cess in bioinformatics databases, including how duplicates

are found and merged. Here we describe how INSDC and

UniProt perform quality control in general and indicate

how these mechanisms can help in construction of large

validated collections of duplicates.
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Quality control in INSDC

Merging of records addresses duplication in INSDC. The

merge may occur due to various reasons, including cases

where different submitters adding records for the same bio-

logical entities, or changes of database policies. We have

discussed various reasons for merging elsewhere (8).

Different merge reasons reflect the fact that duplication

may arise from diverse causes. Figure 1 shows an example.

Record INSDC AC034192.5 is merged with Record

INSDC AC087090.1 in Apr 2002. (We used recommended

accession.version format to describe record. Since the

paper covers three data sources, we also added data source

name.) In contrast, the different versions of Record INSDC

AC034192 (version 2 in April 2000 and version 3 in May

2000) are just normal updates on the same record.

Therefore we only collect the former.

Staff confirmed that this is the only resource for merged

records in INSDC. Currently there is no completely auto-

matic way to collect such duplicates from the revision his-

tory. Elsewhere we have explained the procedure that we

developed to collect these duplicates, why we believe that

many duplicates are still present in INSDC, and why the

collection is representative (8).

Quality control in UniProt

UniProt Knowledgebase (UniProtKB) is a protein database

that is a main focus of the UniProt Consortium. It has two

sections: UniProtKB/Swiss-Prot and UniProtKB/TrEMBL.

UniProtKB/Swiss-Prot is expert curated and reviewed, with

software support, whereas UniProtKB/TrEMBL is curated

automatically without review. Here, we list the steps of

curation in UniProtKB/Swiss-Prot (http://www.uniprot.

org/help/), as previously explained elsewhere (38):

1. Sequence curation: identify and merge records from

same genes and same organisms; identify and document

sequence discrepancies such as natural variations and

frameshifts; explore homologs to check existing anno-

tations and propagate other information;

2. Sequence analysis: predict sequence features using se-

quence analysis programs, then experts check the

results;

3. Literature curation: identify relevant papers, read the

full text and extract the related context, assign gene

ontology terms accordingly;

4. Family curation: analyse putative homology relation-

ships; perform steps 1–3 for identified instances;

5. Evidence attribution: link all expert curated data to the

original source;

6. Quality assurance and integration: final check of fin-

ished entries and integration into UniProtKB/Swiss-

Prot.

UniProtKB/Swiss-Prot curation is sophisticated and sen-

sitive, and involves substantial expert effort, so the data

quality can be assumed to be high. UniProtKB/TrEMBL

complements UniProtKB/Swiss-Prot using purely auto-

matic curation. The automatic curation in UniProtKB/

TrEMBL mainly comes from two sources: (1) the Unified

Rule (UniRule) system, which derives curator-tested rules

from UniProtKB/Swiss-Prot manually annotated entries.

For instance, the derived rules have been used to determine

family membership of uncharacterized protein sequences

(39); and (2) Statistical Automatic Annotation System

(SAAS), which generates automatic rules for functional an-

notations. For instance, it applies C4.5 decision tree algo-

rithm to UniProtKB/Swiss-Prot entries to generate

automatic functional annotation rules (38). The whole pro-

cess is automatic and does not have expert review.

Therefore, it avoids expert curation with the trade-off of

lower quality assurance. Overall both collections represent

the state of the art in biological data curation.

Recall that nucleotide records in INSDC are primary

sources for other databases. From a biological perspective,

protein coding nucleotide sequences are translated into

protein sequences (40). Both UniProtKB/Swiss-Prot and

UniProtKB/TrEMBL generate cross-references from the

coding sequence records in INSDC to their translated pro-

tein records. This provides a mapping between INSDC and

curated protein databases. We can use the mapping be-

tween INSDC and UniProtKB/Swiss-Prot and the mapping

between INSDC and UniProtKB/TrEMBL, respectively, to

construct two collections of nucleotide duplicate records.

We detail the methods and underlying ideas below.

Figure 1. A screenshot of the revision history for record INSDC AC034192.5 (http://www.ncbi.nlm.gov/nuccore/AC034192.5?report¼girevhist). Note

the differences between normal updates (changes on a record itself) and merged records (duplicates). For instance, the record was updated from ver-

sion 3 to 4, which is a normal update. A different record INSDC AC087090.1 is merged in during Apr 2002. This is a case of duplication confirmed by

ENA staff. We only collected duplicates, not normal updates.
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Methods

We now explain how we construct our benchmarks, which

we call the merge-based, expert curation and automatic

curation benchmarks; we then describe how we measure

the duplicate pairs for all three benchmarks.

Benchmark construction

Our first benchmark is the merge-based collection, based

on direct reports of merged records provided by record

submitters, curators, and users to any of the INSDC data-

bases. Creation of this benchmark involves searching the

revision history of records in INSDC, tracking merged re-

cord IDs, and downloading accordingly. We have

described the process in detail elsewhere, in work where

we analysed the scale, classification and impacts of dupli-

cates specifically in INSDC (8).

The other two benchmarks are the expert curation and

automatic curation benchmarks. Construction of these

benchmarks of duplicate nucleotide records is based on the

mapping between INSDC and protein databases

(UniProtKB/Swiss-Prot and UniProtKB/TrEMBL), and

consists of two main steps. The first is to perform the map-

ping: downloading record IDs and using the existing map-

ping service; the second is to interpret the mapping results

and find the cases where duplicates occur.

The first step has the following sub-steps. Our expert

and automatic curation benchmarks are constructed using

the same steps, except that one is based on mapping be-

tween INSDC and UniProtKB/Swiss-Prot and the other is

based on mapping between INSDC and UniProtKB/

TrEMBL.

1. Retrieve a list of coding records IDs for an organism in

INSDC. We call these IIDs (I for INSDC). Databases

under INSDC exchange data daily so the data is the

same (though the representations may vary). Thus, re-

cords can be retrieved from any one of the databases in

INSDC. This list is used in the interpretation step;

2. Download a list of record IDs for an organism in either

UniProtKB/Swiss-Prot or UniProtKB/TrEMBL. We call

these UIDs (U for UniProt). This list is used in

mapping;

3. Use the mapping service provided in UniProt (41) to

generate mappings: Provide the UIDs from Step 2;

Choose ‘UniProtKB AC/ID to EMBL/GenBank/DDBJ’

option; and Click ‘Generate Mapping’. This will gener-

ate a list of mappings. Each mapping contains the re-

cord ID in UniProt and the cross-referenced ID(s) in

INSDC. We will use the mappings and IIDs in the inter-

pretation step.

We interpret the mapping based on biological know-

ledge and database policies, as confirmed by UniProt staff.

Recall that protein coding nucleotide sequences are trans-

lated into protein sequences. In principle, one coding se-

quence record in INSDC can be mapped into one protein

record in UniProt; it can also be mapped into more than

one protein record in UniProt. More specifically, if one

protein record in UniProt cross-references multiple coding

sequence records in INSDC, those coding sequence records

are duplicates. Some of those duplicates may have distinct

sequences due to the presence of introns and other regula-

tory regions in the genomic sequences. We classify the

mappings into six cases, as follows. Note that the follow-

ing cases related with merging occur in the same species.

• Case 1: A protein record maps to one nucleotide coding

sequence record. No duplication is detected.

• Case 2: A protein record maps to many nucleotide cod-

ing sequence records. This is an instance of duplication.

Here UniProtKB/Swiss-Prot and UniProtKB/TrEMBL

represent different duplicate types. In the former splice

forms, genetic variations and other sequences are

merged, whereas in the latter merges are mainly of re-

cords with close to identical sequences (either from the

same or different submitters). That is also why we con-

struct two different benchmarks accordingly.

• Case 3: Many protein records have the same mapped

coding sequence records. There may be duplication, but

we assume that the data is valid. For example, the cross-

referenced coding sequence could be a complete genome

that links to all corresponding coding sequences.

• Case 4: Protein records do not map to nucleotide coding

sequence records. No duplication is detected.

• Case 5: The nucleotide coding sequences exist in IIDs

but are not cross-referenced. Not all nucleotide records

with a coding region will be integrated, and some might

not be selected in the cross-reference process.

• Case 6: The nucleotide coding sequence records are

cross-referenced, but are not in IIDs. A possible explan-

ation is that the cross-referenced nucleotide sequence

was predicted to be a coding sequence by curators or

automatic software, but was not annotated as a coding

sequence by the original submitters in INSDC. In other

words, UniProt corrects the original missing annotations

in INSDC. Such cases can be identified with the

NOT_ANNOTATED_CDS qualifier on the DR line

when searching in EMBL.

In this study, we focus on Case 2, given that this is

where duplicates are identified. We collected all the related

nucleotide records and constructed the benchmarks

accordingly.
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Quantitative measures

After building the benchmarks as above, we quantitatively

measured the similarities in nucleotide duplicate pairs in all

three benchmarks to understand their characteristics.

Typically, for each pair, we measured the similarity of de-

scription, literature and submitter, the local sequence iden-

tity and the alignment proportion. The methods are

described briefly here; more detail (‘Description similarity’,

‘Submitter similarity’ and ‘Local sequence identity and align-

ment proportion’ sections is available in our other work (8).

Description similarity

A description is provided in each nucleotide record’s

DEFINITION field. This is typically a one-line description

of the record, manually entered by record submitters. We

have applied the following approximate string matching

process to measure the description similarity of two re-

cords, using the Python NLTK package (42):

1. Tokenising: split the whole description word by word;

2. Lowering case: for each token, change all its characters

into small cases;

3. Removing stop words: removes the words that are com-

monly used but not content bearing, such as ‘so’, ‘too’,

‘very’ and certain special characters;

4. Lemmatising: convert to a word to its base form. For

example, ‘encoding’ will be converted to ‘encode’, or

‘cds’ (coding sequences) will be converted into ‘cd’;

5. Set representation: for each description, we represent it

as a set of tokens after the above processing. We re-

move any repeated tokens;

We applied set comparison to measure the similarity

using the Jaccard similarity defined by Equation (1). Given

two sets, it reports the number of shared elements as a frac-

tion of the total number of elements. This similarity metric

can successfully find descriptions containing the same

tokens but in different orders.

intersectionðset1; set2Þ=unionðset1; set2Þ (1)

Submitter similarity

The REFERENCE field of a record in the primary nucleo-

tide databases contains two kinds of reference. The first is

the literature citation that first introduced the record and

the second is the submitter details. Here, we measure the

submitter details to find out whether two records are sub-

mitted by the same group.

We label a pair as ‘Same’ if it shares one of submission

authors, and otherwise as ‘Different’. If a pair does not

have such field, we label it as ‘N/A’. The author name is

formatted as ‘last name, first initial’.

Local sequence identity and alignment proportion

We used NCBI BLAST (version 2.2.30) (43) to measure

local sequence identity. We used the bl2seq application

that aligns sequences pairwise and reports the identity of

every pair. NCBI BLAST staff advised on the recom-

mended parameters for running BLAST pairwise alignment

in general. We disabled the dusting parameter (which auto-

matically filters low-complexity regions) and selected the

smallest word size (4), aiming to achieve the highest accur-

acy as possible. Thus, we can reasonably conclude that a

pair has low sequence identity if the output reports ‘no

hits’ or the expected value is over the threshold.

We also used another metric, which we called the align-

ment proportion, to estimate the likelihood of the global

identity between a pair. This has two advantages: in some

cases where a pair has very high local identity, their lengths

are significantly different. Use of alignment proportion can

identify these cases; and running of global alignment is

computationally intensive. Alignment proportion can dir-

ectly estimate an upper bound on the possible global iden-

tity. It is computed using Formula (2) where L is the local

alignment proportion, I is the locally aligned identical

bases, D and R are sequences of the pair, and len(S) is the

length of a sequence S.

L ¼ lenðIÞ=maxðLenðDÞ; LenðRÞÞ (2)

We constructed three benchmarks containing duplicates

covering records for 21 organisms, using the above map-

ping process. We also quantitatively measured their char-

acteristics in selected organisms. These 21 organisms are

commonly used in molecular research projects and the

NCBI Taxonomy provides direct links (http://www.ncbi.

nlm.nih.gov/Taxonomy/taxonomyhome.html/).

Results and discussion

We present our results in two stages. The first introduces

the statistics of the benchmarks constructed using the

methods described above. The second provides the out-

come of quantitative measurement of the duplicate pairs in

different benchmarks.

We applied our methods to records for 21 organisms

popularly studied organisms, listed in the NCBI Taxonomy

website (http://www.ncbi.nlm.nih.gov/Taxonomy/taxono

myhome.html/). Tables 1, 2 and 3 show the summary stat-

istics of the duplicates collected in the three benchmarks.

Table 1 is reproduced from another of our papers (8). All

the benchmarks are significantly larger than previous col-

lections of verified duplicates. The submitter-based bench-

mark has over 100 000 duplicate pairs. Even more

duplicate pairs are in the other two benchmarks: the expert
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curation benchmark has around 2.46 million pairs and the

automatic curation benchmark has around 0.47 billion

pairs; hence, these two are also appropriate for evaluation

of efficiency-focused methods.

We measured duplicates for Bos taurus, Rattus norvegi-

cus, Saccharomyces cerevisiae, Xenopus laevis and Zea

mays quantitatively as stated above. Figures 2–9 show rep-

resentative results, for Xenopus laevis and Zea mays.

These figures demonstrate that duplicates in different

benchmarks have dramatically different characteristics,

and that duplicates from different organisms in the same

benchmarks also have variable characteristics. We elabor-

ate further as follows.

Construction of benchmarks from three different per-

spectives has yielded different numbers of duplicates with

distinct characteristics in each benchmark. These bench-

marks have their own advantages and limitations. We ana-

lyse and present them here.

• The merge-based benchmark is broad. Essentially all

types of records in INSDC are represented, including

clones, introns, and binding regions; all types in addition

to the coding sequences that are cross-referenced in pro-

tein databases. Elsewhere we have detailed different rea-

sons for merging INSDC records, for instance many

records from Bos Taurus and Rattus Norvegicus in the

merge-based benchmark are owned by RefSeq (search-

able via INSDC), and RefSeq merges records using a mix

of manual and automatic curation (8). However, only

limited duplicates have been identified using this method.

Our results clearly show that it contains far fewer dupli-

cates than the other two, even though the original total

number of records is much larger.

• The expert curation benchmark is shown to contain a

much more diverse set of duplicate types. For instance,

Figure 4 clearly illustrates that expert curation bench-

mark identifies much more diverse kinds of duplicate in

Xenopus Laevis than the other two benchmarks. It not

only identifies 25.0% of duplicates with close to the

same sequences, but it finds presence of duplicates with

very different lengths and even duplicates with relatively

low sequence identity. In contrast, the other two mainly

identify duplicates having almost the same sequence—

83.9% for automatic curation benchmark and 96.8%

for the merge-based benchmark. However, the volume

of duplicates is smaller than for automatic curation. The

use of the protein database means that only coding se-

quences will be found.

• The automatic curation benchmark holds the highest

number of duplicates amongst the three. However, even

though it represents the state-of-the-art in automatic

Table 1. Submitter-based benchmark

Organism Total records Available merged groups Duplicate pairs

Arabidopsis thaliana 337 640 47 50

Bos taurus 245 188 12 822 20 945

Caenorhabditis elegans 74 404 1881 1904

Chlamydomonas reinhardtii 24 891 10 17

Danio rerio 153 360 7895 9227

Dictyostelium discoideum 7943 25 26

Drosophila melanogaster 211 143 431 3039

Escherichia coli 512 541 201 231

Hepatitis C virus 130 456 32 48

Homo sapiens 12 506 281 16 545 30 336

Mus musculus 1 730 943 13 222 23 733

Mycoplasma pneumoniae 1009 2 3

Oryza sativa 108 395 6 6

Plasmodium falciparum 43 375 18 26

Pneumocystis carinii 528 1 1

Rattus norvegicus 318 577 12 411 19 295

Saccharomyces cerevisiae 68 236 165 191

Schizosaccharomyces pombe 4086 39 545

Takifugu rubripes 51 654 64 72

Xenopus laevis 35 544 1620 1660

Zea mays 613 768 454 471

Total records: numbers of records directly belong to the organism in total; Available merged groups: number of groups that are tracked in record revision his-

tories. One group may contain multiple records. Duplicate pairs: total number of duplicate pairs. This table also appears in the paper (8).
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curation, it mainly uses rule-based curation and does not

have expert review, so is still not as diverse or exhaustive

as expert curation. For example, in Figure 2, over 70%

of the identified duplicates have high description

similarity, whereas the expert curation benchmark con-

tains duplicates with description similarity in different

distributions. As with the expert curation benchmark, it

only contains coding sequences by construction.

Table 2. Expert curation benchmark

Organism Cross-referenced coding records Cross-referenced coding records that are duplicates Duplicate pairs

Arabidopsis thaliana 34 709 34 683 162 983

Bos taurus 9605 5646 28 443

Caenorhabditis elegans 3225 2597 4493

Chlamydomonas reinhardtii 369 255 421

Danio rerio 5244 3858 4942

Dictyostelium discoideum 1242 1188 1757

Drosophila melanogaster 13 385 13 375 573 858

Escherichia coli 611 420 1042

Homo sapiens 132 500 131 967 1 392 490

Mus musculus 74 132 72 840 252 213

Oryza sativa 4 0 0

Plasmodium falciparum 97 68 464

Pneumocystis carinii 33 19 11

Rattus norvegicus 15 595 11 686 24 000

Saccharomyces cerevisiae 84 67 297

Schizosaccharomyces pombe 3 3 2

Takifugu rubripes 153 64 59

Xenopus laevis 4701 2259 2279

Zea mays 1218 823 16 137

Cross-referenced coding records: Number of records in INSDC that are cross-referenced in total; Cross-referenced coding records that are duplicates: Number

of records that are duplicates based on interpretation of the mapping (Case 2); Duplicate pairs: total number of duplicate pairs.

Table 3. Automatic curation benchmark

Organism Cross-referenced coding records Cross-referenced coding records that are duplicates Duplicate pairs

Arabidopsis thaliana 42 697 31 580 229 725

Bos taurus 35 427 25 050 440 612

Caenorhabditis elegans 2203 1541 20 513

Chlamydomonas reinhardtii 1728 825 1342

Danio rerio 43 703 29 236 74 170

Dictyostelium discoideum 935 289 2475

Drosophila melanogaster 49 599 32 305 527 246

Escherichia coli 56 459 49 171 3 671 319

Hepatitis C virus 105 613 171 639

Homo sapiens 141 373 79 711 467 101 272

Mus musculus 58 292 32 102 95 728

Mycoplasma pneumoniae 65 20 13

Oryza sativa 3195 1883 32 727

Plasmodium falciparum 32 561 15 114 997 038

Pneumocystis carinii 314 38 23

Rattus norvegicus 39 199 30 936 115 910

Saccharomyces cerevisiae 4763 3784 107 928

Schizosaccharomyces pombe 80 6 3

Takifugu rubripes 1341 288 1650

Xenopus laevis 15 320 3615 26 443

Zea mays 55 097 25 139 108 296

The headings are the same as previously.

Page 10 of 17 Database, Vol. 2017, Article ID baw164

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

164/2870676 by guest on 30 April 2024



Figure 2 Description similarities of duplicates from Xenopus laevis in three benchmarks: Auto for auto curation based; Expert for expert curation; and

Merge for merge-based collection. X-axis defines the similarity range. For instance, [0.5, 0.6) means greater than or equal to 0.5 and <0.6. Y-axis de-

fines the proportion for each similarity range.

Figure 3. Submitter similarities of duplicates from Xenopus laevis in three benchmarks. Different: the submitters of records are completely Different;

Same: the pair at least shares with at least one submitter; Not specified: no submitter details are specified in REFERENCE field in records by standard.

The rest is the same as above.

Figure 4. Alignment proportion of duplicates from Xenopus laevis. LOW refers to similarity that is greater than the threshold or NO HITS based on

BLAST output. Recall that we chose the parameters to produce reliable BLAST output.
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The analysis shows that these three benchmarks com-

plement each other. Merging records in INSDC provides

preliminary quality checking across all kinds of records in

INSDC. Curation (automatic and expert) provides more

reliable and detailed checking specifically for coding se-

quences. Expert curation contains more kinds of duplicates

and automatic curation has a larger volume of identified

duplicates.

Recall that previous studies used a limited number of re-

cords with a limited number of organisms and kinds of du-

plication. Given the richness evidenced in our benchmarks,

and the distinctions between them, it is unreliable to evalu-

ate against only one benchmark, or multiple benchmarks

constructed from the same perspective. As shown above,

the expert curation benchmark contains considerable num-

bers of duplicates that have the distinct alignment propor-

tions or relatively low similarity sequences. The efficiency-

focused duplicate detection methods discussed earlier thus

would fail to find many of the duplicates in our expert cur-

ation benchmark.

Also, duplicates in one benchmark yet in different or-

ganisms have distinct characteristics. For instance, as

shown in figures for Xenopus laevis and Zea mays, dupli-

cates in Zea mays generally have higher description simi-

larity (comparing Figure 2 with Figure 6), submitted by

more same submitters (comparing Figure 3 with Figure 7),

more similar sequence lengths (comparing Figure 4 with

Figure 8) and higher sequence identity (comparing Figure 5

with Figure 9). However, duplicates in Xenopus laevis

have different characteristics. For instance, the expert cur-

ation benchmark contains 40.0 and 57.7% of duplicates

submitted by different and same submitters respectively.

Yet the same benchmark shows many more duplicates in

Xenopus laevis from different submitters (47.4%), which

is double the amount for the same submitters (26.4%).

Due to these differences, methods that demonstrate good

Figure 5 Local sequence identity of duplicates from Xenopus laevis in three benchmarks. The rest is the same as above.

Figure 6 Description similarity of duplicates from Zea mays in three benchmarks.
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performance on one organism may not display comparable

performance on others.

Additionally, the two curation-based benchmarks indi-

cate that there are potentially many undiscovered dupli-

cates in the primary nucleotide databases. Using

Arabidopsis thaliana as an example, only 47 groups of du-

plicates were merged out of 337 640 records in total. The

impression from this would be that the overall prevalence

of duplicates in INSDC is quite low. However, UniProtKB/

Swiss-Prot and UniProtKB/TrEMBL only cross-referenced

34 709 and 42 697 Arabidopsis thaliana records, respect-

ively, yet tracing their mappings results in finding that

34 683 (99.93%) records in Table 2 and 31 580 (73.96%)

records in Table 3 have at least one corresponding dupli-

cate record, even though they only examine coding

sequences. It may be possible to construct another bench-

mark through the mapping between INSDC and RefSeq,

using the approach described in this paper.

Another observation is that UniProtKB/Swiss-Prot, with

expert curation, contains a more diverse set of duplicates

than the other benchmarks. From the results, it can be

observed that expert curation can find occurrences of du-

plicates that have low description similarity, are submitted

by completely different groups, have varied lengths, or are

of comparatively low local sequence identity. This illus-

trates that it is not sufficient to focus on duplicates that

have highly similar sequences of highly similar lengths.

A case study has already found that expert curation recti-

fies errors in original studies (39). Our study on duplicates

illustrates this from another angle.

Figure 7 Submitter similarity of duplicates from Zea mays in three benchmarks.

Figure 8 Alignment proportion of duplicates from Zea mays in three benchmarks.
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These results also highlight the complexity of duplicates

that are present in bioinformatics databases. The overlap

among our benchmarks is remarkably minimal. The sub-

mitter benchmark includes records that do not correspond

to coding sequences, so they are not considered by the pro-

tein databases. UniProtKB/Swiss-Prot and UniProtKB/

TrEMBL use different curation processes as mentioned

above. It shows that from the perspective of one resource,

a pair may be considered as a duplicate, but on the basis of

another resource may not be.

More fundamentally, records that are considered as du-

plicates for one task may not be duplicates for another.

Thus, it is not possible to use a simple and universal defin-

ition to conceptualize duplicates. Given that the results

show that kinds and prevalence of duplicates vary amongst

organisms and benchmarks, it suggests that studies are

needed to answer fundamental questions: what kinds of du-

plicates are there? What are their corresponding impacts for

biological studies that draw from the sequence databases?

Can existing duplicate detection methods successfully find

the type of duplicates that has impacts for specific kinds of

biomedical investigations? These questions are currently un-

answered. The benchmarks here enable such discovery (46).

We explored the prevalence, categories and impacts of du-

plicates in the submitter-based benchmark to understand

the duplication directly in INSDC.

To summarise, we review the benefits of having created

these benchmarks.

First, the records in the benchmarks can be uses for two

main purposes: (1) as duplicates to merge; (2) as records to

label or cross-reference to support record linkage. We now

examine the two cases:

Case 1: record INSDC AL592206.2 (https://www.ncbi.

nlm.nih.gov/nuccore/AL592206.2) and INSDC AC069109.

2 (https://www.ncbi.nlm.nih.gov/nuccore/AC069109.2?re

port¼genbank). This is an example that we noted earlier

from the submitter collection. Record gi:8616100 was sub-

mitted by the Whitehead Institute/MIT Center for Genome

Research. It concerns the RP11-301H18 clone in Homo sa-

piens chromosome 9. It has 18 unordered pieces as the sub-

mitters documented. The later record gi:15029538 was

submitted by the Sanger Centre. That record also concerns

the RP11-301H18 clone but it only has three unordered

pieces. Therefore, this case shows an example of duplication

where different submitters submit records about the same

entities. Note that they are inconsistent, in that both the an-

notation data and sequence are quite different. Therefore, a

merge was done (by either database staff or submitter).

Record INSDC AC069109.2 was replaced by INSDC

AL592206.2, as INSDC AL592206.2 has fewer unordered

pieces, that is, is closer to being complete. Then record

AC069109.2 became obsolete. Only record INSDC

AL592206.2 can be updated. This record now has complete

sequence (no unordered pieces) around 2012, after 18 up-

dates from the version since the merge.

Case 2: record INSDC AC055725.22 (https://www.

ncbi.nlm.nih.gov/nuccore/AC055725.22), INSDC

BC022542.1 (https://www.ncbi.nlm.nih.gov/nuccore/

BC022542.1) and INSDC AK000529.1 (https://www.ncbi.

nlm.nih.gov/nuccore/AK000529.1). These records are

from the expert curation collection. At the protein level,

they correspond to the same protein record Q8TBF5,

about a Phosphatidylinositol-glycan biosynthesis class X

protein. Those three records have been explicitly cross-

referenced into the same protein entry during expert cur-

ation. The translations of record INSDC BC022542.1 and

INSDC AK000529.1 are almost the same. Further, the

expert-reviewed protein record UniProtKB/Swiss-Prot

Figure 9 Local sequence identity of duplicates from Zea mays in three benchmarks.
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Q8TBF5 is documented as follows (http://www.uniprot.

org/uniprot/Q8TBF5):

• AC055725 [INSDC AC055725.22] Genomic DNA. No

translation available;

• BC022542 [INSDC BC022542.1] mRNA. Translation:

AAH22542.1. Sequence problems;

• AK000529 [INSDC AK000529.1] mRNA. Translation:

BAA91233.1. Sequence problems.

Those annotations were made via curation to mark

problematic sequences submitted to INSDC. The ‘no trans-

lation available’ annotation indicates that the original sub-

mitted INSDC records did not specify the coding sequence

(CDS) regions, but the UniProt curators have identified the

CDS. ‘Sequence problems’ refers to ‘discrepancies due to

an erroneous gene model prediction, erroneous ORF as-

signment, miscellaneous discrepancy, etc.’ (http://www.uni

prot.org/help/cross_references_section) resolved by the cur-

ator. Therefore, without expert curation, it is indeed diffi-

cult to access the correct information and is difficult to

know they refer to the same protein. As mentioned earlier,

an important impact of duplicate detection is record link-

age. Cross-referencing across multiple databases is cer-

tainly useful, regardless of whether the linked records are

regarded as duplicates.

Second, considering the three benchmarks as a whole,

they cover diverse duplicate types. The detailed types are

summarized elsewhere (8), but broadly three types are evi-

dent: (1) similar records, if not identical; (2) fragments; (3)

somewhat different records belonging to the same entities.

Existing studies have already shown all of them have spe-

cific impacts on biomedical tasks. Type (1) may affect

database searches (44); type (2) may affect meta-analyses

(45); while type (3) may confuse novice database users.

Third, those benchmarks are constructed based on differ-

ent principles. The large volume of the dataset, and diversity

in type of duplicate, can provide a basis for evaluation of

both efficiency and accuracy. Benchmarks are always a

problem for duplicate detection methods: a method can de-

tect duplicates in one dataset successfully, but may get poor

performance on another. This is because the methods have

different definitions of duplicate, or those datasets have dif-

ferent types or distributions. This is why the duplicate detec-

tion survey identified the creation of benchmarks as a

pressing task (34). Multiple benchmarks enable testing of

the robustness and generalization of the proposed methods.

We used six organisms from the expert curated benchmark

as the dataset and developed a supervised learning duplicate

detection method (46). We tested the generality of the

trained model as an example: whether a model trained from

duplicate records in one organism maintains the perform-

ance in another organism. This is effectively showing how

users can use the benchmarks as test cases, perhaps organ-

ized by organisms or by type.

Conclusion

In this study, we established three large-scale validated

benchmarks of duplicates in bioinformatics databases, spe-

cifically focusing on identifying duplicates from primary nu-

cleotide databases (INSDC). The benchmarks are available

for use at https://bitbucket.org/biodbqual/benchmarks.

These benchmark data sets can be used to support develop-

ment and evaluation of duplicate detection methods. The

three benchmarks contain the largest number of duplicates

validated by submitters, database staff, expert curation or

automatic curation presented to date, with nearly half a bil-

lion record pairs in the largest of our collections.

We explained how we constructed the benchmarks and

their underlying principles. We also measured the charac-

teristics of duplicates collected in these benchmarks quanti-

tatively, and found substantial variation among them. This

demonstrates that it is unreliable to evaluate methods with

only one benchmark. We find that expert curation in

UniProtKB/Swiss-Prot can identify much more diverse

kinds of duplicates and emphasize that we appreciate the

effort of expert curation due to its finer-grained assessment

of duplication.

In future work, we plan to explore the possibility of

mapping other curated databases to INSDC to construct

more duplicate collections. We will assess these duplicates

in more depth to establish a detailed taxonomy of dupli-

cates and collaborate with biologists to measure the pos-

sible impacts of different types of duplicates in practical

biomedical applications. However, this work already pro-

vides new insights into the characteristics of duplicates in

INSDC, and has created a resource that can be used for the

development of duplicate detection methods. With, in all

likelihood, vast numbers of undiscovered duplicates, such

methods will be essential to maintenance of these critical

databases.
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