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Abstract

Protein association networks can be inferred from a range of resources including

experimental data, literature mining and computational predictions. These types of evi-

dence are emerging for non-coding RNAs (ncRNAs) as well. However, integration of ncRNAs

into protein association networks is challenging due to data heterogeneity. Here, we present

a database of ncRNA–RNA and ncRNA–protein interactions and its integration with the

STRING database of protein–protein interactions. These ncRNA associations cover four or-

ganisms and have been established from curated examples, experimental data, interaction

predictions and automatic literature mining. RAIN uses an integrative scoring scheme to as-

sign a confidence score to each interaction. We demonstrate that RAIN outperforms the

underlying microRNA-target predictions in inferring ncRNA interactions. RAIN can be oper-

ated through an easily accessible web interface and all interaction data can be downloaded.
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Introduction

The study of protein-coding genes and the accumulation of

data from expression studies and other complementary

methods have helped researchers to generate protein asso-

ciation networks compiled in resources such as the

STRING database (1). Using a probabilistic scoring

scheme, STRING assigns a score to each physical inter-

action and functional association (henceforth referred to as

interactions). The recent version 10 holds interactions for

>2000 organisms.

However, interaction networks containing only proteins

and their interactions remain incomplete until other im-

portant molecular interactions have been included. For this

reason, we have focused on complementing protein inter-

action networks with non-coding RNAs (ncRNAs)—a

large class of genes comprising �16 000 long and �10 000

short ncRNAs in human [GENCODE version 24 (2)].

Integration of these interactions allows for an analysis of

the complex functional interplay of ncRNA–RNA and

ncRNA–protein interactions. Data on such interactions,

complemented by co-expression and literature mining, are

currently emerging (3–5). This led to the generation of

databases storing ncRNA interactions such as miRTarBase

(6) and TarBase (7) containing microRNA (miRNA)–tar-

get interactions. NPInter (5), RAID (8) and StarBase (9)

are examples of databases collecting interactions between

ncRNAs and proteins.

The analysis of ncRNA interactions is challenged by

issues related to data heterogeneity, such as varying quality

as well as the usage of different identifiers and interaction

scoring schemes. The STRING database, used by thou-

sands of researchers daily, has addressed these challenges

for proteins through the use of unified identifiers and cali-

brated scoring schemes (1). A resource similar to STRING

is not available for ncRNAs and their interactions.

Similar to protein interactions, ncRNA interactions are

supported by diverse sources of evidence such as expert

curation, experiments, text mining and predictions. In

order to compare these sources of evidence, a scoring

scheme needs to be established that assesses the reliability

of each interaction. NcRNAs interacting with either pro-

teins or ncRNAs furthermore affect the pathways these

interaction partners are involved in. Hence, an approach

that makes it easy to navigate both ncRNA as well as pro-

tein association networks promises to benefit the study of

cellular interaction networks.

We have used a strategy similar to that of STRING in

order to develop RAIN (RNA–protein Association and

Interaction Networks), a novel resource that covers

ncRNA and their associations with other ncRNAs and pro-

teins. RAIN integrates ncRNA interactions from a diverse

set of sources and covers four organisms: human (Homo

sapiens), mouse (Mus musculus), rat (Rattus norvegicus)

and baker’s yeast (Saccharomyces cerevisiae). RAIN scores

the reliability of each interaction using a scoring scheme

based on the comparison to a curated set of interactions. It

finally integrates ncRNA–RNA and ncRNA–protein asso-

ciations with protein–protein associations contained in the

STRING database. This enables researchers to explore

complex interaction networks in the powerful, yet intuitive

interactive STRING user interface.

Materials and Methods

Sources of evidence

We established four channels of evidence to support the

interactions found in RAIN, namely, (i) curated know-

ledge, (ii) experimental evidence, (iii) miRNA target pre-

dictions and (iv) automated literature mining, see Figure 1.

Each of the four evidence channels is generated by integrat-

ing a number of underlying resources.

(i) Curated knowledge. This comprises 867 human mo-

lecular interactions that are well established in the scien-

tific literature and/or listed in expert curated databases.

The interactions were collected for nine classes of

ncRNAs, namely microRNA (miRNA) (3), ribosomal

RNA (rRNA) (10), transfer RNA (tRNA) (11), signal rec-

ognition particle RNA (SRP RNA) (12), Vault RNA (13–

15), Y RNA (16–18), Telomerase RNA (19), small nucle-

olar RNA (snoRNA) (20) and spliceosomal RNA (U1, U2,

U4, U4atac, U6, U6atac, U11, U12) (20). For further

Figure 1. Flow chart illustrating the development of the RAIN database,

ranging from establishing scoring schemes for the individual sources of

evidence, through integration of resources to evidence channels, to fi-

nally defining functional molecular networks.
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details on the curated interactions, refer to Supplementary

Section 2.

(ii) Experimental evidence. This comprises 10 588 inter-

actions supported by experimental data. Cross-linking

immunoprecipitation (CLIP) based experiments were

retrieved from StarBase (9) and supplemented by interactions

identified in CLASH and CRAC experiments (21–23).

Furthermore, experimentally supported interactions were ex-

tracted from miRTarBase (6) and NPInter (5) and redun-

dancy between the databases was removed. The confidence

of the experimental evidence was based on the number of ex-

periments supporting a given interaction.

(iii) miRNA target predictions: We ran miRanda (24)

and PITA (25) with default settings on all combinations of

30 UTR sequences of protein-coding genes from Ensembl

Biomart (26) and miRNA sequences from miRBase (27).

Additionally, we retrieved precomputed predictions for

miRDB (28), TargetScan (29, 30) and StarMirDB (31).

(iv) Text mining. ncRNA orthology groups were gener-

ated using Ensembl Biomart (26) and the miRNA family

annotations from miRBase v20 (27). Protein orthology

groups retrieved from STRING and these ncRNA orthol-

ogy groups were supplied to the dictionary-based named

entity recognition engine described by Pafilis et al. (32) to

extract associations between ncRNAs and proteins from

MEDLINE abstracts. We refer to Pafilis et al. (32) for

more details on the named entity recognition software. The

subsequent text mining was performed using the same

name tagger as used in STRING (33).

A confidence score is assigned to each evidence for an

association. Curated associations were considered highly

reliable and assigned the highest possible confidence score

for a single source of evidence, defined as 0.9 in STRING.

Experimentally supported associations were assigned con-

fidence scores based on the number of supporting experi-

ments/publications. As in STRING (33), associations

derived from text mining were scored based on co-

occurrences of gene names. For miRNA target predictions,

we used the scoring schemes of the individual predictors,

at the outset. To put these heterogeneous scores on a com-

mon scale, we converted them to probabilistic scores

through benchmarking against the same gold standard set

(Figure 1, Step [1]). Assuming independence between the

sources of evidence, the combined probability of an associ-

ation was computed from the resource-specific probabilis-

tic scores (Figure 1, Step [2]). The combined probabilities

were subjected to a second round of benchmarking to miti-

gate violations of the assumption of independence (Figure

1, Step [3]). Finally, the evidence channels were integrated

to establish the ncRNA association networks (Figure 1,

Step [4]) that interface with STRING to provide a com-

plete ncRNA and protein interaction network (Figure 1,

Step [5]). We restricted RAIN to only cover organisms

with at least 500 ncRNA interactions with confidence

scores > 0.15 (the same cutoff is used in STRING) which

resulted in the inclusion of human (Homo sapiens), mouse

(Mus musculus), rat (Rattus norvegicus) and baker’s yeast

(Saccharomyces cerevisiae).

The gold standard set contained 782 miRNA–mRNA

interactions that were deemed to be highly reliable. The

interactions involve 171 miRNAs and 437 mRNAs. We

defined our gold standard based on the curated miRNA–

mRNA interactions from Croft et al. (3) as well as

miRNA–mRNA interactions from miRTarBase (6) and

NPInter (5) that were supported by at least two low-

throughput experiments. We defined a low-throughput ex-

periment as one that reports less than five miRNA inter-

actions. To ensure an independent benchmarking of

miRTarBase and NPInter, we excluded gold standard

interactions originating from miRTarBase and NPInter

while establishing the resource-specific probabilistic scor-

ing scheme. Once fitted, this scoring scheme was applied to

all interactions, including those defined as gold standard

interactions.

Naming convention

A consistent naming convention in RAIN was achieved by

compiling name and identifier aliases of ncRNA and pro-

teins and generating an alias dictionary that maps these ali-

ases to RAIN identifiers. For proteins and mRNA, RAIN

identifiers are equivalent with STRING v10 (1) identifiers,

and the alias dictionary is derived from the STRING v10

alias files. Aliases of miRNA were generated from miRBase

v20 (27) and the associated miRBase identifiers were used

subsequently. Finally, aliases of the remaining ncRNAs

were retrieved using Ensembl Biomart v78 (26) and the offi-

cial name of the given ncRNA was used as the RAIN identi-

fier. The organism-specific database dictated these official

names, i.e. HGNC (34) for human, MGI (35) for mouse

and rat, and SGD (36) for yeast. All molecular entities were

made to conform to the RAIN naming convention prior to

establishing the probabilistic scoring schemes.

Probabilistic scoring schemes

For each resource of ncRNA–target interactions integrated

into RAIN, a probabilistic scoring scheme was established

prior to the process of resource integration. This allowed

us to weight the respective resources based on their confi-

dence in the final score integration step, which assigns an

easily interpretable confidence score to each interaction.

The probabilistic scoring scheme is established by

benchmarking against a gold standard set, X, of 782
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miRNA–mRNA interactions that are considered to be

valid. We denote the ith miRNA–mRNA interaction pair

as xi and thus X ¼ fx1; . . . ;x782g. Let W denote the set of

all possible interactions between the miRNAs, Umi, and the

mRNAs, Um, contributing to the interactions in X. Hence,

X � W. An interaction ðmij;mkÞ between miRNA mij
2 Umi and mRNA mk 2 Um contributed by an interaction

resource is a true positive (TP) if ðmij;mkÞ 2 X. Similarly,

ðmij;mkÞ is a false positive (FP) if ðmij;mkÞ 2 WnX.

This is summarized in Figure 2A: W is the benchmark

data set consisting of positive examples X � W and nega-

tive examples WnX. In Figure 2A, a white dot represents a

TP interaction and a black dot represents a FP interaction.

The universe of miRNA–mRNA interactions can be ex-

tended beyond W covering miRNAs and miRNAs not pre-

sent in Umi and Um, respectively. We call this set Wall and

note that W � Wall. Interactions in WallnW are represented

by gray dots in Figure 2A.

The following was performed in the interest of estimat-

ing whether a gray dot represents a likely interaction or

not. Each ncRNA interaction resource had a discrete or

continuous raw score assigned to each potential interaction

contributed by the resource. To ensure that these scores

were comparable, we calibrated them based on their agree-

ment with the benchmark set W. This calibration proced-

ure is described in the following sections.

Scoring schemes for discrete raw scores

When a source of ncRNA interactions provides discrete

raw scores, we calibrated by fitting a discrete transfer func-

tion as exemplified in Figure 2B. An example of such dis-

crete scores are the interactions extracted from the portion

of miRTarBase not overlapping our benchmark set W.

Here, the raw score was defined by the number of publica-

tions supporting a given interaction.

For each discrete raw score, the fraction of correctly

predicted interactions, TP=ðTPþ FPÞ, was computed for

the set of interactions with the given score. This provided a

mapping of raw scores to the interval ½0; 1� and defined the

transfer function from the raw score assigned by a specific

interaction resource to its confidence score cCp, where cCp

estimates the probability that interactions assigned with

the raw score are true.

Scoring schemes for continuous raw scores

The interactions contributed by each resource were

reduced to those contained in the benchmarking set, W,

and sorted in ascending order according to their raw

scores. A window containing w interactions was then slid

over the interactions using a step size of 1. Supplementary

Table S3 lists w empirically chosen for each data set. In

each window, the fraction of correctly predicted inter-

actions, Cp, as well as the mean raw score l was calcu-

lated. We estimated the relationship between Cp and l by

fitting a sigmoid transfer function of the form

f ðxÞ ¼ a� d

1þ exp ð�b � ðx� cÞÞ þ d;

where limx!1 f ðxÞ ¼ a and limx!�1 f ðxÞ ¼ d. c shifts the

function horizontally and b defines the steepness of the sig-

moid function. To achieve the best least squares fit for the

transfer function, we defined a number of seeds and boun-

daries for the parameters fa; b; c;dg and used the fit with

least mean square error.

A B C

Figure 2. Toy example describing the benchmarking and scoring scheme. (A) A true positive (TP) interaction is depicted as a black dot and represents

a miRNA–mRNA pair found in the gold standard; a false positive (FP) interaction is depicted as a white dot and comprises interactions where the

miRNA and mRNA constituents are in the gold standard, but their pair is not. Interactions where the miRNA or the mRNA were not part of the gold

standard are depicted as gray dots. Only TP and FP interactions are used to establish the transfer function, which subsequently is applied to assign

confidence scores to all interactions. (B) A discrete transfer function is established as the fraction of correctly predicted interactions in each of the dis-

crete raw score bins. (C) A continuous transfer function is established based on the TP and FP interactions found in sliding windows. The mean raw

interaction score and fraction of correctly predicted interactions were computed for each window, followed by the fitting of a sigmoid transfer

function.
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After the fitting process, we applied f to map continu-

ous raw scores to confidence scores cCp, representing the

probability of the interaction being true, as depicted in

Figure 2C.

Integration of evidence

Since we wish to integrate the evidence for the interaction i

from N sources of interactions belonging to the same evi-

dence channel, we performed the following. Let cCpji 2 ½0;1�
be the confidence score of resource j for interaction i. cCpji

can be interpreted as a probability and we are interested in

finding the probability that interaction i is true given all

available evidence, subsequently denoted by ~Cpi. Under the

assumption of independence between the N source of evi-

dence, we integrated the resource-specific scores using a

modified version of the Noisy–Or model, which takes the

prior probability, p�, into account.

1� ~Cpi

1� p�
¼
YN
j¼1

1� bCpji

1� p�

which yield

~Cpi ¼ 1� ð1� p�Þ1�N
YN
j¼1

ð1� bCpjiÞ:

The prior probability is defined as the probability of

randomly selecting a true positive miRNA–mRNA

interaction from all combinations of Um and Umi. Given

our benchmarking set, the prior used in RAIN is

p� ¼ 782=ð171 � 437Þ � 0:01. When computing ~Cpi, ac-

counting for the prior is required to avoid counting the

prior for each evidence channel. This prior correction is es-

pecially important when dealing with low score close to

the prior (see Supplementary Section 5).

Following this integration of the sources of evidence

into evidence channels, a second round of calibration was

employed to mitigate any violations to the assumption of

independence between interaction resources. Note that

although each confidence score was computed based on a

gold standard only consisting of miRNA–mRNA inter-

actions, the underlying transfer functions mapping raw

scores to confidence scores can be applied to score inter-

actions for any class of ncRNAs.

Validation of the integration of miRNA target

predictors

For the purpose of evaluating the gain of integrating the re-

spective miRNA target prediction tools into the RAIN pre-

diction channel, we retrieved a list of human and mouse

miRNA–mRNA interactions from TarBase (7), that have

been tested with functional studies (Luciferase reporter

assays). All interactions common between this TarBase set

and our gold standard were removed from the TarBase set

to establish an independent validation set. This independ-

ent validation set comprises a positive set of 1387 con-

firmed interactions and a negative set of 460 pairs for

which the miRNA had no effect on the amount of trans-

lated mRNA. The performance was assessed using re-

ceiver-operating characteristics (ROC) on the raw scores

from the miRNA prediction tools and the combined prob-

abilistic scores for the RAIN prediction channel.

Results and Discussion

RAIN is a novel resource of ncRNA interactions that inte-

grates heterogeneous evidence from experiments, predic-

tions, text mining and expert curation. RAIN comprises a

total of 270 242 ncRNA–RNA/protein interactions across

four widely investigated organisms: human, mouse, rat

and yeast. The number of interactions is summarized in

Table 1, with an additional break down of the counts by

evidence channel and class of interacting entities in the

Supplementary Tables S1 and S2. Furthermore, RAIN

interfaces tightly with STRING (1) enabling users to ex-

plore networks of ncRNA–RNA, ncRNA–protein and pro-

tein–protein associations in an interactive user interface,

with the reliability of each interactions represented as a

Table 1. The number of miRNA–mRNA, ncRNA–protein and ncRNA–ncRNA interactions per organism in RAIN with a combined

confidence score higher than 0.15

Organism Number of interactions

miRNA–mRNA ncRNA–protein ncRNA–ncRNA Total

H. sapiens (human) 174 853 11 026 2507 188 386

M. musculus (mouse) 77 270 469 35 77 774

R. norvegicus (rat) 19 985 39 1 20 025

S. cerevisiae (Baker’s yeast) 0 640 85 725

Total 272 108 12 174 2628 286 910
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single easily interpretable confidence score. RAIN is to our

knowledge the first resource to offer this.

The human interactions constitute �66% of the total

RAIN interactions. This likely reflects a research bias to-

wards investigating and annotating ncRNA in human rela-

tive to mouse and rat. Saccharomyces cerevisiae does not

harbor miRNAs and the other constituents of the RNAi

pathway, thus miRNA target predictions cannot be pro-

vided for this yeast species. The S. cerevisiae genome does,

however, encode a wide range of RNA binding proteins

and various classes of ncRNA, that have been investigated

in the literature, e.g. by pull-down studies (21, 23). Hence,

the interactions of several players in transcriptional and

post-transcriptional regulation have been integrated and

are available in RAIN for all four organisms. We expect

that RAIN will be a valuable tool to facilitate the under-

standing of the molecular regulatory mechanisms. In add-

ition to aiding the researcher in the process of generating

hypotheses to be tested, RAIN also allows researcher to ad-

vance differential high-throughput studies with a layer of

regulatory network biology.

To demonstrate the gain of integrating the individual

sources of evidence, we benchmarked the RAIN prediction

channel and the respective miRNA target prediction tools.

We performed ROC calculations (Figure 3) on the valid-

ation set of 1387 positive and 460 negative miRNA–

mRNA pairs as described in Section Validation of the inte-

gration of miRNA target predictors. The respective

miRNA target predictors impose a score threshold for re-

porting miRNA targets. Hence, despite subjecting all pairs

of miRNA and mRNA 30 UTR to target prediction, only a

subset is reported along with a prediction score from each

tool (see Supplementary Section 4 for validation set cover-

age by each tool). Consequently, the ROC curves are trun-

cated as not all positive and negative pairs in the

benchmarking sets are reported by the respective predic-

tion tools. This is especially pronounced for tools that rely

on conservation of the miRNA target site and 30 UTR as is

the case for TargetScan. The ROC analyses demonstrate

that in addition to improving the coverage of the miRNA

interactome, integration of the miRNA target predictors

also yields an improved predictive performance.

We restrained the benchmarking of RAIN to the predic-

tion channel, i.e. the integration of miRNA target pre-

dictors. The reason is that the publications underlying the

validation set are likely overlapping with the literature evi-

dence underlying RAIN text mining, experiments and

curated knowledge evidence. The true performance of

RAIN is thus underestimated here as it is only based on the

weakest of the four evidence channels.

Utility of the Database

This section describes the RAIN website and user interface.

An example use case concludes the section and illustrates

the utility of the database.

Query interface

Querying RAIN for a single ncRNA or protein identifier

returns interactions for this entity; querying for multiple

identifiers returns interactions between these entities. After

searching RAIN, an identifier disambiguation page allows

the user to choose desired query entities among all ncRNA

and protein identifiers in RAIN that match the query.

RAIN uses STRING v10 (1) protein identifiers for input

protein and mRNA identifiers. miRNAs are mapped to

miRBase v20 (27) identifiers. For other ncRNAs, RAIN ac-

cepts Ensembl (37) and RefSeq (38) identifiers as well as

identifiers from four organism-specific main databases ob-

tained from Ensembl BioMart v78 (26): HGNC (34) for

human, MGI (35) for mouse, RGD (39) for rat and SGD

(36) for yeast.

Network view

After querying RAIN, a search results page featuring a

static image of the resulting interaction network is shown.

Associations adjacent to ncRNAs obtained from RAIN and

protein–protein interactions from STRING are shown in

the same network. Sources of evidence supporting an asso-

ciation are indicated by different edge colors. If interactions

for a protein were searched, the number of interacting

Figure 3. Receiver-operating characteristics of the RAIN prediction

channel and the respective miRNA target prediction tools benchmarked

against an independent validation set of miRNA–mRNA interactions.

The integration of the respective prediction tools yields improved pre-

dictive performance. Where specificity ¼ TN=N, sensitivity ¼ TP=P , P is

the number of positive and n the number of negative miRNA–mRNA

pairs.
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ncRNAs and proteins displayed can be adjusted.

Furthermore, the interaction network may be downloaded

as files in tab-separated and PSI-MITAB format.

Clicking the network image redirects to an interactive

network view in STRING allowing users to adjust the con-

fidence score cutoff and network size as well as centering

the network on different nodes. Clicking a node or an edge

in the interactive network view lists additional informa-

tion. For each edge, the confidence score computed for

each evidence channel as well as the combined confidence

score are shown. Clicking a node shows basic information

about the corresponding molecular entity. Information

about ncRNAs nodes and adjacent interactions are con-

tributed by RAIN while information about proteins and

and protein–protein interaction are provided by STRING.

Data downloads

All interactions and the benchmarking gold standard can

be downloaded as tab-separated files from the RAIN

website easing programmatic analyses of RAIN data.

Interactions are split by evidence channel and, in contrast

to those shown in the RAIN network view, not reduced to

those interactions with a combined score larger than 0.15.

Furthermore, compiled aliases of ncRNA and protein iden-

tifiers are available for download.

Use case

RAIN enables users to study ncRNAs, proteins and their

interactions in an intuitive workflow as displayed in

Figure 4 and answer complex research questions. Figure 4A

exemplifies the single identifier search in RAIN while an ex-

ample for an edge pop-up window with more information

about an association of interest is shown in Figure 4B.

Listing the sources of evidence and confidence scores for

each interaction make the network easily interpretable.

Furthermore, the multiple identifier search in RAIN is

shown in Figure 4C. Finally, a node pop-up window with

information about ncRNA nodes is depicted in Figure 4D.

Figure 4. RAIN use case. (A) Querying RAIN for human miR-145-5p (miR-145), suggested to act as tumor-suppressor in breast and colon cancer (40,

41), finds multiple oncogenes such as KLF4 and SOX2 (42, 43) as putative targets of miR-145. Evidence channels supporting each interaction are

encoded as edge colors. (B) Sources of evidence for each association, e.g. between miR-145 and KLF4, are presented in a pop-up opened after click-

ing an edge in the network. RAIN confidence scores are collected in the ‘Additional data’ table. Information about KLF4 is provided by STRING.

Clicking the ‘Show’ button leads to a website that links to research articles presenting experimental evidence and displaying detailed text mining evi-

dence, where available. (C) In contrast to single identifier search (A), the RAIN multiple identifier search can be used to specifically view interactions

between three ribosomal RNAs (28S_rRNA, 5_8S_rRNA, 5S_rRNA) and a subset of five ribosomal proteins part of the large ribosomal subunit. These

interactions were extracted from Reactome (10) or found by text mining. (D) Clicking an ncRNA node in the network opens a popup with basic infor-

mation about the ncRNA, e.g. 5.8S rRNA.
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Conclusion

We presented RAIN, a novel database for ncRNAs and

their interactions with other ncRNAs and proteins.

Associations in RAIN are obtained from a set of resources

based on expert curation, experiments, text mining and

interaction predictions. RAIN uses a probabilistic scoring

scheme to assign a single confidence score to each inter-

action allowing users to integrate support from all sources

of evidence in RAIN in a single number.

RAIN is tightly integrated with the STRING database

for protein–protein interactions and adds ncRNAs together

with their interactions to the existing protein–protein inter-

action networks in STRING. RAIN is implemented using

the STRING payload mechanism. This allows RAIN users

to use interactive and accessible STRING network visual-

izations. Additionally, potential RAIN users may already

be familiar with the STRING interface, further reducing

the effort needed to start exploring RAIN.

Future work includes expanding the gold standard to

improve the accuracy of the RAIN confidence scores.

Furthermore, additional sources of ncRNA interactions

such as expert curated interactions from TarBase, which

was not included due to current licensing restrictions,

could be included. The curated knowledge evidence chan-

nel will be expanded to other ncRNA classes and updated

according to future literature evidence while maintaining

the same high inclusion criteria. The integration of RNA–

protein binding site prediction approaches such as

RNAcontext (44) or GraphProt (45) would also be of

interest. This would, however, require an extension of the

gold standard to include this type of interaction. After ex-

panding RAIN to cover more organisms and establishing a

comprehensive definition of orthologous groups for

ncRNAs, similar to eggNOG (46) for proteins, RAIN

interaction evidence could furthermore be transferred be-

tween organisms. Finally, further annotations in the node

pop-up, e.g. disease association, tissue specificity, and spe-

cies conservation could prove to be useful. We plan to ad-

dress these points in future versions of RAIN.

RAIN facilitates the understanding of complex molecu-

lar networks through the integration of ncRNA inter-

actions and protein–protein association networks. The

graphical web interface provides the researcher with intui-

tive access to the interactions of ncRNAs and proteins of

interest and assigns a confidence score to each association.

The incorporation of ncRNAs, including intensely investi-

gated miRNAs and long ncRNAs, makes RAIN a powerful

tool to answer current research questions.

Supplementary Data

Supplementary data are available at Database Online.
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