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Abstract

Although several diploid and tetroploid Gossypium species genomes have been sequenced,

the well annotated web-based transposable elements (TEs) database is lacking. To better

understand the roles of TEs in structural, functional and evolutionary dynamics of the cotton

genome, a comprehensive, specific, and user-friendly web-based database, Gossypium rai-

mondii transposable elements database (GrTEdb), was constructed. A total of 14 332 TEs

were structurally annotated and clearly categorized in G. raimondii genome, and these elem-

ents have been classified into seven distinct superfamilies based on the order of protein-

coding domains, structures and/or sequence similarity, including 2929 Copia-like elements,

10 368 Gypsy-like elements, 299 L1, 12 Mutators, 435 PIF-Harbingers, 275 CACTAs and 14

Helitrons. Meanwhile, the web-based sequence browsing, searching, downloading and blast

tool were implemented to help users easily and effectively to annotate the TEs or TE frag-

ments in genomic sequences from G. raimondii and other closely related Gossypium spe-

cies. GrTEdb provides resources and information related with TEs in G. raimondii, and will

facilitate gene and genome analyses within or across Gossypium species, evaluating the im-

pact of TEs on their host genomes, and investigating the potential interaction between TEs

and protein-coding genes in Gossypium species.
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Introduction

Transposable elements (TEs) are the most abundant DNA

components in most characterized genomes of high eukaryotes

(1). Based on their structural features and transposition mech-

anisms, TEs are generally classified into two classes: retro-

transposons and DNA transposons (2). In plants,

retrotransposons are further classified into two distinct orders,

long terminal repeat (LTR)-retrotransposons (Ty1/Copia and

Ty3/Gypsy) and non-LTR retrotransposons (LINE and

SINE), whereas DNA transposons are traditionally separated

into two main orders, terminal inverted repeat (TIR) (Tc1-

Mariner, hAT, Mutator, PIF/Harbinger and CACTA) and

Helitron (Helitron) (2, 3). Although TEs are often considered

as ‘junk DNA’ due to their continuous reproduction and po-

tential disruption of the regular host genes (4–6), more evi-

dence has unambiguously shown that they play important

roles in altering gene structures, regulation of gene expression,

affecting genome evolution and creating new genes (7–9).

Thus, complete identification and characterization of TEs

have become a priority in genome sequencing projects, and

this will largely contribute to accurate annotation of protein-

coding genes and other genomic components, and play signifi-

cant roles in investigating potential interaction between TEs

and functional genes (10).

Recently, several diploid and tetroploid Gossypium spe-

cies genomes have been sequenced (11–15), and the avail-

ability of their draft genome sequences have provided an

unprecedented opportunity for identification, structural

and functional characterization and evolutionary analyses

of TEs in this economically important crop. Gossypium

raimondii (DD; 2n ¼ 6), one of the putative D-genome

parent of tetraploid cotton species [such as G. hirsutum

(L). and G. barbadense (L.)] has a smaller genome size

(�737.8 Mb) (12). So, we carried out the characterization

of almost all families of TEs in G. raimondii genome using

comprehensive methods, and constructed the G. raimondii

transposable elements database (GrTEdb) in this study.

We implemented web-based sequence browsing, searching,

downloading and blast tool to help users easily and effect-

ively to annotate the TEs or TE fragments in genomic se-

quences from G. raimondii and other closely related

Gossypium species. Thus, GrTEdb provide the first web-

based friendly user interface database of TEs in Gossypium

species, and will also facilitate genome evolution analyses

within or across Gossypium species, evaluating the impact

of TEs on their host genomes, and investigating the poten-

tial interaction between TEs and protein-coding genes.

Construction and content of the database

The assembled sequence of the G. raimondii genome was

downloaded from http://www.phytozome.com (11).

A combination of structure-based and homology-based

approaches was employed to identify different TEs in the G.

raimondii genome. LTR-retrotransposons were characterized

according to the methods previously described by Ma et al.

(2006) (16): first, the LTR-retrotransposons were identified

using the LTR_STRUC software; then CROSS_MATCH was

used to detect elements missed by the program. The align-

ments were performed between G. raimondii genome and the

flanking LTRs of these LTR-retrotransposons, which gener-

ated by the LTR_STRUC. Different perl scripts were written

to facilitate the data mining and analyses. Other Non-LTR-

retrotransposons and DNA transposons (such as L1,

Mutator, PIF-Harbinger, CACTA and Helitron) were de-

tected following the protocol provided by Holligan et al.

(2006) (17): the alignment were performed between the con-

servative sequences of transposase in Arabidopsis thaliana

and G. raimondii genomes using tblastn, and the TSD and

TIR were detected using some perl scripts. The detailed man-

ual inspection was conducted to confirm each predicted elem-

ent and to define its structure and boundaries. In addition,

TEs were classified into different superfamilies and families as

previously described (2, 17). Only elements with clearly

defined boundaries and insertion sites were deposited in the

GrTEdb database.

Based the above approaches, 14 332 TEs were structurally

annotated and clearly categorized in the G. raimondii gen-

ome, and these elements are classified into seven distinct

superfamilies based on the order of protein-coding domains,

structures and/or sequence similarity, including 2929 Copia-

like elements, 10 368 Gypsy-like elements, 299 L1, 12

Mutators, 435 PIF-Harbingers, 275 CACTAs and 14

Helitrons (Table 1). Based on the 80-80-80 rule (2). TEs that

were assigned as Copia- and Gypsy-like elements superfami-

lies were then categorized into 199 and 218 distinct families

respectively because of their large number in G. raimondii.

User interface

GrTEdb was established to enable users to browse, search,

view, analyze and download the TEs data and information.

Table 1. Summary of the identified TEs in G. raimondii

Class Order Superfamily Copy numbers

Retrotransposons LTR Copia 2929

Gypsy 10 368

LINE L1 299

DNA transposons TIR Mutator 12

PIF-Harbinger 435

CACTA 275

Helitron Helitron 14

Total 14 332
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The GrTEdb database organization is navigated by six sec-

tions: Home, Browse, Search and Download, Blast, Links

and Contact (Figure 1A).

Browse

In the browsing interface, the classification structures of TEs

deposited in GrTEdb were showed. Users can download the

whole TEs sequences, and can browse any one superfamily of

interest by the hyperlinks provided. The detailed information

of each superfamily can be retrieved and downloaded by

clicking the corresponding entry (Figure 1B).

Search and download

In the searching and downloading interface, users can use

a keyword to search the GrTEdb (e.g. TE ID, Class, Order,

Superfamily and Family) to locate specific TEs quickly.

The search results can be viewed and downloaded by click-

ing the hyperlinks provided on the page (Figure 2).

In the chromosomal region search page, users can re-

trieve the TEs for any one entire chromosome or in a

defined window around either a chromosomal position or

a gene model, and the detailed information of each

retrieved TEs can be viewed and downloaded by clicking

the hyperlinks provided on the page (Figure 3). This func-

tion can help users to locate TEs that surround the genes of

interests easily, and study the interaction between TEs and

their adjacent genes.

Blast

We did not intend to integrate tools currently available (ex-

cept for BLAST) for sequence comparison, editing and/or

assembly in our database because of the complex structural

variation and distribution patterns of TEs among classes

and families (Figure 4). In the BLAST search page, users

can handy and quickly compare their sequences with the

cotton TEs deposited in GrTEdb.

Links

A variety of links to other TEs database were included in

our GrTEdb database.

Contact

In this section, contact information and links to our labs

were provided. Please feel free to contact us if you have

any suggestions and problems.

Discussion

Because of the structural complexity and the time consum-

ing process, it remains challenging to annotate all TEs in a

Figure 1. (A) The top menu of GrTEdb. (B) The user interface of browsing in GrTEdb. Users can browse the detailed information of each superfamily

by clicking the hyperlinks provided in this page.
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sequenced genome. Currently only a few TE databases

have been established (10, 18–24). Because these databases

can help users easily and quickly annotate their sequences,

and they have been widely used (10). However, in these

plant TE databases such as P-MITE (a Plant MITE data-

base), the TIGR Plant Repeat Databases, and so on, there

is little information about the cotton TEs. In parallel, al-

though there were some reports associated with TEs in

Gossypium (11–15, 25, 26), the web-based database of

TEs was lacked. Here we have generated a web-based TE

database (GrTEdb) using multiple methods, and only TEs

with clearly defined boundaries were deposited in the data-

base. More studies have showed that many TEs are struc-

turally incomplete because they have undergone intra- or

inter-element unequal recombination or accumulation of

small deletions by illegitimate recombination (27, 28). For

example, a large number of LTR-RT families with highly

degraded protein-coding sequences or without any coding

sequences (often defined as non-autonomous elements)

have been found in several plants (29–35), and these elem-

ents remains challenging to be identified and characterized.

Therefore, GrTEdb provides the reference sequences of

TEs data for cotton, and users can use these data to iden-

tify more complex elements and develop their specific

functions.

Recently, G. arboretum (A2) genome, a pupative con-

tributor of the A subgenomes cotton species, and the allo-

tetraploid upland cotton (AD)1 [G. hirsutum (L.)], which

accounts for >90% of cultivated cotton worldwide, have

been sequenced and assembled (13–15). Because of the

Figure 2. The searching interface of GrTEdb. Users can use a keyword to locate specific TEs quickly in GrTEdb (e.g. TE ID, Class, Order, Superfamily

and Family). The search results can be viewed and downloaded by clicking the hyperlinks provided on the page.
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close evolutionary relationships of DD, AA and AADD

genomes, our GrTEdb database is not only useful for G.

raimondii study, but also can facilitate structural and evo-

lutionary analysis in AA, DD, AADD and other unfinished

Gossypium genomes. The web-based interface can also

help users at the beginning stage of bioinformatics to easily

access and use this database. Further, TEs in our database

will help cotton breeders develop markers for mapping

agronomically important genes and accelerate breeding

process.

Conclusions

We have generated a web-based GrTEdb, and it provides

researchers with not only resources and information

related to different TEs in the cotton genome but also tools

Figure 3. The chromosomal region search page. Users can retrieve the TE sequences for any one entire chromosome or in a defined window around

either a chromosomal position or a gene model, and the detailed information of each retrieved TEs can be viewed and downloaded by clicking the

hyperlinks provided on the page.
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for performing data analysis. Thus, GrTEdb will facilitate

cotton genome evolution analyses among AA, DD and

AADD genome species, the evaluating impact of TEs on

their host genomes, and investigating the potential inter-

action between TEs and protein-coding genes. In parallel,

TEs in our database will facilitate users for marker devel-

opment for mapping agronomically important genes, and

for both intra- and inter-specific comparison of TEs at

whole genome levels.

Availability and requirements

All TEs or subsets of TEs can be viewed and downloaded

from the website http://www.grtedb.org/, and all data de-

posited in the database are freely available to all users

without any restrictions.
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