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Abstract

This article describes our work on the BioCreative-V chemical–disease relation (CDR) ex-

traction task, which employed a maximum entropy (ME) model and a convolutional neu-

ral network model for relation extraction at inter- and intra-sentence level, respectively.

In our work, relation extraction between entity concepts in documents was simplified to

relation extraction between entity mentions. We first constructed pairs of chemical and

disease mentions as relation instances for training and testing stages, then we trained

and applied the ME model and the convolutional neural network model for inter- and

intra-sentence level, respectively. Finally, we merged the classification results from men-

tion level to document level to acquire the final relations between chemical and disease

concepts. The evaluation on the BioCreative-V CDR corpus shows the effectiveness of

our proposed approach.

Database URL: http://www.biocreative.org/resources/corpora/biocreative-v-cdr-corpus/

Introduction

Automatically understanding chemical–disease relations

(CDRs) is crucial in various areas of biomedical research

and health care (1–3). Although some well-known manual

curation efforts like the Comparative Toxicogenomics

Database (CTD) project (4, 5) have already curated thou-

sands of documents for CDRs, the manual curation from

literature into structured knowledge databases is time-

consuming and insufficient to keep up to date.

Due to the high cost of the manual curation, several at-

tempts have been made on automatic biomedical

information extraction with some promising results using

text-mining technologies (6–9). However, many tasks such

as identifying biomedical concepts (10, 11) and extracting

relations between biomedical entities (12), still remain

challenging.

To this end, the BioCreative V (BC5) community pro-

posed a challenging task of automatic extraction of CDRs

from biomedical literature, which was aimed to encourage

research on text mining in this area. The task consisted of

two subtasks: the disease named entity recognition task

and the chemical-induced disease (CID) relation extraction
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task. The first was to identify diseases and normalize them

to corresponding Medical Subject Headings (MeSH) (13)

concept identifiers and the second was to identify causal re-

lations between chemicals and diseases denoted by MeSH

identifier pairs. In this paper, we mainly focus on the CID

relation extraction task.

Different from previous biomedical relation extraction

tasks such as disease-gene association (6, 7) and protein–

protein interaction (8, 9), the CID relations are determined

at document level, i.e. the relations could be described

across sentences (14). Furthermore, the CID subtask

required the relations hold between the most specific dis-

eases and chemicals.

Since chemical and disease entities may have multiple

mentions spanning sentences in a document, we regard the

case as ‘intra-sentence level’ when mentions of chemical

and disease occur in the same sentence, or as ‘inter-sen-

tence level’ otherwise. Thus, the CID relation extraction

task can be simplified from document level to mention

level, taking the following sentences into consideration:

a. Possible intramuscular midazolam-associated cardio-

respiratory arrest and death.

b. Midazolam hydrochloride is commonly used for dental

or endoscopic procedures.

c. Although generally consisted safe when given intramus-

cularly, intravenous administration is known to cause

respiratory and cardiovascular depression.

d. This report describes the first published case of cardio-

respiratory arrest and death associated with intramus-

cular administration of midazolam.

e. Information regarding midazolam use is reviewed to

provide recommendation for safe administration.

Above sentences are extracted from the same document

(PMID: 2375138). Among them, the texts in bold are men-

tions of chemicals and diseases, where midazolam and

Midazolam hydrochloride refer to the same chemical con-

cept whose identifier is D008874 (C1), cardiorespiratory

arrest represents a disease concept whose identifier is

D006323 (D1), respiratory and cardiovascular depression

refers to a disease concept whose identifier is D012140

(D2), and death refers to another disease concept with the

identifier of D003643 (D3). The chemical C1 has two

intra-sentence level co-occurrences with the disease D1 in

both sentences (a) and (d), while it has an inter-sentence

level co-occurrence with the disease D2. However, not all

occurrences of chemicals and diseases are considered as a

valid CID relation. For instance, according to the task

guidelines (15), there should be no relation between C1

and D3 because the concept of death is too general to re-

flect a CID relation.

Since relation extraction task is usually considered as a

classification problem, various statistical machine-learning

approaches have been successfully applied to the CID task.

Jiang et al. (16) used a logistic regression model with lin-

guistic features to extract CID relations. Zhou et al. (17)

applied a kernel-based support vector machine (SVM)

method for the CID task by capturing syntactic associ-

ations between chemicals and diseases. Our previous work

(18, 19) proposed a model incorporating different max-

imum entropy (ME) classifiers with rich linguistic informa-

tion including various lexical and syntactic features to

extract CID relations at intra- and inter-sentence level, re-

spectively. In addition, methods using prior knowledge

have been proved to be effective for the CID relation ex-

traction task. Xu et al. (20) fed abundant knowledge-based

features into two different SVM classifiers at sentence level

and document level, respectively, and they obtained the

top performance during the BC5 online evaluation. Pons

et al. (21) employed rich features derived from various

knowledge databases for an SVM classifier to extract CID

relations. Particularly, Peng et al. (22) proposed a hybrid

system for the CID task achieving the state-of-the-art per-

formance. They adopted an SVM model with a rich set of

features including statistical, linguistic and various domain

knowledge features. Furthermore, they augmented more

external training data in order to further improve the

performance.

Recently, on the new benchmark dataset of SemEval-

2010 Task 8 (23) on relation classification task, deep neu-

ral networks (24) such as convolutional neural network

(CNN) have exhibited remarkable potential (25–27) on ac-

count of such methods providing an automatic way of fea-

ture representation without much manual efforts on

feature engineering. Zeng et al. (25) presented a CNN

paradigm combining lexical features with position features

to perform relation classification. They obtained an F-

score of 82.7% on the SemEval-2010 Task 8 dataset while

the best performance of the traditional classifier, i.e. SVM,

only achieved 82.2%. Nguyen and Grishman (27) em-

ployed a CNN-based model utilizing multiple sizes of fil-

ters to conduct the relation classification task, and they

achieved an F-score of 82.8%. Santos et al. (26) proposed

a ranking-based CNN architecture to perform the relation

classification task. They employed a novel pairwise rank-

ing loss function and achieved the state-of-the-art perform-

ance with an F-score of 84.1% on the benchmark dataset.

With respect to deep neural networks, recurrent neural

network (RNN) serves as another widely exploited model

that has been shown to be competitive in relation classifi-

cation tasks. Zhang and Wang (28) employed a bi-

directional RNN framework to learn long-distance relation

patterns to tackle the relation classification problem, and
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they obtained an F-score of 82.5% on the SemEval-2010

Task-8 dataset. Xu et al. (29) proposed to use a variant of

RNN, i.e. long short-term memory (LSTM) network, to

identify relations. They employed the LSTM network to

pick up the semantic information in the shortest depend-

ency paths and finally achieved an F-score of 83.7%. In the

same vein, Zhou et al. (30) proposed a neural network

framework for the CID relation extraction task for the first

time. They designed a hybrid system combining an LSTM

network with a kernel-based SVM model. In their method,

the SVM model was designed to capture the syntactic fea-

tures and the LSTM was intended to grasp the potential se-

mantic representations, respectively.

Different from RNN, which is prone to learn from long

word sequences, CNN is demonstrated to consistently ex-

tract local features due to its elegant characteristic of cap-

turing the most useful features in a flat structure as well as

representing them in an abstract way effectively. In most

cases, relations are predominantly reflected in local feature

rather than global word sequence, and the popularity of

the shortest dependency path of relation extraction demon-

strates that local information in dependency context is

more useful for identifying relations. However, there are

few works on taking advantage of CNNs for biomedical

information extraction, especially for the CID relation ex-

traction task. We therefore proposed a CNN-based model

to learn a more robust relation representation based on

both sentences and dependency paths for the CID relation

extraction task, which could naturally characterize the re-

lations between chemical and disease entities.

In this paper, we present our approach for the CID rela-

tion extraction subtask of the BioCreative-V CDR task.

We improve our previous work (18) by adopting a CNN-

based model at intra-sentence level. Our primary goal was

to develop a machine learning (ML) method with good ro-

bustness and generalization ability which could be applied

to various relation extraction tasks. We first extracted CID

relations at mention level by using a ME model with lin-

guistic features for inter-sentence level, and a convolu-

tional neural network model with multi-level semantic

features for intra-sentence level, respectively. Then we

merged the results of both levels to obtain CID relations

between entity concepts at document level. In addition, the

hypernym relationship between entities was taken into

consideration during the training stage for constructing

more precise training instances as well as during the testing

stage for filtering the extracted instances in order to im-

prove the extraction performance. Heuristic rules were fi-

nally adopted in the post-processing (PP) stage to further

improve the performance.

To the best of our knowledge, this is the first time to

model the CID relation extraction problems with a

convolutional neural network on dependency information.

The experimental results on the CDR corpus show the ef-

fectiveness of our proposed approach.

Materials and methods

In this section, we first present a brief introduction to the

CDR corpus, then we systematically describe our approach

for the CID relation extraction task.

Dataset

The CDR corpus contained a total number of 1500

MEDLINE articles (only titles and abstracts) (14) that

were further divided into three subsets: the training, devel-

opment and test sets. All the articles were manually anno-

tated with chemicals, diseases and CDRs using the MeSH

concept identifiers. In particular, the CDR relations were

annotated per pair of chemical and disease concept identi-

fiers in a document rather than per pair of entity mentions.

Table 1 reports the statistics on the numbers of articles and

relations in the corpus.

It is worth noting that the CDR corpus was generated

from the CTD knowledge database the construction of

which was an enormous curation project lasting for dec-

ades. In addition, the inter-annotator agreement (IAA) of

the CID relations is unknown. Wiegers et al. (31) reported

a surrogate IAA score of 77% for annotation of chemical–

gene interactions in the CTD corpus and this IAA score

may presumably approximate the agreement of the CID re-

lation annotation. However, formal assessment of IAA on

the CID relations still needs to be performed.

Method

Figure 1 depicts the architecture of our ML system. It first

extracts CID relations using a ME classifier for inter-

sentence level and a convolutional neural network for

intra-sentence level, respectively. Then it merges the classi-

fication results from both levels to obtain relations at docu-

ment level. Finally, simple yet effective heuristic rules are

applied in the PP stage to find the most likely relations in

the documents where none relation can be identified by

our system. Additionally, since the CID task requires the

Table 1. The CID relation statistics on the corpus

Task datasets No. of articles No. of CID relations

Training 500 1038

Development 500 1012

Test 500 1066
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most specific relations between entities, a hypernym filter-

ing module is adopted during both training and testing

stages to obtain more accurate classification models and

better extraction performance, respectively.

Different from (18), we improve the previous work by

adopting a novel convolutional neural network at intra-

sentence level and heuristic rules in the PP stage to promote

the performance. The whole process can be divided into

six sequential steps as follows.

Relation instance construction

Prior to relation extraction, relation instances for both

training and testing stages should be first constructed. All

the instances are generated from chemical and disease men-

tions in a pairwise way following (18). The instances are

then pooled into two groups at intra- and inter-sentence

level, respectively. The former means a mention pair is

within the same sentence, while the latter means otherwise.

Hypernymy filtering

The CID task is aimed to automatically extract the rela-

tions between the most specific diseases and chemicals,

that is, the relations between hyponym concepts should be

considered rather than between hypernym concepts.

However, in some cases, there is a hypernymy/hyponymy

relationship between concepts of diseases or chemicals,

where a concept is subordinate to another more general

concept. Thus, it is possible that despite some pairs of enti-

ties expressing the positive relations, their relation in-

stances should still be taken as negative because they could

not exactly express the most specific CID relations, leading

to degrading the performance. Therefore, we leverage the

MeSH tree numbers of concepts to determine the hypern-

ymy relationship between entities in a document and re-

move those negative instances that involve entities which

are more general than other entities already participating

in the positive ones. More details can be found in the previ-

ous work (18).

Relation extraction at inter-sentence level

The CID relation extraction at inter-sentence level can be

recast as a binary classification problem. The training in-

stances are fed into a learner to derive a classification

model which is in turn used to predict the relation for the

test instances. More details of this step can be found in the

previous work (18).

Relation extraction at intra-sentence level

Figure 2 presents the architecture of our CNN-based neu-

ral network for the intra-sentence level relation extraction.

As depicted in Figure 2a, the model takes as input sen-

tences with marked entity mentions, together with depend-

ency paths. The model can discover multiple levels of

features, where higher levels represent more abstract as-

pects of the input. It primarily consists of five layers as fol-

lows: Word Representation, Feature Extraction, Hidden,

Dropout and SoftMax.

Our CNN-based model first converts each token in the

input sequences (sentences or paths) into a word embed-

ding vector, then extracts contextual features from sen-

tences and dependency features from dependency paths,

respectively. Afterwards, the model concatenates both con-

textual features and dependency features into a vector, and

sends this vector to the following hidden layer to obtain

the final feature vector characterizing more abstract repre-

sentation. Finally, the feature vector is fed into a softmax

layer to compute the ultimate confidence scores for rela-

tion labels. During the training process, a dropout oper-

ation is employed upon the feature vector after the hidden

layer in order to address the over-fitting problem. The final

output of the CNN-based model is a vector, whose dimen-

sion is equal to the number of the predefined relation types

and the value of each dimension is the confidence score of

the corresponding relation type.

(1) Word representation. With the intention of generating

more meaningful representation of tokens, neural net-

works require converting tokens into low-dimensional

dense vectors. For this purpose, a Word Representation

layer is used to transform each token in the input sequence

into a fixed-length word embedding through a look-up

table.

Generally, each token in the look-up table is associated

with an index and each sentence is an array of indices.

Figure 1. The system workflow diagram.
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Given an input sequence s consisting of n token indices

s ¼ [t1, t2,. . ., tn], a token tican be represented by a d0-di-

mensional real-valued word embedding vector ei, which is

obtained by looking up in a corresponding vocabulary

table T 2 Rd0�jVj, where V is a fixed-sized vocabulary and

jVj is the size of V. Each column vector in T corresponds to

a word embedding. Therefore, the original input sequence

s can be viewed as a matrix x of size d0 � n that concaten-

ates the word embedding of each token in the order of their

occurrence, that is, s is represented by x ¼ [e1, e2,. . ., en].

We transform a token tiinto its word embedding eiby using

the matrix–vector product:

ei ¼ Tuti
(1)

where uti is a vector of size jVj which has value 1 at index

ti and zero at all other positions. The vocabulary table T is

a parameter to be learned, while the size of the word

embedding d0 is a hyper-parameter.

Since CNN can only work with fixed-length input, we

should first augment all the input sentences to be of the same

length by appending special padding words to the short ones

before sending them into the Word Representation layer. The

padding word we used is denoted by ‘<PAD>’, whose index

in T represents the vector filled with zeros.

(2) Feature extraction. In Feature Extraction, both context-

ual features and dependency features are taken into

account to learn the more abstract representation of rela-

tions. The details are shown as follows:

(i) Contextual features. Despite the meaningful representa-

tion of word embedding, word vectors are still less inform-

ative for relation extraction. Thus, we take the contextual

features around the target mentions into consideration as

they can offer important cues for determining relations.

In this paper, the contextual feature is generated by

concatenating multiple vectors, which consists of the

word embeddings of the mentions, the word embeddings

of the tokens around the mentions within an odd win-

dow size of w, and the word embeddings of the verbs be-

tween the mentions. Since relations in the biomedical

literature are usually expressed in a predicative form, we

believe verbs also play an important role in relation ex-

traction. All of the above embeddings are concatenated

to serve as the contextual feature vector c. Table 2 pre-

sents the selected word embeddings that are related to

the contextual features.

Note that some entity mentions may have more than

one token, we thus take the mean value of all word embed-

dings of the tokens within a mention to represent the cor-

responding mention embedding. In addition, the number

of verbs between mentions varies in different sentences, we

therefore pad the sequences of verbs to be of the same

length by repetitively appending the padding word to the

short ones.

Figure 2. The architecture of our CNN-based model for the intra-sentence level relation extraction. (a) The overall architecture of our CNN-based

model; (b) the CNN model for dependency features.
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(ii) Dependency features. Apart from the contextual fea-

tures, we argue that the dependency associations can offer

more concise and effective information to determine CID

relations between entity mentions as in other domains

(29). Figure 2b illustrates the architecture of our CNN

model to extract the dependency features. We first concat-

enate the embeddings of dependency paths into an embed-

ding matrix, then we convolute the matrix with a max-

pooling operation to encode the dependency features in a

more abstract way. In our model, three dependency paths

are taken into account: the dependency path from root to

chemical (R2C), the dependency path from root to disease

(R2D) and the dependency path from chemical to disease

(C2D). For instance, take the following sentence into

consideration:

f. The dipyridamole induced his hyperemia.

Figure 3 exhibits the dependency parsing tree of sen-

tence (f) where dipyridamole is the mention of the chemical

and hyperemia is the mention of the disease. Table 3 shows

the corresponding directed dependency paths of R2C, R2D

and C2D, respectively.

Obviously, as the input of the CNN model, each de-

pendency path can be regarded as a special ‘sentence’

which should be padded into the same length as well. The

‘tokens’ in a path consists of words, dependency relation

tags, and dependency directions.

Similar to other CNN-based models (25, 26), we also

consider a fixed size window of tokens around the current

token to capture its local features in a dependency path.

The window size is set to an odd number v, indicating that

there are (v – 1)/2 tokens before and after the candidate

token, respectively. Assuming each path of l length, the

combination of the dependency paths is then transformed

into the matrix X0 2 Rvdo�3l according to the look-up table

T. For example, when we set v¼3, the representation of

the third word induced in the C2D is expressed as [‘"’,
‘induced’, ‘#’]. Similarly, considering the whole sentence,

the whole C2D path can be represented as follows:

{[‘<PAD>’, ‘dipyridamole’, ‘"’], [‘dipyridamole’, ‘"’,
‘nsubj’],. . ., [‘"’, ‘hyperemia’, ‘<PAD>’]}.

(iii) Convolution. To predict a relation, it is necessary to ac-

quire more abstract features of all local features. With re-

spect to neural networks, the convolutional approach is a

natural way to merge all of the features and select the most

informative ones. Similar to Collobert et al. (24), after

being fed into the convolutional layer, the matrix X0 is pro-

cessed with the convolution operation:

Z ¼W1X0 þ b1 (2)

where W1 2 Rn1�vd0 is the parameter matrix, b1 2 Rn1 is

the bias term and n1 is the hyper-parameter. We can see

that the convoluted features are able to greatly reduce the

number of the parameters to be learned. After the linear

transformation is applied, the output Z 2 Rn1�3l would

represent the features more abstractly.

A pooling operation is then utilized to further abstract

the features generated from the convolution operation pre-

serving the most useful information. The popular pooling

function is max because of its responsibility for identifying

the most important or relevant features. The max pooling

operation on Z can be written as:

mi ¼ max Zði; �Þ 0 � i � n1 (3)

where Z(i, �) denotes the ith row of matrix Z. After the

max-pooling operation, we obtain the dependency feature

vector p5fm1;m2; . . . ;mn1
g, the dimension of which is

no longer related to the path length.

Afterwards, we send the dependency feature vector

p through a non-linear transformation to obtain the final

dependency feature vector. We take the non-linear

Table 2. The contextual features

No. Features

L1 Chemical mention

L2 Disease mention

L3 (w�1)/2 left and right tokens of chemical mention

L4 (w�1)/2 left and right tokens of disease mention

L5 Verbs in between

Figure 3. The dependency parsing tree of the example sentence.

Table 3. The dependency paths of the example sentence

Name Dependency paths

R2C ROOT#root#induced#nsubj#dipyridamole

R2D ROOT#root#induced#dobj#hyperemia

C2D dipyridamole"nsubj"induced#dobj#hyperemia
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transformation of hyperbolic tan h as the activation func-

tion. Formally, the non-linear transformation can be writ-

ten as:

d ¼ tan hðpÞ (4)

where d 2 Rn1 can be considered as the final dependency

feature vector with a higher level representation.

(3) Hidden. The automatically learned contextual and de-

pendency features mentioned above are concatenated into

a single vector k 5 [c, d], where k 2 Rnf (nf equals n1 plus

the dimension of the contextual features), which is then fed

into a hidden layer. The hidden layer applies linear and

non-linear transformations on k to obtain the final feature

vector r. The transformations can be written as:

r ¼ tan hðW2kþ b2Þ (5)

where W2 2 Rn2�nf is the transformation matrix, b2 2 Rn2

is the bias term and n2 is the hyper-parameter. The vector

r 2 Rn2 is the output of the hidden layer.

(4) Dropout. During the training step, before actually

applying the feature vector r, we conduct a dropout oper-

ation on r to prevent the over-fitting problem of the hidden

units by randomly setting the elements of r to zeros by a

proportion p and generate the vector h accordingly:

h ¼ r 8m (6)

where�is an element-wise multiplication and m is a mask

vector whose elements follow the Bernoulli distribution

with the probability p. However, the feature vector r is not

dropped out during the testing step. The dropout vector h

is then fed into the softmax layer at the end to perform re-

lation classification.

(5) Softmax. To compute the confidence of each relation,

the vector h 2 Rn2 is fed into the softmax layer.

o ¼W3hþ b3 (7)

where W3 2 Rn3�n2 is the transformation matrix b3 2 Rn3

is the bias term and o 2 Rn3 is the final output of the net-

work. The value n3 equals to the number of the predefined

relation types for the classification. Each output can be

then interpreted as the confidence score of the correspond-

ing relation. This score can be interpreted as a conditional

probability by applying a softmax operation.

To learn the parameters of the network, we use the pre-

dicted labels of o and the gold annotation labels in the

training set by adopting the following objective function:

JðhÞ 2 � 1

m

Xm

i¼1

log pðyijxi; hÞ þ kjjhjj2

where p(yijxi,h) is the confidence score of the golden label

yi of the training instance xi, m is the number of the train-

ing instances, k is the regularization coefficient and h ¼ {T,

W1, b1, W2, b2, W3, b3} is the set of parameters.

Relation merging

After relation extraction, we merge the results of the two

separate mention levels to obtain the final relations be-

tween chemicals and diseases at document level. Since a

pair of entities may have multiple mention pairs at intra-

or inter-sentence level, we assume that if there is at least

one pair of the mentions could explicitly support the CID

relation, we believe there is a true CID relation between

the entities. More details can be found in the previous

work (18).

Post-processing

When no CID relations can be identified in an abstract, the

following heuristic rules are applied to find the most likely

relations:

i. All chemicals in the title are associated with all diseases

in the entire abstract.

ii. When there is no chemical in the title, the most-

frequently mentioned chemical in the abstract is associ-

ated with all diseases in the entire abstract.

Experiments and results

In this section, we first present our experiment settings,

then we systematically evaluate the performance of our ap-

proach on the corpus.

Experiments settings

Following the previous work (18), a simple tokenizer (32)

was used for tokenization and the Stanford CoreNLP Tool

(33) was employed for sentence splitting, part-of-speech

tagging and lemmatization. The BLLIP parser (34) with

‘GENIAþPubMed’ model was employed to obtain the

syntactic parsing trees, and the dependency structures were

extracted by the Stanford CoreNLP Tool. For inter-

sentence level relation extraction, the Mallet MaxEnt clas-

sifier (35) was adopted because of its universality and ef-

fectiveness for classification problems.

The parameters for the CNN-based model at intra-

sentence level were tuned on the development dataset. To

train the CNN-based model, the AdaGrad algorithm (36)

was applied to fine-tune h with a learning rate of 0.002
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and a mini-batch size of 64. As it is infeasible to perform

full grid search for all hyper-parameters, we empirically set

w¼ 5, v¼ 9, n1¼300, n2¼ 1500, k¼ 10�4, p¼ 0.3. The

look-up table of T was initialized by GloVe (37) and the di-

mension of d0 was set to 300 accordingly. Due to the huge

size of the GloVe vocabulary (�2 M words), we only kept

the words that occurred in the CDR corpus. If the word

existed in GloVe, we used its corresponding embedding for

initialization; otherwise, we took a random embedding

vector as the substitute. Eventually there were <20 K

words in the vocabulary (the CNN code can be found at

https://github.com/JHnlp/CNN_CDR). Other parameters

in the model were initialized randomly.

All experiments were evaluated by the commonly used

metrics Precision (P), Recall (R) and harmonic F-score (F).

Experimental results

Table 4 shows the performance of the CID relation extrac-

tion at intra-sentence level on the test set with gold stand-

ard entity annotations using different features. From the

table, we can observe that only using the contextual fea-

tures, the final performance of F-score is able to reach as

high as 54.8%. This suggests that contextual features are

effective for intra-sentence level. Likewise, the model based

on dependency features performs comparably with the one

based on contextual features in terms of the F-score. This

is probably because of its capability of representing the

more general semantic relations between entity mentions.

When combining contextual and dependency features, our

system achieves the best F-score of 57.2% implying that

dependency features and contextual features are comple-

mentary to each other.

Table 5 shows the overall performance of the CID rela-

tion extraction at both intra- and inter-sentence levels on

the test set using gold entity annotations. During relation

merging, the results from both intra- and inter-sentence

level were fused into document level. The PP step was con-

ducted following the relation merging step in order to im-

prove the performance.

From Table 5, we can find the performance of inter-

sentence level is quite low. This is probably because the

CID relations at inter-sentence level spans several sentences

and thus have much more complex structures which the

traditional features could not capture effectively. Merging

the relations from mention level into document level can

improve the F-score to reach as high as 60.2%. After the

PP stage, the F-score can further arrive at 61.3%.

However, the PP step would dramatically improve the re-

call at the expense of the significant decrease in the

precision.

Since h was tuned on the development dataset, we need

to evaluate the effects of the hyper-parameters with differ-

ent values. The hyper-parameter w and v are mainly taken

into consideration. Figure 4 depicts the effect of the hyper-

parameter w related to the contextual information on the

performance of the relation extraction at intra-sentence

level on the development set. When w is changed, all other

hyper-parameters remain the same as described in the sec-

tion ‘Experimental settings’.

From Figure 4, we can observe that the performance

rises first along with the increase of w, and reaches the best

performance when w equals 5. Then the performance de-

creases as w is further increased. This is probably because

the context around entity mentions within a window size

of 5 is most suitable to describe their relations, while re-

dundant information of the context would be detrimental

to the identification of relations. Moreover, the more the

context information is leveraged, the more the noise is

introduced, as well as the larger the size of parameters in h

which should be learned, leading to the need of bigger

corpus.

Similarly, Figure 5 illustrates the effect of the hyper-

parameter v related to the dependency information with

different values on the development dataset. When v is

changed, all other hyper-parameters remain the same as

described in the section ‘Experimental settings’.

From Figure 5, we can observe that there is slight differ-

ence with the increase of v. This is probably because the

dependency path can robustly reflect the direct syntactic

relations between words, and the CNN-based method

could grasp this kind of information effectively. However,

the performance drops when v is larger than 9. It is prob-

ably because leveraging overmuch dependency information

would be prone to induce some noise, and lead to the par-

ameters being too large to learn with the small corpus.

Table 4. The performance of the CNN-based model on the

test dataset at intra-sentence level

Methods P R F

Contextual 54.8 54.9 54.8

Dependency 51.3 57.5 54.2

Contextual þ dependency 59.7 55.0 57.2

Table 5. The overall performance on the test dataset

Methods P R F

Inter-sentence level 51.9 7.0 11.7

Intra-sentence level 59.7 55.0 57.2

Relation merging 60.9 59.5 60.2

Post-processing 55.7 68.1 61.3
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Discussion

In this section, we first present the error analysis by exam-

ining the errors of our results, then we perform the com-

parison between other relevant systems and ours.

Error analysis

To understand why the task is challenging, we have closely

examined the errors and grouped the error reasons as

follows:

1. Lack of discourse inference: the relations at inter-

sentence level were expressed spanning multiple sen-

tences with a long distance, while the traditional lin-

guistic features such as bag-of-words could not grasp

the distant relation precisely. Therefore, discourse ana-

lysis including discourse inference and co-reference

resolution should be needed for the inter-sentence level

relation extraction.

2. Incorrect classification: the CNN-based method for

intra-sentence level could represent the semantic fea-

tures in a higher abstract way to represent more relative

associations between entities, however, this would also

introduce some noise to the system. For instance, in the

sentence Although the oral administration of class IC

drugs, includingpilsicainide, is effective to termin-

ateatrial fibrillation, careful consideration must be

taken before giving these drugs to octogenarians.

(PMID: 24653743), our system wrongly extracted the

relation between pilsicainide (C042288) and atrial fib-

rillation (D001281).

3. Inconsistent annotation: our experimental results show

that some false positive relations we extracted were

true and should actually be annotated in the corpus fol-

lowing the annotation guideline while they were actu-

ally not. For instance, our system found a CID relation

between METH (D008694) and hyperactivity

(D006948) in the document of PMID: 16192988. It is

surprising that the relation was not annotated in this

document, while it was actually annotated in other

documents such as PMID: 15764424 and PMID:

10579464. This is probably because of the limited IAA

of the CID relations as described in the section

‘Dataset’.

4. Rule-based extraction error: in the PP stage, heuristic

rules were supposed to improve the recall by finding

likely relations when none could be extracted by our

system. Nevertheless, the rule-based approach was too

aggressive to extract relations and would drop the pre-

cision significantly.

Comparison with relate works

In the following, a comparison between our work and the

relevant works is performed (18, 20–22, 30, 38, 39). Note

that only the systems that reported their performance with

gold standard entity annotations are selected in order to

eliminate the influence of the accumulated errors intro-

duced by different named entity recognition tools. Table 6

shows the performance of each system on the test dataset

using gold standard entity annotations. We mainly divide

the different methods into three groups as follows: the

rule-based methods, the ML methods without additional

resources, and the ML methods using external knowledge

bases (KBs).

From the table, we can find that the rule-based system,

i.e. Lowe et al. (38), achieved a competitive performance

with the F-score of 60.8% when compared with ML meth-

ods. However, the construction of their handcrafted rules

is costly and time-consuming as well as domain dependent,

which almost took over a period of 2 weeks (38).

ML methods with various kinds of features have shown

a promising capability of extracting CID relations (18, 20,

30). Xu et al. (20) reported their performance with a

feature-based SVM model, and only utilizing the linguistic

features enabled them to reach an F-score of 50.7%. Our

previous work (18) was based on a ME model with rich

linguistic features, and the F-score could reach as high as

58.3%. Particularly, Zhou et al. (30) proposed a hybrid

method which is the most relevant system to our approach.

They incorporated a tree kernel-based SVM and an LSTM

network to extract CID relations at sentence level. Their

Figure 4. The effect of the hyper-parameter w on the development

dataset.

Figure 5. The effect of the hyper-parameter v on the development

dataset.
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kernel-based model was aimed to capture the syntactic

structures, while their LSTM model was supposed to gen-

erate the semantic representations. In (30), they reported

multiple results of each sub-step of their method. From the

table, we can find that their method reached 53.1% when

only using the LSTM. When combining the LSTM with the

SVM, their performance was improved to 56.0%. After

employing heuristic rules in the PP stage their performance

can be further improved. Though the PP step helped them

to promote their performance to 61.3%, it significantly

decreased their precision. In addition, they also tried a

CNN model for comparison, but their CNN method only

reached the performance of 47.2%. Compared with Zhou

et al. (30), our CNN-based method exhibits a promising

ability for the relation extraction at sentence level, with the

F-score as high as 57.2%, rivaling the systems with rich

linguistic features (18, 20, 30).

Apart from the above systems, methods using KB fea-

tures have been proved to be more effective (20, 21, 22,

39). Alam et al. (39) leveraged knowledge features as well

as various kinds of linguistic features. Xu et al. (20) lever-

aged an SVM model with various knowledge-based fea-

tures. In particular, they took advantage of the relation

labels of chemical and disease pairs in the CTD (4) KB,

from which the CDR corpus was mainly generated. In

(20), it reported that the features from KB could contribute

nearly 11% of the F-score to their performance. Pons et al.

(21) also used prior knowledge about chemicals and dis-

eases to generate knowledge-based features with a fine

tuned SVM classifier. They utilized the relation cues be-

tween chemicals and diseases in a large knowledge data-

base which also includes the curated information in CTD.

Peng et al. (22) proposed a rich-feature approach with

SVM to extract CID relations. Their features included

statistical features, linguistic knowledge features, and do-

main resource features. Furthermore, they augmented their

approach with 18 410 external curated data in CTD as

additional training data to further improve the perform-

ance. In (22), it reported that the KB features and the extra

training data can contribute nearly 8.33 and 4.7% to their

F-score, respectively.

Though features based on KBs especially on the CTD

can yield a remarkably high performance because of the

abundant manually refined information, our approach pre-

sented in this article still exhibits a promising improvement

in precision as well as in recall. Compared with the

knowledge-based systems, our approach would be more

universal and easier to apply.

Conclusion and future work

This paper describes a supervised learning approach to

automatically extract CID relations by using a ME model

and a convolutional neural network model for extracting

inter- and intra-sentence level relations, respectively. Our

study shows that the combination of the two models is ef-

fective on the CID relation extraction task. We believe our

method is robust and can be readily adopted for other rela-

tion extraction tasks without much manual efforts for do-

main adaptation.

Our research on deep learning exhibits promising re-

sults for relation extraction in the biomedical literature.

Nevertheless, more work needs to be done to further im-

prove the system performance. In future work, we plan to

include neural network models with richer representation

such as recursive neural network and incorporate more

knowledge from publicly available databases in a distant

supervision fashion in order to achieve better results.

Table 6. Comparisons with the related works

Methods System Description P R F

ML without KB Ours CNN 59.7 55.0 57.2

CNNþME 60.9 59.5 60.2

CNNþMEþPP 55.7 68.1 61.3

Zhou et al. (30) CNN 41.1 55.3 47.2

LSTM 54.9 51.4 53.1

LSTMþSVM 64.9 49.3 56.0

LSTMþSVMþPP 55.6 68.4 61.3

Gu et al. (18) ME 62.0 55.1 58.3

Xu et al. (20) SVM 59.6 44.0 50.7

ML with KB Alam et al. (39) SVMþKBs 43.7 80.4 56.6

Xu et al. (20) SVMþKBs 65.8 68.6 67.2

Pons et al. (21) SVMþKBs 73.1 67.6 70.2

Peng et al. (22) SVMþKBs 68.2 66.0 67.1

Extra training dataþSVMþKBs 71.1 72.6 71.8

Rule based Lowe et al. (38) Heuristic rules 59.3 62.3 60.8
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