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Abstract

Today, molecular biology databases are the cornerstone of knowledge sharing for life and

health sciences. The curation and maintenance of these resources are labour intensive.

Although text mining is gaining impetus among curators, its integration in curation work-

flow has not yet been widely adopted. The Swiss Institute of Bioinformatics Text Mining

and CALIPHO groups joined forces to design a new curation support system named

nextA5. In this report, we explore the integration of novel triage services to support the cur-

ation of two types of biological data: protein–protein interactions (PPIs) and post-

translational modifications (PTMs). The recognition of PPIs and PTMs poses a special chal-

lenge, as it not only requires the identification of biological entities (proteins or residues),

but also that of particular relationships (e.g. binding or position). These relationships cannot

be described with onto-terminological descriptors such as the Gene Ontology for molecular

functions, which makes the triage task more challenging. Prioritizing papers for these tasks

thus requires the development of different approaches. In this report, we propose a new

method to prioritize articles containing information specific to PPIs and PTMs. The new re-

sources (RESTful APIs, semantically annotated MEDLINE library) enrich the neXtA5 plat-

form. We tuned the article prioritization model on a set of 100 proteins previously annotated

by the CALIPHO group. The effectiveness of the triage service was tested with a dataset of

200 annotated proteins. We defined two sets of descriptors to support automatic triage: the

first set to enrich for papers with PPI data, and the second for PTMs. All occurrences of
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these descriptors were marked-up in MEDLINE and indexed, thus constituting a semantic-

ally annotated version of MEDLINE. These annotations were then used to estimate the rele-

vance of a particular article with respect to the chosen annotation type. This relevance score

was combined with a local vector-space search engine to generate a ranked list of PMIDs.

We also evaluated a query refinement strategy, which adds specific keywords (such as

‘binds’ or ‘interacts’) to the original query. Compared to PubMed, the search effectiveness

of the nextA5 triage service is improved by 190% for the prioritization of papers with PPIs

information and by 260% for papers with PTMs information. Combining advanced retrieval

and query refinement strategies with automatically enriched MEDLINE contents is effective

to improve triage in complex curation tasks such as the curation of protein PPIs and PTMs.

Database URL: http://candy.hesge.ch/nextA5

Introduction

A large area of the research in biology aims to improve the

understanding of the cell, and in particular, to investigate

how the proteins from these cells collaborate together.

Involved in numerous molecular processes, protein–protein

interactions (PPIs) are deeply described in the literature

(1–3). Post-translational modifications (PTMs) are typic-

ally defined as the alteration of a protein after its synthesis

(4). These modifications often imply an enzymatic process

such as the phosphorylation in which a phosphate is cova-

lently attached to an amino acid side chain. Moreover,

these modifications are important for the functional activ-

ity of cells by regulating their activity and interactions,

among other mechanisms. Today, about 200 such modifi-

cation types are known (5), but our study focuses on the

PTMs that represent most of the ones we can find in the

literature.

Current research in life sciences has become greatly sus-

tained by the many knowledge bases available for the com-

munity. Curators play a key role to define the content and

ensure the quality of the biomedical databases and to spot-

light the major findings (6–8). Their mission consists of

continuously collecting, verifying and annotating the lit-

erature using ontologies and other data sources. Although

this process is accurate, it is also time-consuming and im-

proved approaches have been proposed by the text-mining

community.

Many text-mining methods have been applied to sup-

port the annotation of proteins, including the capture of in-

formation describing their normal or pathologic functions

(9–18). Molecular functions, subcellular locations, biolo-

gical processes and diseases are among the most frequent

entities extracted by these methods. These methods are

supported by a wealth of onto-terminological resources.

One limitation with approaches, which depends on onto-

logical resources and descriptor dictionaries, is that they

do not support the extraction of protein–protein

interactions, as the high combinatory nature of such

data—virtually any protein can interact with any other

protein or even protein-complex—makes it impossible to

generate a controlled vocabulary that captures all the pos-

sible combinations. This problem is known as relationship

extraction (19). Several experiments have been made to

build relationships on top of a simple named-entity recog-

nizer. Once some proteins are identified, the recognition of

specific triggers [verbs such as bind or nouns such as com-

plex (13–18)] can be used to build the interaction tuple.

However, these methods, which attempt to replace the role

of the curator by identifying each entity involved in the

interaction, are relatively complex to tune so that success

rates are relatively low even for a limited set of species. For

example, at BioCreative II, the precision for the interaction

pair extraction task was in a range from 5% to 39% with

an average of 18% (20).

In (21), the authors estimate that about 7% of the cur-

ation time is assigned to the rejection of papers. From such

a study, we assume that at least the same amount of time

(so another �7%) percent is needed to select relevant

papers. Altogether, we suggest that about 15% of the cur-

ation effort is spent on triage. By exclusion, we can thus

consider that 85% of the effort relates to other curation

tasks, including reading (e.g. text, images, tables. . .) and

normalization (e.g. choosing unique accession number or

descriptors in a controlled vocabulary); see (22) for the

presentation of a sequential curation workflow. So, we hy-

pothesize that by improving the search effectiveness

byþ100%, we can save about 7–8% of the productivity of

a curation team. Linearly, an improvement ofþ200%

would result in speeding up curation by about 10%.

In addition to delivering a better triage, the search en-

gines we explore in this report will also be more specialized

and address more specific curation needs. Although they

may not perform better than existing ones (e.g. PubMed,

EBIMed, EAGLi. . .) as general-purpose search tools, we
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expect they will be optimal to rank the literature given a

particular annotation task. In previous works, we pre-

sented successful examples of customized engines powered

with onto-terminological resources (12) to support the an-

notation of diseases or gene functions; today, we extend

the work to support the curation of data type involving

relationships.

One of our objectives is to provide professional curators

with documents likely to contain information relevant for

the curation of PPIs and PTMs. We started working with

neXtProt, a database maintained by the Swiss Institute of

Bioinformatics (SIB) (23) and we focus our attention on

the triage task. Ultimately, interacting entities (proteins,

interaction types, methods to predict interactions. . .) will

be proposed for validation by the system, but first, we

want to reduce the search burden by simplifying the paper

selection step (24, 25). The selection process itself is seen

as an interactive process, piloted by the curator. The most

relevant articles are first ranked based on the content of

their abstracts. Once they have been selected by the cur-

ator, the system triggers some dedicated information ex-

traction module with the creation and display of triplets

{subject–relation–object}. These triplets will finally be vali-

dated—rejected or modified—by the curator.

In parallel, we also explore a related problem: the cur-

ation of PTMs. The idea is to test the scalability and the

generalization power of the triage system to address the

identification of papers dealing with a different type of bio-

logical relationship. Our evaluations are made on 16 types

of PTM, but previous work showed that virtually all PTMs

are expressed with the same semantic model (26): the pro-

tein (subject), the substrate (object) and the exact position

(location) affected by the PTM. Finally, we also describe in

this report how the services are embedded in the curation

workflow of neXtProt, within the BioEditor curation tool

(27).

Materials and methods

Investigated molecular processes

Regarding the terminological resources used in our experi-

ments, the Proteomics Standards Initiative provides com-

munity standards for data representation in proteomics

(28–30), which have also been applied to PPIs. A subset of

a few verbs and assays was also selected. From this group,

we generated a list of morphological variants (or stems)

such as phosphorylate—which is able to cover strings such

as phosphorylated, phosphorylates, phosphorylating and

phosphorylation. Thus, we end up with a very specific vo-

cabulary, which contains 23 concepts: 14 stemmed inter-

action terms together with the 9 most annotated

experimental methods found in the neXtProt database.

This thesaurus is presented as supplementary material in

file 1.

This study focuses on 16 different PTMs, which are also

among the most frequent: phosphorylation, methylation,

dephosphorylation, glycosylation, nitrosylation, palmitoy-

lation, deubiquitination, polyADP-ribosylation, acetyl-

ation, desumoylation, myristoylation, deacetylation,

farnesylation, ubiquitination, sumoylation and protein

cleavages.

BioMed and neXtA5

To initiate the literature search, we used BioMed, a fully

synchronized mirror of MEDLINE and PMC. BioMed is

stratified into temporal bins so that a user can query spe-

cific temporal ranges. Our experiments are made on a bin

containing about 16 million PubMed abstracts, i.e. all

MEDLINE from 1990 until today. The content of BioMed

is enriched by several millions of automatic annotations

from several ontologies (MeSH, NCI Thesaurus, Gene

Ontology, etc.), generated by neXtA5 [12]. All BioMed

contents, including the annotations, are freely available.

Specific subsets are also pushed on a regular basis to enrich

the content of Europe PMC (31, 32). To support our ex-

periments, BioMed was enriched in order to annotate also

interaction concepts. The sentences and offset positions

where the concepts are found are also recorded, and the

database is regularly updated.

More than a database, BioMed is a digital library re-

source developed by SIB Text Mining to primarily serve

SIB internal needs. The library integrates the Terrier search

engine (33). The search effectiveness of the IR module has

been demonstrated during various competitions (34, 35)

with default scoring functions derived from the Okapi

BM25 and deviation from randomness weighting schemas

(36, 37).

At curation time, neXtA5 queries the IR module from

BioMed and also fetches the associated annotations. The

initial search step, known as ‘vector space model’, deter-

mines the relevance of documents with respect to the initial

query. Thus, if the initial query is a protein, then the scor-

ing function will rank papers that contain several occur-

rences of the protein. Compared to the default Boolean

function of other engines, which rank papers by chronolo-

gical order (most recent first), this is an advantage. In com-

plement, and to improve recall, synonyms or keywords

may be added to the initial query. The first result of the

ranking is calculated based on the density of the query

terms in each document, but the score is then combined

with other parameters in a linear combination specifically

tuned for each axis (PPIs or PTMs).
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The system also proposes a more traditional research

mode based on the PubMed Boolean model (38). In that

case, the articles are ranked by PubMed, but the results are

enriched with the annotations stored in BioMed.

Fusion of search scores

The combination of results provided by different engines,

which is known to improve search effectiveness in a large

set of situations (39–41), is also tested in our environment.

The new ranking is based on the linear combination of two

components: the vector-space search engine and the rank-

ing provided by computing the density of either PPIs or

PTMs descriptors (i.e. the total of different PTMs or PPIs

concepts occurring in a document). Then, to obtain the op-

timal tuning, we assessed several combinations of param-

eters by varying their respective weights. The tuning

experiments generated the following formulae for PPIs and

PTMs:

Protein–Protein Interactions:

Linear combination ¼ 0:9� search engine scoreþ 1:5

�
X

distinct descriptor

Post-Translational Modifications:

Linear combination ¼ 0:9� search engine scoreþ 1:7

�
X

distinct descriptor

This optimized selection of parameters was derived by

trial and errors by testing some variant combinations based

on the well-known term frequency (TF) inverse document

frequency (IDF) model. In scientific publications, concepts

are often repeated, and TF (i.e. the number of times a given

concepts occurs in a given document) is a commonly used

measure of information retrieval systems. However, results

showed that using TF in combination with the features in

the aforementioned formulae does not improve the re-

trieval effectiveness of the triage method. The IDF is taken

in account in the weighting schema computed by the

BioMed search.

Query refinement

In a second set of experiments, we evaluate the effect of

specific keywords (added at query time) on the retrieval ef-

fectiveness of the model. Terms such as ‘associates’,

‘binds’, ‘interacts’, ‘phosphorylates’ and their combin-

ations are added to expand the original queries. We as-

sessed the impact of these terms on the retrieval

effectiveness of the triage engine for both PPIs and PTMs.

A new linear combination is generated, which uses two

new statistical measures: the TF of a descriptor and its

length measured in characters. The length of the descrip-

tors can indeed be seen as an approximation of its specifi-

city (42–44). The comprehensive list of keywords tested, as

well as the associated results, is provided as supplementary

material in file 2. The best improvements were observed

with the following combinations:

Protein–Protein Interactions: keyword¼ ‘bindsþ inter-

actsþ associates’

Linear combination ¼ 1:0� search engine scoreþ 0:1

�
X

descriptor

logð1

þ descriptor length
� term frequency of descriptorÞ

Post-Translational Modifications: keyword¼ ‘phosphory

lates’

Linear combination ¼ 1:4� search engine scoreþ 1:3

�
X

distinct descriptor

Interestingly, the TF parameter, which did not improve

our results in the previous experiments, has now a positive

impact of aboutþ10% for retrieving documents relevant

to curate PPIs. In contrast, the number of unique concepts

does not improve the selection of papers, suggesting that

the TF and the number of unique descriptors capture simi-

lar information. The importance of the keyword ‘phos-

phorylates’ for PTMs reflects the high number of

phosphorylations in the PTM data set, which account from

about 95% of all PTMs, and using other keywords does

not result in any comparable improvements.

Evaluation

This evaluation focused on the pertinence of the docu-

ments retrieved, and the precision is the reference metric

established for such task; see the Text Retrieval

Conference (TREC) (24, 45).

Datasets

In the course of the annotation of 300 human protein kin-

ases, curators captured 4044 binary interactions and 5862

PTMs. The PMIDs selected by our curators for the sake of

annotation are used as gold standard (the so-called rele-

vance judgements or QREL in the TREC jargon) in our ex-

periments. Within these data, we used a subset of 100

kinases to tune the system with 1100 annotations for the

PPIs and 1933 for the PTM axis. The rest of the data were

used for the evaluation of the new triage methods. The 300
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kinases are provided as supplementary material in file 3,

whereas the PPIs and PTMs QREL are, respectively, pre-

sented as supplementary material in files 4-a and 4-b.

As PubMed is the traditional source of information

used by curators (and researchers), we adopted it as the

baseline. For each of the 100 kinases subsets, we consider

the top 1000 PMIDs returned by the engines. PMIDs pub-

lished outside the temporal boundaries of our benchmarks

(i.e. papers published after December 2013) are simply dis-

carded. Indeed, all search strategies should in principle be

equally affected by such a temporal drift; however, we

thought that not filtering out by dates could have been

slightly detrimental for PubMed, because publication dates

play a significant role in the ranking of the results by the

NLM engine. PubMed is queried via the Boolean mode

(NCBI E-utilities) using the relevance sort option. Reviews

and retracted publications are excluded from the results of

all search results because they are not used by biocurators.

Metrics

Since we aim at facilitating the curators work, we try to

model the curation workflow, and, in particular, the search

behaviour of curators. Retrieval effectiveness is assessed

using different metrics such as mean average precision

(MAP), which averages the precision at different points of

recall (precision at 5 documents, 10 documents, etc.).

Recall is usually ignored because in a large document col-

lection, it is impossible to list of relevant papers. Similarly,

a curator does not try to keep track of all relevant papers

for a given protein or gene product, instead the curator

wants to record all information about a given gene product.

If a particular statement or fact about a protein is found in

several articles, the curator will capture the statement but

rarely records all papers containing the statement.

For a human agent, who interacts with a search engine,

the top ranked documents are clearly more useful than

documents found at lower ranks. In this context, we pay

special attention to the precision of the top-returned docu-

ment, the so-called mean reciprocal rank or P0.

As detailed in Table 1, the subset of documents relevant

for the 100 kinases contains 1100 and 1933 PMIDs, re-

spectively, for PPIs and PTMs. Between 29 782 and 87 998

PMIDs are then returned by the different search engines

we are comparing, which means that the percentage of true

positive results is relatively low.

Results

The first module evaluated is the vector space search en-

gine from BioMed. We immediately observe a gain at P0,

i.e. the chance to find a relevant document at first rank,

compared to PubMed. With 0.14 for the PPIs and 0.16 for

the PTMs, BioMed improves the baseline by, respect-

ively,þ34% andþ57%. Regarding simple search (the so-

called ad hoc by TREC), the use of a vector-space model

compared to PubMed is already effective.

In a second step, we measure the effectiveness of the lin-

ear combination of the BioMed ranking and the ranking

provided based on the density of descriptors. The second

strategy of triage outperforms both PubMed and BioMed,

with a P0 value at 0.27 for the PPIs and 0.28 for the PTMs.

The improvement already confirms the advantage of de-

veloping distinct methods to explore these two particular

axes. Furthermore, using the query refinement strategy

brings some modest yet significant improvements, with a

gain of 11% (PPIs) and 30% (PTM).

The overall improvement compared to PubMed reach-

esþ191% and þ261% for PPIs and PTMs, respectively

(Table 2, Figure 1). In other words, for PTMs, PubMed re-

turns one relevant article out of 10, whereas neXtA5 re-

turns one relevant article out of three at the top of the list.

Finally, regarding PTMs, the impact of the single key-

word ‘phosphorylate’ (or its stemmed form) suggests that

designing a strategy for each PTM could result in some

significant improvement of the triage effectiveness.

Table 1. Document_distribution

A PUBMED BIOMED QUERY EXPANSION

# OF RETRIEVED DOCUMENTS 33 408 29 782 84 629

# OF RELEVANT DOCUMENTS 1100 1100 1100

# OF RELEVANT_RETRIEVED DOCUMENTS 469 504 469

B PUBMED BIOMED QUERY EXPANSION

# OF RETRIEVED DOCUMENTS 33 408 29 782 87 998

# OF RELEVANT DOCUMENTS 1933 1933 1933

# OF RELEVANT_RETRIEVED DOCUMENTS 607 584 689

Distribution of the documents retrieved by the different systems during A—the PPIs evaluation, and B—the PTMs evaluation. The query expansions mentioned

in table A and B, respectively, relate to the keywords ‘phosphorylate’ and ‘bindsþ interactsþ association’
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The improvement is more modest but relatively similar for

PPIs by using a combination of keywords.

Implementation

Currently, we developed and deployed two implementa-

tions of the triage platform: one for the sake of demonstra-

tion, open for any user but which is not integrated with the

neXtProt curation workflow, and one fully integrated in

the BioEditor, the neXtProt biocuration tool.

neXtA5-BioEditor architecture and services

As a joint development between SIB Text Mining and

CALIPHO, neXtA5 attempts to deliver a seamless

integration with the curation platform of the neXtProt

database, named the BioEditor (27). To achieve this, a set

of web services and dedicated user interfaces has been de-

veloped. The integration of the neXtA5 services within the

neXtProt curation workflow is shown in Figure 2, whereas

an example of curation using this workflow and a sequenc-

ing diagram of the annotation process are, respectively,

provided as supplementary material in files 5-a and 5-b.

The two neXtA5 services (S3, S4) are server-side pro-

grams built with Java REST (Representational State

Transfer) technology. These services provide access to the

different functionalities: the Information Retrieval models

(vector space or Boolean model), the Ranking and the gen-

eration of statements for the annotation. Publicly available

via URLs, the queries are based on standardized param-

eters described below.

The service ‘getRanking ’ (S3) is the web service in

charge of the classification of documents. Built as http

POST request, the output (in JSON or XML format) en-

closes the publication data as well as the pre-tagged con-

tent. For instance, the URL http://candy.hesge.ch/neXtA5/

webservice/ranking/json?axis=Disease&gene=BTK would

provide the publications relative to the gene ‘BTK’. Other

parameters are:

• axis: ‘DISEASE’, ‘GO_MF’, ‘GO_BP’, ‘GO_CC’ or

‘INTERACTION’ depending on the investigated axis,

the ranking will depend on this setting.

• mode: should be set to ‘Vectorial’ or ‘Boolean’ depend-

ing on the expected research mode.

• synonyms: is a list of gene synonyms, delimited by quotes

and separated by commas.

Figure 1. Comparison of the precision at P0 for the PPIs and PTMs

ranking task by using PubMed versus BioMed, neXtA5 and neXtA5

augmented with the query refinement approach.

Figure 2. Architecture of the neXtA5 implementation in the BioEditor.
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• dateAfter: set at 1980 by default, this is the earliest date

of the publications retrieved.

• excludedPublication: is a list of publications’ ID un-

wanted; these can be already evaluated or declared as

non-pertinent by the user.

• excludedConcept: is a list of concepts’ ID unwanted;

these are usually considered as non-pertinent by the user.

The service ‘getPublicationStatements’ (S4): operating

with http GET method, this service aims to provide the so-

called triplets for annotation. This generation of triplets, as

an association {subject – relation – object}, is the principal

contribution brought to the BioEditor. For instance, we

can access the statements proposed for the gene ‘FGFR1’

in the PMID ‘17154279’ via the following URL: http://

candy.hesge.ch/neXtA5/webservice/publicationStatements/

json?publicationId=17154279&publicationSource=PMID

&gene=FGFR1&axis=Disease.

The JSON output is shown in Table 3; the following

parameters are required:

• gene: names the investigated gene.

• axis: designates the same axes as above.

• publicationId: is the pmid from which the user wants to

extract findings.

• publicationSource: ‘PMID’ or ‘PMCID’, the first one is

selected by default since the full-texts are not ready for a

stable release.

Three services were implemented to fetch various con-

figuration settings:

• service ‘genes’ (S0): returns the list of genes available in

neXtProt. This list is used to propose all human proteins

that can be annotated;

• service ‘triples’ (S0): returns the possible relations and

objects for one axis to constrain the user when creating

annotations;

• service ‘ecos’ (S0): returns the list of the Evidence and

Conclusion Ontology (ECOs) concepts that are allowed

to be issued in conjunction with each relation.

Four additional services were implemented to allow the

user to filter out results from ‘getRanking’ service and to

track user interactions, which later can support an im-

proved user experience:

• service ‘getPublicationExcludedByDefault’ (S1): returns

publications already treated for a given doublet gene/

axis to allow user to filter displayed publications;

• service ‘getConceptsExcludedByDefault’ (S2): returns al-

ready treated concepts [for instance, ‘lactase activity’

(GO:0000016)] for a given doublet gene/axis allowing

user to filter displayed publications;

• service ‘saveInteraction’ (S5): stores modifications done

by a user for a given triplet publication/gene/axis. For

each annotation, it records: the axis, the gene, the publi-

cation, the proposed object, the proposed relation, the

proposed ECO, the status (accepted, modified, rejected

or unreviewed). Then, if the annotation is accepted or

modified, the selected object, the selected relationship

and the selected ECO descriptor are saved.

Table 2. Statistics of testing benchmarks for the different PPIs

and PTMs ranking methods

PPI PTM

PUBMED (BASELINE) 0.103 – 0.101 –

BIOMED 0.138 þ34.1% 0.158 þ57.2%

NEXTA5 0.269 þ161.9% 0.280 þ178.0%

QUERY REFINEMENT 0.299 þ190.7% 0.363 þ260.6%

Statistics of testing benchmarks for the different PPIs and PTMs ranking

methods. Settings are chosen by trial and errors on the fusion on search

scores; the precision between two runs could be affected positively or nega-

tively by the parameters and the weights. Only the best results (at P0) from

each engine are displayed here.

Table 3. JSON output example of the service S4 related to the

generation of triplets for the annotation

{

“gene”: “FGFR1”,

“axis”: “Disease”,

“publication”: “17154279”,

“annotations”:

[

{

“proposedRelation”:{“id”: “”, “name”: “causes disease”},

“proposedObject”:{“id”: “C75479”, “name”: “Kallmann

syndrome”},

“proposedEco”:{“id”: “”, “name”: “”},

“passage”:“In a new cohort of 141 unrelated patients af-

fected by Kallmann syndrome we identified FGFR1 se-

quence variants in 17 patients, all in the heterozygous

state.”

},

. . .

]

}

JSON output example of the service S4 related to the generation of triplets

for the annotation. In this publication, PMID 17154279, the authors report

on the possible implication of the gene FGFR1 in the Kallmann syndrome.

Database, Vol. 2017, Article ID bax040 Page 7 of 11

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax040/3866793 by guest on 03 M

ay 2024

Deleted Text: to 
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
http://candy.hesge.ch/neXtA5/webservice/publicationStatements/json?publicationId=17154279&publicationSource=PMID&gene=FGFR1&axis=Disease
http://candy.hesge.ch/neXtA5/webservice/publicationStatements/json?publicationId=17154279&publicationSource=PMID&gene=FGFR1&axis=Disease
http://candy.hesge.ch/neXtA5/webservice/publicationStatements/json?publicationId=17154279&publicationSource=PMID&gene=FGFR1&axis=Disease
http://candy.hesge.ch/neXtA5/webservice/publicationStatements/json?publicationId=17154279&publicationSource=PMID&gene=FGFR1&axis=Disease
http://candy.hesge.ch/neXtA5/webservice/publicationStatements/json?publicationId=17154279&publicationSource=PMID&gene=FGFR1&axis=Disease
http://candy.hesge.ch/neXtA5/webservice/publicationStatements/json?publicationId=17154279&publicationSource=PMID&gene=FGFR1&axis=Disease
Deleted Text: &hx0022;
Deleted Text: &hx0022; 
Deleted Text: &hx0022;
Deleted Text: &hx0022;,
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: (
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: )) 
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: ,


• service ‘getInteraction’ (S7): returns the saved inter-

actions for a given triplet publication/gene/axis.

The last implemented service (S6) saves annotations in

the BioEditor. It stores all accepted and modified annota-

tions of a given triplet publication/gene/axis.

neXtA5 graphical user interface

A web interface is available (http://candy.hesge.ch/nextA5)

for an open trial of the text-mining resources. The process

is split into three steps. First, the user indicates the gene

(e.g. FGFR1) and the axis (e.g. diseases) on which s/he

would like to work. Immediately, the publications and

concepts previously annotated (in the BioEditor) for this

gene and axis are retrieved and displayed. The user can se-

lect publications and/or concepts to exclude. Second, the

system retrieves some publications and displays them in a

table (Figure 3). Publications are ranked by relevance. For

each publication, the user can view the abstracts with some

highlighted concepts, along with the status of the annota-

tion (e.g. partial, not done). Third, the user selects a publi-

cation and the system retrieves the suggested annotations

(Figure 4). Annotation statements are displayed as triplets,

but at the current stage, only the object is automatically

proposed. The user must therefore manually complete the

triplet (i.e. the relation and the ECO descriptor), with the

help of autocomplete functionalities. An annotation can be

‘accepted’, ‘modified’, ‘rejected’ or ‘unreviewed’ (pending).

At any point, the user can save his work by clicking on the

Save temp button and come back later. Once the publica-

tion is fully annotated (i.e. all the annotations have been

reviewed), the user can save the annotations in the

BioEditor by clicking on the Save button.

Conclusion

The linear combination of heterogeneous IR outcomes is a

very effective approach to strengthen triage and the current

improvements clearly exceed the initial plans:

fromþ191% (PPIs) toþ261% (PTMs). The global triage

effort can thus potentially be reduced by a factor 3.

Although triage of positive and negative articles can repre-

sent up to 15% of the curation work, we can significantly

speed up this step, which could finally represent <5% of

the whole curation process. The overall productivity gain

for biocurators would thus be in the range of 10%. The im-

pact on other dimensions of curation (paper reading, nor-

malization of descriptors and reduction of the overall

process time) is still to be evaluated.

The general approach of the neXtPresso project, ‘one cur-

ation axis-one dedicated search approach’, seems therefore

extremely effective. Pushing the approach further, we could

envisage, in the future, that different engines could be applied

in parallel or as batch processes instead of adopting user-

Figure 3. Phase 2, selection of a relevant publication in the ranked list.
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piloted interactive tools. This approach has also the advan-

tage that a virtually infinite list of ranking features can be

tested independently to design a better scoring function.

Further improvements to the system may be obtained by

using not only positive features, but also negative ones.

Indeed, query refinement is well-known approach to perform

query reformulation, but more advanced approaches have

been proposed by researchers in information sciences. In par-

ticular, the Rocchio algorithm showed competitive results in

many settings (46). Rocchio is an interactive method in

which the end-user manually selects relevant articles out of

the list retrieved by the system. By selecting relevant articles,

the end-user also implicitly defines non-relevant ones. From

this dataset, it is then possible to sort the most frequent

words associated with each subset. This list is then shown to

the user, who can manually add or remove keywords (47).

Negative features are not added to the original queries, but

instead they are used to filter out irrelevant publications.

Such an approach is intended to reduce information deluge.

It is clear that future developments in text mining applied to

curation could significantly improve if curation platforms

would capture not only papers (and information) they select,

but also papers they reject as argued in (22).
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