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Abstract

Availability of research datasets is keystone for health and life science study reproducibil-

ity and scientific progress. Due to the heterogeneity and complexity of these data, a main

challenge to be overcome by research data management systems is to provide users

with the best answers for their search queries. In the context of the 2016 bioCADDIE

Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the

search of datasets used in biomedical experiments. Our system comprises a query ex-

pansion model based on word embeddings, a similarity measure algorithm that takes

into consideration the relevance of the query terms, and a dataset categorization method

that boosts the rank of datasets matching query constraints. The system was evaluated

using a corpus with 800k datasets and 21 annotated user queries, and provided competi-

tive results when compared to the other challenge participants. In the official run, it

achieved the highest infAP, beingþ22.3% higher than the median infAP of the partici-

pant’s best submissions. Overall, it is ranked at top 2 if an aggregated metric using the

best official measures per participant is considered. The query expansion method

showed positive impact on the system’s performance increasing our baseline up

toþ5.0% andþ3.4% for the infAP and infNDCG metrics, respectively. The similarity

measure algorithm showed robust performance in different training conditions, with

small performance variations compared to the Divergence from Randomness frame-

work. Finally, the result categorization did not have significant impact on the system’s

performance. We believe that our solution could be used to enhance biomedical dataset

management systems. The use of data driven expansion methods, such as those based

on word embeddings, could be an alternative to the complexity of biomedical terminolo-

gies. Nevertheless, due to the limited size of the assessment set, further experiments

need to be performed to draw conclusive results.
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Introduction

The use of search engines in the Web as content indexing

but also as data providers, via e.g. hyperlinks and text snip-

pets, such as in Google and PubMed, has changed the way

digital libraries are managed from static catalogues and

databases to dynamically changing collections in a highly

distributed environment. Systems, such as PubMed,

PubMed Central (PMC) and Europe PMC, successfully

provide platforms for retrieving and accessing information

in the scientific literature, an essential step for the progress

of biomedical sciences. Biomedical research produces enor-

mous amount of digital data, which is stored in a variety of

formats and hosted in a multitude of different sites (1).

Datasets, such as individual-level genotype, protein se-

quence, pathology imaging and clinical trials, are a few

common examples. To guarantee the quality of scientific

research, and maximize societal investments, it is key that,

in addition to manuscript content, supporting material and

datasets used and produced in experiments are also access-

ible and easily searchable, enabling thus the reproduction

of key research findings and the generation of novel in-

sights (2). Indeed, as it has been shown in some collabor-

ations, integrated access to research datasets speeds up

scientific progress, and, with the advance in data analytics

methods, allows the discovery of new knowledge from

connected data (3). Transparent and integrated access to

research datasets is also paramount for asserting reprodu-

cibility and reliability of research outcomes (2, 4).

Consequently, more and more journals request authors to

make datasets publicly available (5).

Aware of the needs for data sharing in scientific research,

several systems are being investigated and implemented to

provide flexible and scalable information management that

meets the scale and variety of data produced by the biomed-

ical community (6). For example, dbGaP provides public ac-

cess to large-scale genetic and phenotypic datasets required

for wide association study designs (7). PhenDisco brings

standardization of phenotype variables and of study meta-

data, and result ranking to dbGaP to improve search per-

formance of phenotypes (8). GigaDB not only hosts research

datasets but also tools, such as executable workflows, and as-

signs a Digital Object Identifier to datasets, which can be

then used and cited by other researchers (9). OpenAIRE, a

large-scale initiative funded by the European Commission,

provides an open data infrastructure service that enables col-

lection, interlink and access to research publications and

datasets, and to projects of the European Commission and

other national funding schemes (10). Finally, the biomedical

and healthCAre Data Discovery Index Ecosystem

(bioCADDIE) consortium, funded by the US National

Institute of Health Big Data to Knowledge program (11),

aims at building a data discovery index that makes data find-

able, accessible, interoperable and reusable allowing thus bio-

medical researchers to more easily find, reanalyse and reuse

data (12). A common characteristic of these systems is that

they are all powered by an information retrieval engine that

enables indexing of the dataset metadata and content, and

allows end users to locate the appropriate research data from

the set of indexed repositories.

In particular, bioCADDIE implements a search engine

prototype, called DataMed, using ElasticSearch (13).

DataMed catalogues research datasets based on a standard

core metadata model, called Data Tag Suite (DATS),

which is designed to be generic, applicable to any type of

dataset and extendable to specialized data types (14) so

that it can accommodate the diversity of research data

types and formats. Research datasets are fed into the

bioCADDIE platform through an ingestion repository.

Then, an indexing pipeline maps the disparate metadata

from the indexed repositories into the unified DATS model

(13). Due to the nature of bioCADDIE datasets and the

system’s intended use, DataMed faces several challenges to

provide end users with a relevant ranking list of datasets

for their queries. First, as largely studied in TREC chal-

lenges (15–17), in daily usage casual users tend to create

small queries, varying usually from one to ten words in

length. In general, top-ranked retrieval systems, such as

those based on BM25-Okapi similarity measures, under-

perform in these scenarios in comparison with long queries

(15). Second, the heterogeneity of the research data cor-

pora brings new challenges to search engines and similarity

measure algorithms. Differently from the scientific litera-

ture, which is composed basically of text data types, re-

search datasets are available in a myriad of multimodal

formats, varying from gene expression and protein se-

quence data to results of bioassays and exhibiting contents

generated over several years of development. Finally, con-

straints in query specifications posed by casual users, such

as the dataset type of interest, makes the ranking task

closer to the more sophisticated question-answering search

and requires additional work in the original ranked list

(18–21).
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To improve search of biomedical research datasets, in

this work we investigate a novel dataset ranking pipeline

that goes beyond the use of metadata available in

DataMed. In the context of the 2016 bioCADDIE Dataset

Retrieval Challenge (22), which aimed at enhancing the

indexing and searching features of bioCADDIE’s

DataMed, we have developed a few strategies to deal with

short queries, disparate dataset corpora and user query

constraints. Our approach includes a query expansion

module that computes the word embedding for query

terms and performs their expansion using the k-nearest

embedded word vectors (23, 24). Query expansion based

on similarity of embedded words has been successfully

applied to enrich queries (25, 26). The word embedding al-

gorithm is trained locally using different biomedical cor-

pora. We have also developed an original similarity

measure algorithm, which takes into account the relevance

of the query terms to boost the ranking of datasets. The al-

gorithm divides query terms into non-relevant, relevant

and key-relevant. Then, it attempts to rank datasets con-

taining most of key relevant terms on top. Finally, we have

created a query and dataset classifier module that boosts

datasets matching the query class in the ranking list (27,

28). The classifier uses the Universal Protein Resource

(www.uniprot.org) (UniProt) topics to constrain query and

datasets to a set of biomedical topics (29). Our system was

evaluated using a corpus of 800k datasets and 21 queries,

and achieved competitive results in comparison with other

participants. In the next sections, we describe in detail our

approach and the results obtained.

Materials and methods

In Figure 1, the architecture of our dataset information re-

trieval system is described: given as input the bioCADDIE

dataset corpus and a set of user queries, we have (a) a pre-

processing phase, where both the dataset corpus and the

query are cleaned, and the query terms are enriched, (b) a

ranking phase, where the query terms are compared to the

dataset corpus, and a ranked list of datasets is ob-

tained, which are likely answers to the query and (c) a

post-processing phase, where the results are refined based

on the categorization of the top-ranked datasets in relation

to the input query. Processes (a), (b) and (c) are run online.

In the background, we have three processes that run on a

batch mode: (1) training of a word embedding model based

on neural network, (2) bioCADDIE corpus indexing and

(3) training of a dataset classification model. The word

embedding model is used on the query pre-processing

phase to expand query terms. The index created is used to

actually provide the query answers, via a ranking model

that computes the similarity between the indexed datasets

and the query terms. Finally, the dataset classification

model is used to constrain (or improve the ranking of) the

results matching the input query constraints (e.g. gene ex-

pression dataset, protein sequence data, etc.).

Input data

bioCADDIE dataset corpus

In Table 1, an example of bioCADDIE’s dataset represen-

tation following the DATS data model is presented. The

Figure 1. Architecture of the SIB Text Mining dataset retrieval system.
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Table 1. Example of a bioCADDIE dataset

<DOC>

<DOCNO>215676</DOCNO>

<TITLE>VGlut-F-800286</TITLE>

<REPOSITORY>neuromorpho_030116</REPOSITORY>

<METADATA>

{

"dataItem": {

"dataTypes": ["dataset", "organism", "anatomicalPart", "treatment", "cell", "studyGroup", "dimension", "dataRepository",

"organization"]

},

"studyGroup": {

"name": "Control"

},

"anatomicalPart": {

"name": ["Left Antennal Lobe", "Not reported"]

},

"dataRepository": {

"abbreviation": "NeuroMorpho",

"homePage": "http://neuromorpho.org/",

"name": "NeuroMorpho.Org",

"ID": "SCR:002145"

},

"dataset": {

"downloadURL": "http://neuromorpho.org/neuron_info.jsp?neuron_name¼VGlut-F-800286",

"note": "Cell types and Brain regions were assigned with a <a href¼\"techDocFlyData.jsp?code¼1\">heuristic process</a> based

on available metadata. This dataset was processed with a <a href¼\"techDocFlyData.jsp?code¼2\">streamlined automated variant</a>

of the standardization procedure, additional details of which are published <a href¼\http://www.ncbi.nlm.nih.gov/pubmed/

?term¼25576225\ target¼\"_blank\">here</a>. Digital reconstruction used a <a href¼\"http://www.ncbi.nlm.nih.gov/pubmed/

?term¼23028271\" target¼\"_blank\">custom method</a> after image segmentation by Amira.",

"ID": "27187",

"title": "VGlut-F-800286"

},

"cell": {

"name": ["Principal cell", "Glutamatergic neuron", "day8 Born"]

},

"treatment": {

"title": "Green fluorescent protein (GFP)"

},

"organization": {

"abbreviation": "GMU",

"homePage": "http://www.gmu.edu/",

"name": "George Mason University",

"ID": "SCR:011213"

},

"organism": {

"strain": "VGlut-Gal4",

"scientificName": "",

"name": "Drosophila melanogaster",

"gender": "Female"

},

"dimension": [{"name": "age"}, {"name": "weight"}, {"name": "soma surface area"}, {"name": "surface area"}, {"name": "volume"}]

}

</METADATA>

</DOC>
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DOCNO tag is a unique identifier for the dataset. The

TITLE tag provides the dataset title, which is usually a

meaningful and concise description of the dataset but that

can be also a code string identifying the dataset. The

REPOSITORY tag indicates the repository hosting the ori-

ginal dataset content. The repository name is appended with

a snapshot date, indicating the dataset version date. Finally,

the METADATA tag is a JSON object with many attributes

describing the dataset but also containing parts of the data-

set itself. The METADATA tag is the most informative part

of the dataset, containing altogether 96 attributes that vary

from dataset description and organism to chemical formula.

The first prototype of DataMed available at

datamed.org integrates an initial set of 23 repositories cover-

ing 10 data types. In the challenge, a subset of this indexed

collection was provided to the participants to build their infor-

mation retrieval strategies. Table 2 shows the repositories and

the dataset distribution for the subset available. In total, there

were 794 992 datasets distributed among 20 repositories. As

we can see, there is a concentration of datasets in some reposi-

tories, in particular ClinicalTrials, BioProject, PDB and GEO,

each of which contains more than 100k datasets. These top

four repositories constitute 71.4% of the datasets and the top

eight repositories constitute 99.5% of the total corpus.

Training and assessment queries

Among others, bioCADDIE framework aims to answer

user queries such as (i) disease-based search across scales;

(ii) molecular-based search across organisms and scales;

(iii) molecular data/phenotype associations and (iv) behav-

ioural and environmental data (13). The challenge organ-

izers provided 21 annotated queries covering these use

cases. Six queries were made available at the beginning of

the challenge to train the information retrieval system and

15 queries were used to do the official assessment. Table 3

shows some query examples as provided during the chal-

lenge. The organizers generated the initial query answers

combining the top 1000 datasets retrieved by four informa-

tion retrieval engines: Apache Lucene (https://lucene.apa

che.org/core), Lemur Indri (https://www.lemurproject.org/

indri), Terrier (http://terrier.org) and Semantic Vectors

(https://github.com/semanticvectors/semanticvectors).

Then, the documents retrieved were classified by two an-

notators as not relevant, if they had <50% of the key

query concepts; partially relevant, if they had all key query

concepts but did not answer the question, or if they had

the majority of the concepts but not all; and relevant, if

they had all key query concepts and were an answer to the

question. Key query concepts were defined according to

the annotator’s expertize. Finally, the annotation results

were assessed by a domain expert. For the test queries, a

post-submission judgment was performed by pooling the

participant’s results and enriching the original set obtained

with the four original information retrieval engines. The

full query list is available in the Train and test queries sec-

tion (Supplementary Table S1) as Supplementary data.

Table 2. Repositories and the dataset distribution used in the 2016 bioCADDIE Dataset Retrieval Challenge

Repository Datasets Avg dataset size Avg number of attributes

(#) (%) (KB) (#)

ClinicalTrials 192 500 24.257 4.0 45

BioProject 155 850 19.638 1.1 11

PDB 113 493 14.301 4.0 147

GEO 105 033 13.235 0.4 14

Dryad 67 455 8.500 2.1 38

ArrayExpress 60 881 7.672 1.6 12

Dataverse 60 303 7.599 1.9 20

NeuroMorpho 34 082 4.295 1.3 38

Gemma 2285 0.288 1.6 9

ProteomeXchange 1716 0.216 1.1 32

PhenDisco 429 0.054 67.2 36

NursaDatasets 389 0.049 1.6 34

MPD 235 0.030 2.2 36

PeptideAtlas 76 0.010 3.2 24

PhysioBank 70 0.009 1.2 18

CIA 63 0.008 1.0 32

CTN 46 0.006 1.4 17

OpenfMRI 36 0.005 1.5 20

CVRG 29 0.004 2.0 20

YPED 21 0.003 1.7 25
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Pre-processing phase

Data treatment

In the pre-processing phase (Figure 1a), we treat the input

data corpus and query. Greek letters are substituted by their

literal names, stopwords are removed and terms are stemmed

using Porter stemmer. Then, all non-alphanumeric characters

are removed and terms are truncated to 20 characters.

Finally, numerical sequences are replaced with the literal

_number_.

Query expansion

Recent results demonstrate the effectiveness of continuous

space word embedding methods for analogy and word simi-

larity tasks (25, 26). Continuous space embedding models

project terms from a vocabulary into real-number vectors in

a low-dimensional space (23). Word representations in con-

tinuous space embeddings are modelled by assuming that if

two words tend to occur in similar contexts, they are likely

to play similar syntactic and semantic roles. We propose to

use the word2vec algorithm (24) for word embedding al-

though other continuous space methods behave similarly for

query expansion (30). In one of its model, so called continu-

ous bag of words (CBOW), the word2vec algorithm imple-

ments a neural network that predicts a word given a small

set of context words. Our query expansion model uses the

k-nearest neighbours of the query terms in the embedding

space. Formally, let Q be a given user query consisting of the

words q1; q2; . . . ; qm. Let wi
1;w

i
2; . . . ; wi

k be the k-nearest

neighbours of qi in the embedding space. Then, the vectors

wi
j constitute the set of term expansion candidates. We have

created two expansion models based on this algorithm. The

first model considers all query terms equally relevant for ex-

pansion. Original query terms are assigned to the unitary

weight and the weights of the expanded terms are determined

by their cosine similarity to the original query term in the

embedding space. The second model implements a similar al-

gorithm but with the difference that it reduces the weight of

a query term and of its expansions by a factor l if the original

term is not a key-relevant query term. We consider key-rele-

vant terms as those with lower document frequency in the

collection. For a given query, terms with document frequency

lower or equal than 50% compared to the other query term

document frequencies are considered key-relevant query

terms. For example, in the query “transgenic mice”, if the

term transgenic has lower document frequency in the collec-

tion compared to the term mice, then transgenic will be con-

sidered a key-relevant query term and mice as a relevant

query term. Thus, the weight of the term mice and of its ex-

pansions will be reduced by the loss factor l.

We use the Gensim word2vec library (31) to create the

word embeddings with different input corpora: bioCADDIE

(800k), PMC (36k) and Medline (200k). These collections

were selected due to their relevance to biomedicine. It has

been shown that locally trained word embeddings might pro-

vide superior word representation (25). Therefore, we only

considered external resources that have similar context to

bioCADDIE’s datasets. In particular, only articles annotated

with UniProt terms were selected for the PMC and Medline

collections. The word2vec neural network was trained using

the continuous bag-of-words model with the dimensionality

of the word embeddings set to 200 and the window size set

to 5. The loss factor l for non key-relevant terms in the se-

cond query expansion model was empirically set to 1%.

Ranking phase

For the dataset ranking (Figure 1b), we have investigated a

similarity measure to robustly cope with the small query

sizes expected from bioCADDIE users. As it has been shown

in previous TREC competitions, the performance of more

sophisticate ranking models tends to degrade when short

queries are posed (15). Simpler models often outperform

these models. The main issue with more complex models,

such as BM25-Okapi and Divergence from Randomness

(DFR), for short queries is the tuning of the term frequency

normalization parameter (32). While for long queries this ef-

fect is smoothed due the abundance of context terms, for

short queries the fine-tuning of the normalization parameters

becomes much more relevant. In this context, we propose a

simpler similarity model that we expect to be more robust to

the changes in the training sets. Our model, called robust

term relevance logic (RTRL), considers that a user query

contains three types of terms: non-relevant, relevant and

key-relevant. The rationale behind our similarity model is

that if a document contains all key-relevant terms of a query,

it should be ranked at the top. The remaining relevant terms

Table 3. Example of user queries used in the bioCADDIE challenge

i. Search for data on neural brain tissue in transgenic mice related to Huntington’s disease

ii. Search for gene expression datasets on photo transduction and regulation of calcium in blind D. melanogaster

iii. Find data of all types on the regulation of DNA repair related to the estrogen signaling pathway in breast cancer patients across all

databases

iv. Search for protein aggregation and gene expression data regarding aging across all databases
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are used to improve the ranking of these documents in the

ranking list. For example, for the query “Find data on T-cell

homeostasis related to multiple sclerosis across all data-

bases”, after removing non-relevant query terms (i.e. query

stopwords), we remain with the terms T-cell, homeostasis,

multiple and sclerosis. Let us consider that the terms T-cell

and multiple are relevant terms, and the terms homeostasis

and sclerosis are the key-relevant terms for the query. Hence,

documents containing the terms homeostasis and sclerosis

should be at least as relevant to the query as documents con-

taining T-cell, homeostasis and multiple terms or as docu-

ments containing T-cell, multiple and sclerosis terms. More

formally, for a query Q ¼ q1;q2; . . . ; qn the weight of a

key-relevant term is given by the equation

kw00 � k� 1ð Þw00 þ L� kð Þw0; (1)

where L is the number of query terms, k is the number of

key-relevant query terms, and w0 and w00 are the weights of

the relevant and key-relevant query terms, respectively.

Additionally, to take into account the relevance of a query

term to a document, the weight parameter of a term can be

expanded into two components, w ¼ wd þwq, where the

component wd captures the relevance of a query term for a

document and the component wq captures the term rele-

vance within the query. Substituting this expansion in Eq.

(1) and considering the worst case scenario, where top

ranked documents contain only key-relevant terms with

low document relevance, we have

k wd
0 þwq

00� �
� k� 1ð Þ w00d þw00q

� �
þ L� kð Þ w00d þw0q

� �
; (2)

where wd
0 and wd

00 are the weights of a term with low and

high document relevance respectively, and wq
0 and wq

00 are

the weights of a term with low and high query relevance, re-

spectively (i.e. relevant and key-relevant terms). To solve Eq.

(2), we can arbitrarily assign values to the weight variables w0

and w00 in such a way that the inequality constraint is re-

spected. In our experiments, we fixed the values for the low

document and query relevance weights to wd
0 ¼ wq

0 ¼ 1 and

considered the weight of a high relevant document term twice

the weight of a low relevant document term, i.e. wd
00 � 2wd

0.

Furthermore, we assume that the number of key and non-key

relevant is roughly the same, i.e. k � L=2. Thus, we end up

with a single free variable, the weight of a key-relevant term

w00q, which is a function of the query length and can be given by

wq
00 ¼ c 2L� 2ð Þ; (3)

where the parameter c � 1 determines the gain in the key-

relevant terms in relation to the other query terms and can

be fined tuned if there are enough training labels. Then, the

score of a document d 2 D will be given by the equation

score d;Qð Þ ¼
P

t2Q w t; dð Þ

¼
P

t2Q ðwd þwqÞ
: (4)

In our experiments, we use the same definition for rele-

vant and key-relevant as presented in the Query expansion

section, i.e. key-relevant terms have a lower collection occur-

rence ft;D when compared to relevant terms. For the docu-

ment relevance, we consider high document relevance when

the term document occurrence ft;d is more than one. Hence,

wd ¼
w0d ¼ 1 if ft;d ¼ 1

wd
00 ¼ 2wd

0 if ft;d > 1
;

(
(5)

and

wq ¼
w0q ¼ 1 if ft;D > medianðfQ;DÞ

w00q ¼ cð2L� 2Þ if ft;D � medianðfQ;DÞ
:

(
(6)

The medianðfQ;DÞ term denotes the median frequency of

the query terms in the document collection and serve as a

cut-off threshold for choosing whether a query term is key-

relevant or not. Non-relevant terms are stopwords and are

neglected during the similarity computation.

When applying the weighting model described in

Eq. (4) to the query terms, documents will be ranked into

relevance bins. For example, for a query with four terms,

being q1 and q2 relevant terms and q3 and q4 key-relevant,

if a document d1 contains only one occurrence of q3 and d2

only one occurrence of q4, and none of the other terms,

then using Eq. (4), (5) and (6) these documents will be

ranked in the same ranking bin (scored1 ¼ scored2 ¼ 1).

However, the discrimination power of q3 and q4 might be

different. Then, to rank these documents within their bin,

we add a tf � idf component to Eq. (4), i.e.

score d;Qð Þb ¼
X

t2Q
wd þwq

� �
b
þ tf � idfb; (7)

where 0 < tf � idfb � 1 and is computed for each docu-

ment d within a score bin score d;Qð Þb. The tf and idfcom-

ponents are defined as:

tf t;dð Þ ¼ 0:5þ 0:5
ft;d

maxfft0;d : t0 2 dg ; (8)

idf t;Dð Þ ¼ log
jDj

jfd 2 D : t 2 dgj : (9)

Post-processing phase

In the post-processing phase (Figure 1c), the initial results

obtained during the ranking phase are modified so that the

rank of documents matching the query constraints is
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boosted. For example, for queries searching specifically for

gene expression datasets, the datasets retrieved containing

gene expression information shall have higher ranks than

those that do not contain gene expression information. Our

query and result categorization model is based on the

UniProt categories. UniProt has developed a categorization

model where UniProt curators classify and annotate bio-

medical datasets into 11 categories: Expression, Family &

Domains, Function, Interaction, Names, Pathology &

Biotech, PTM/processing, Sequences, Structure, Subcellular

location, Unclassified (or miscellaneous classes). UniProt

curators use these categories to annotate scientific articles

available in PubMed. Each annotation provides a category,

such as Sequences, and a qualifier to justify the citation, e.g.

cited for ‘NUCLEOTIDE SEQUENCE [MRNA]’. These

classes cover relatively well the domain of bioCADDIE

datasets and queries. A dataset class that is largely present in

bioCADDIE but is not in UniProt is Clinical trial. Thus, we

add this class to the other 11 UniProt classes to increase our

classification coverage. We perform the re-ranking for the

datasets originally ranked in the top 50% positions having

the highest rank as reference. The datasets matching the

query constraint classes are then multiplied by a gain factor

g, which was set empirically to 10% for the official results.

Query classification model

The query categorization is performed using string match-

ing algorithms. 3-skip-2-grams, 2-skip-2-grams (2, 2) and

1-gram are extracted from the query and matched against

the UniProt categories and qualifiers. For the Clinical trial

class, we defined a set of clinical trial keywords, namely in-

clusion, exclusion, criteria, patients, subjects, stage, dur-

ation and study. Then, we search for these keywords in the

input query and classify them into the Clinical trial class in

case a match is found.

Dataset classification model

We use a multilayer perceptron (MLP) classifier to classify

automatically bioCADDIE datasets against the UniProt

classes mentioned above (29). The input layer of the MLP

is fed by documents (datasets) and the output layer is

mapped to the UniProt classes (i.e. a multi-label multi-class

classification task). The input documents (or datasets) are

embedded into a vector space using the paragraph2vec

model (33). Paragraph2vec is a variation of the word2vec

model that takes into account the document identifier in

the word context. The classifier is trained using 200k

PubMed abstracts annotated with UniProt classes. We use

the paragraph2vec implementation from Gensim (doc2vec)

(31) to embed the documents/datasets. The classification

model achieves a F1 score of 0.80. For the Clinical trial

class, we use the keywords clinical and trial and

clinicaltrial to categorize a document as clinical trial. If a

bioCADDIE dataset contains one of these keywords they

are classified into the Clinical trial class. In the online

phase, new unclassified documents coming from the result

set produced in the ranking phase are embedded in the par-

agraph2vec space and are fed into the MLP classifier,

which produces the UniProt classes. In parallel, a string

matching algorithm searches for the Clinical trial class key-

words into the dataset content.

Evaluation criteria

Performance results are reported using the inferred

Average Precision (infAP) and inferred Normalized

Discounted Cumulative Gain (infNDCG) metrics (34).

Both measures are designed to deal with incomplete judge-

ments, as it is often the case for very large corpora, such as

the collection indexed by DataMed. Hence, infAP and

infNDCG deploy a randomly sampling approach to infer

the mean AP (MAP) and NDCG performances, respect-

ively. Additionally, we report the precision at 10 (P@10)

considering partially relevant answers as relevant (þpar-

tial) but also as not relevant (-partial). These metrics com-

pose the official measures of the 2016 bioCADDIE Dataset

Retrieval Challenge. The organizers associated weight 2 to

relevant, weight 1 to partially relevant, weight 0 to not

relevant and weight –1 to unjudged documents in the gold

standard query relevance file [see Ref. (35) for detailed

information]. We provide the results of the training and of-

ficial assessments. Furthermore, we performed a post-

official assessment using 5-fold cross-validation with the

official gold standard results. We compare the perform-

ance of our methods to a baseline approach based on the

DFR model implemented by Terrier 4.1 (36, 37). Statistic

hypothesis testing is performed using paired t-test with a

two-tailed distribution and results with P-value smaller

than 0.05 are considered statistically significant.

Results

We assessed five information retrieval models using the

bioCADDIE corpus and the annotated queries. The first

model, sibtex-1, is a baseline model based on the DFR al-

gorithm. For this model, in the pre-processing phase, the

query and input corpus are treated and the similarity is

computed using Terrier. The other four models use the

methods described in the previous section. For the second

model, sibtex-2, in the pre-processing phase, in addition to

the query and corpus treatment, the query terms are ex-

panded using the word2vec algorithm trained on

the bioCADDIE and PMC collections, and in the

post-processing phase the results are categorized using our
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classifier. The third model, sibtex-3, implements a similar

algorithm to sibtex-2. The difference is that the weight of

expanded terms derived from non key-relevant terms are

reduced by a factor l. For both models sibtex-2 and sibtex-3

the similarity score is obtained using Terrier’s DFR algo-

rithm. The fourth model, sibtex-4, uses the RTRL similarity

model, which takes into account the relevance of the query

terms in the ranking phase, and in the post-processing phase

the results are categorized. Finally, the fifth model, sibtex-5,

combines linearly the results of ranking model sibtex-3 and

sibtex-4, i.e. sibtex� 5 ¼ asibtex� 3þ 1� að Þsibtex� 4,

where a¼ 0.5 for the official submission. In resume, we as-

sess the following method and model combinations:

• sibtex-1: DFR-based;

• sibtex-2: sibtex-1 þ query expansion þ results

categorization;

• sibtex-3: sibtex-1 þ query expansion with penalized

terms þ results categorization;

• sibtex-4: RTRL similarity measure þ results

categorization;

• sibtex-5: linear combination of sibtex-3 and sibtex-4.

As an example of how the data processing works during

an online search, let us consider the input query “T1 –

Find protein sequencing data related to bacterial chemo-

taxis across all databases” submitted to model sibtex-2

(see Train and test queries section, provided as

Supplementary data, for the whole list of queries). In the

pre-processing phase (Figure 1a), the cleaning process re-

moves the non-relevant query terms (query stopwords) and

reduces the remaining terms to their stem, leaving only the

terms “protein”, “sequenc”, “bacteri” and “chemotaxi”.

These terms are then expanded, resulting in an array with

weights proportionally to their similarity to the original

term. For example, the expansion of the term chemotaxis

with k ¼ 3 results into the following weighted

array: [chemotactic^0.089, chemoattractant^0.083, motil-

ity^0.080]. These terms are then stemmed and, together

with the other original (with unitary weight) and expanded

terms, processed by the ranking algorithm (Figure 1b). The

ranking algorithm computes the query-to-dataset similarity

and provides the ranked list of most similar datasets to the

expanded query. Finally, in the post-processing phase

(Figure 1c), the original query is classified into the

UniProt/clinical trial classes using string matching against

the UniProt class descriptors or clinical trial keywords. In

this example, the query T1 is classified as searching for

“Sequences” datasets since the bigram “protein sequence”

matches one of the UniProt class qualifiers for the

Sequences class. In parallel, the result set containing the

dataset retrieved is classified using the UniProt classifier.

For example, the content of the dataset with identifier 719

124, which appears in the top 1 for this query, is submit to

the classifier and as output the classifier categorizes it as

belonging to the Sequences class. Thus, its ranking score is

boosted by 10%. This process is repeated for the top

ranked datasets (we use a 50% threshold) and the final re-

sult set is obtained by rearranging the new dataset scores.

Performance results on the training set

Table 4 shows the performance of five information re-

trieval models for the six training queries. As we can see,

the model sibtex-3 outperforms the other models for the

infAP and infNDCG metrics, with a marginal improve-

ment over the baseline ofþ0.9% for the infAP metric

andþ0.4% for the infNDCG metric. For the P@10 metric,

the models sibtex-4 and sibtex-5 outperform the other

models, improving the baseline byþ20%, with the latter

having enhanced infAP and infNDCG outcomes with re-

spect to the first. The optimized parameters for the differ-

ent models are shown as Supplementary data in

Supplementary Table S2 of the Training parameters

section.

Performance results on the official test set

The official performance results of the bioCADDIE chal-

lenge for our 5 models are displayed in Table 5. As we can

notice, the sibtex-5 model outperforms all the other models

for all metrics apart from infNDCG, for which the sibtex-4

model achieves the best performance. In particular, the

sibtex-5 model outperforms the inferred average precision

of the baseline byþ21.89%. Apart from model sibtex-2,

the other three models outperform the baseline for the

infAP metric. There was a decrease in performance for the

models sibtex-2 and sibtex-3 for the metric infNDCG with

respect to the baseline, suggesting that the use of query ex-

pansion have a negative impact for this metric. The models

using our similarity measure were able though to outper-

form the baseline for this metric. Specifically, only model

sibtex-5 was able to increase performance for the

infNDCG@10 results with respect to the baseline. The

Table 4. Performance results obtained using the training

queries

Model infAP infNDCG P@10 (þpartial)

sibtex-1 0.0570 0.2714 0.0833

sibtex-2 0.0573 0.2717 0.0833

sibtex-3 0.0575 0.2724 0.0833

sibtex-4 0.0407 0.2016 0.1000

sibtex-5 0.0539 0.2520 0.1000
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linear combination of results sibtex-3 and sibtex-4 to ob-

tain sibtex-5 results improved a -0.3% and –8.7% decrease

in performance in relation to the baseline for sibtex-3 and

sibtex-4 models, respectively, to a positive outcome

ofþ9.32% for the infNDCG@10 metric. Similarly, for the

P@10 (þpartial) metric, i.e. considering partial answers as

relevant, only model sibtex-5 outperforms the baseline.

Again, surprisingly, the linear combination of two negative

performances (or neutral, in this case for sibtex-3) with re-

spect to the baseline resulted in an increase in performance

ofþ6.6% for the P@10 (þpartial) metric. Finally, all the

models outperformed the baseline for the P@10 (-partial)

metric, i.e. considering partial answers as not relevant,

with emphasis on the model sibtex-5, which improved the

baseline byþ8.3%. Despite the high difference in relative

performance between the models, there is not statistically

significant difference between them.

Table 6 presents the overall bioCADDIE challenge per-

formance results aggregated over the participant’s top sys-

tems for each metric in addition to our individual best

results. In particular, the model sibtex-5 achieved the highest

inferred average precision among the 10 participants. If we

take the overall median result as a baseline, our best system

would improve the baseline byþ22.4% for the infAP met-

ric. Our results for the infNDCG and P@10 (þpartial) met-

rics are not as expressive, for which there is only a marginal

improvement over the median score ofþ0.2% andþ0.4%,

respectively. For these two metrics, our best system

was ranked into 5 out of 10. For the NDCG@10 and P@10

(-partial) metrics, our best system was ranked 3/10 and 2/

10, and improved the overall median score byþ8.0%

andþ11.8%, respectively. To be able to compare the over-

all systems, we computed the Unanimous Improvement

Ratio (UIR) metric (38) using the participant’s best results

achieved in the official run. While this metric is meaningless

from the information retrieval viewpoint, it is useful to

understand how our overall strategies behave with respect

to the other participants. According to this metric, our sys-

tem ranks overall on top 2 with a URI score of 0.51.

Finally, using the results of all participants, we com-

puted the correlation matrix for the official metrics.

The correlation coefficients are displayed in Table 7.

Metrics NDCG@10, P@10 (þpartial) and P@10 (-partial)

present among them moderately strong to strong correl-

ations 0:6 < q � 1:0ð Þ while the other metrics show

modest to moderate correlations ð0:2 < q � 0:6Þ.
Particularly, there is a high correlation (q ¼ 0:86) between

the P@10 (þpartial) and NDCG@10 metrics, which can be

indeed verified on our system’s results (Table 5).

Nonetheless, while our system ranks at top 5 for the P@10

(þpartial) metric, it ranks at top 3 for the NDCG@10

metric.

Post-official assessment

Due to the small size of the original training dataset (6

queries), it was a challenge to tune all model parameters

for the official run. Hence, as described in the Methods

section many of them were empirically set. With the dis-

closure of the challenge results and the gold standard for

the test queries, we performed a new experiment where we

split the gold standard results into 5-folds, each fold con-

taining 12 training and 3 test queries, and assess the mod-

els using cross-validation (see Supplementary Table S3 for

parameter setting values). We consider only the results

of the test queries because their quality is very different

from the training set, due to the pooling method performed

after the participants submission. Additionally, it allows us

to compare the new results with the official results. The re-

sults obtained are displayed in Table 8. First, we can notice

a considerable improvement of the baseline model in com-

parison with the official results (infAP:þ20.0%;

infNDCG:þ7.0%; and P@10 (þpartial):þ17.9%).

Indeed, the performance of the models based only the DFR

algorithm have on average improvements ofþ18.7%

andþ9.2% for the infAP and infNDCG metrics, respect-

ively. On the other hand, the performance of the model

based only on the RTRL similarity measure (i.e. sibtex-4)

was more robust for these metrics, varying only –0.03%

andþ0.29%, respectively. Differently from the official re-

sults, the best infAP and infNDCG outcomes are now

achieved using sibtex-3 and sibtex-2 models, respectively.

Sibtex-5 is still the highest performer for the P@10 (þpar-

tial) metric. However, sibtex-4 and sibtex-5 models no

Table 5. Official performance results for the SIB Text Mining models

Model infAP infNDCG P@10 (þpartial) NDCG@10 P@10 (-partial)

sibtex-1 0.3006 0.3898 0.7067 0.5736 0.3200

sibtex-2 0.2997 0.3864 0.7067 0.5726 0.3267

sibtex-3 0.3008 0.3875 0.7067 0.5718 0.3267

sibtex-4 0.3458 0.4258 0.6600 0.5237 0.3267

sibtex-5 0.3664 0.4188 0.7533 0.6271 0.3467
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longer outperform the baseline for the infAP and

infNDCG metrics. Furthermore, in this new setting, the in-

crease in performance of models sibtex-2 and sibtex-3 for

the metric infAP is statistically significant (P ¼ 0.049 and

P ¼ 0.022). Table 8 also shows the results for the models

sibtex-2, sibtex-3 and sibtex-4 without the post-processing

phase (result categorization). We can see that a significant

categorization gain is verified only for metric P@10 (þpar-

tial) of the sibtex-4 model (þ1.3%). For the other metrics

and models, the change in performance is marginal. Thus,

the actual gain in performance for models sibtex-2 and

sibtex-3 in comparison with the baseline derives from the

query expansion in the pre-processing phase.

Query-wise analyses

To understand how the different models perform at the

query level, we computed the individual query infAP,

infNDCG and P@10 (þpartial) metrics as showed in

Figures 2, 3 and 4, respectively. We use the results of the

cross validated experiment since we believe they are better

tuned compared to the official run. For infAP metric

(Figure 2), we can notice that best performing model,

sibtex-3, outperforms all the other models for 4 queries (T1,

T6, T8 and T14) while the worst performing model, sibtex-

1, outperforms all other models for only one query (T3).

Models sibtex-2, sibtex-4 and sibtex-5 completely outper-

form the other models for three queries each. For infNDCG

metric (Figure 3), model sibtex-1 and sibtex-4 completely

outperform the other models for five queries each while

model sibtex-3, the worst performer for this metric, does

not outperform all the other models for any query (con-

versely, note that on average sibtex-3 has the second best

infNDCG). Lastly, for P@10 (þpartial) metric (Figure 4),

model sibtex-4 outperforms the other models for queries

T1, T2, T7 and T9 while models sibtex-2 and sibtex-3 do

not outperform all the other models for any query.

The results at the query level showed in Figure 4 are

opposed to the average P@10 (þpartial) marks showed in

Table 8, for which sibtex-2 and sibtex-3 models are, to-

gether with sibtex-5, the best performers and sibtex-4 has

the poorest results. Thus, from the individual queries view,

the enhancing characteristics of the models seem to be

query specific, without a particular dominant feature that

improves the overall results. For example, only query T9,

Search for data of all types related to the ob gene in obese

Table 6. bioCADDIE official results: SIB Text Mining individual best score and relative rank, and aggregated participant’s best

score stats

Stats infAP infNDCG P@10 (þpartial) NDCG@10 P@10 (-partial) UIR

SIB Text Mining rank 1/10 5/10 5/10 3/10 2/10 2/10

score 0.3664 0.4258 0.7533 0.6271 0.3467 0.51

All participants median 0.2994 0.4250 0.7500 0.5806 0.3100 0.13

min 0.0876 0.3580 0.5333 0.4265 0.1600 �1.00

1st quartile 0.2570 0.3954 0.7150 0.5546 0.2700 �0.43

3rd quartile 0.3219 0.4433 0.7600 0.6234 0.3333 0.40

max 0.3664 0.5132 0.8267 0.6861 0.4267 0.82

UIR: Unanimous Improvement Ratio.

Table 7. Metrics correlation matrix – Kendall method

infAP infNDCG P@10 (þpartial) NDCG@10 P@10 (-partial)

infAP 1

infNDCG 0.50 1

P@10 (1partial) 0.43 0.28 1

NDCG@10 0.42 0.29 0.86 1

P@10 (-partial) 0.60 0.39 0.63 0.69 1

Table 8. Performance results obtained using 5-fold cross-

validation with the post-judgment gold standard

Model infAP infNDCG P@10 (þpartial)

sibtex-1 0.3557 0.4235 0.7327

sibtex-2a 0.3704 0.4377 0.7511

sibtex-2 0.3704 0.4378 0.7511

sibtex-3a 0.3735 0.4367 0.7544

sibtex-3 0.3734 0.4365 0.7544

sibtex-4a 0.3454 0.4216 0.7067

sibtex-4 0.3441 0.4197 0.7156

sibtex-5 0.3514 0.4199 0.7578

aResults skipping original post-processing phase.
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M. musculus across all databases, has consistent highest

performance for model sibtex-3, outperforming the other

models for infAP, infNDCG and P@10 (þpartial) metrics.

On the other side, query T1, Find protein sequencing data

related to bacterial chemotaxis across all databases, has

the highest performance marks for different models

[sibtex-3 for infAP; sibtex-1 for infNDCG; sibtex-4 for

P@10 (þpartial)]. Indeed, query T1 shows peculiar results.

While it has high precision for the top 10 retrieved datasets

(Figure 4), it has the lowest recall among the 15 official

queries for the five models (mean recall¼ 0.25; SD¼ 0.01),

likely leading to the low infAP (Figure 2). Moreover, for

infNDCG metric (Figure 3), it presents average (RTRL

model) to high (DFR models) marks depending on the base

similarity model.

At the query level, we can also note that queries T3, T4

and T15 obtain consistently good results, having their per-

formance marks higher than the 3rd quartile threshold for

the different metrics for at least one model. On the other

hand, queries T5 and T8 have the overall worst perform-

ances, being below the 1st quartile threshold for all the

models for at least two metrics. In the example of T5,

Search for gene expression and genetic deletion data that

mention CD69 in memory augmentation studies across all

databases, the key relevant terms are CD69 and memory.

However, they are not present simultaneously in any of the

Figure 2. infAP performance at the query level for SIB Text Mining models. Results obtained using 5-fold cross-validation. Lowest horizontal line: 1st

quartile computed for all results. Highest horizontal line: 3rd quartile computed for all results. min avg horizontal line: minimum infAP among the five

models. max avg horizontal line: maximum infAP among the five models.

Figure 3. infNDCG performance at the query level for SIB Text Mining models. Results obtained using 5-fold cross-validation. Lowest horizontal line:

1st quartile computed for all results. Highest horizontal line: 3rd quartile computed for all results. min avg horizontal line: minimum infNDCG among

the five models. max avg horizontal line: maximum infNDCG among the five models.
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datasets judged as relevant. Additionally, as showed in

Figure 2 and Figure 3, for query T5 the expansion step did

not succeed in bringing additional equivalent terms that

could enrich the original query. Indeed, it is the combin-

ation of the DFR and RTLR similarity models that boosts

relevant datasets to the top ranks as showed in Figure 4

(note that models sibtex-2 and sibtex-3 are the low per-

formers). On the other hand, for query T8, Search for

proteomic data related to regulation of calcium in blind D.

melanogaster, the query expansion process is able to effect-

ively enrich the query, resulting in a 17% higher recall

(from 42 to 49) for models sibtex-2 and sibtex-3 in com-

parison with sibtex-1. Nevertheless, as showed in Figure 2,

the overall results for query T8 is still poor.

Query expansion

In this section, we analyse the effect of the different collec-

tions for query expansion on the information retrieval per-

formance. Table 9 shows some examples of terms

expanded using the bioCADDIE, PMC and Medline cor-

pora. The terms were expanded using the 10 nearest vec-

tors in the embedding space. The similarity score between

the original term and the expanded term is also provided.

As we can notice, the terms expanded can be syntactic vari-

ations of the original term, e.g. cancer and cancers; seman-

tic synonyms as in cancer and tumour; term subclasses, e.g.

cancer and carcinoma; term superclasses, e.g. human and

vertebrate; but also, just a simple co-occurrence term that

has neither syntactic nor semantic relations to the original

term, e.g. human and also and repair and mus7.

In Table 10, we present the performance results of the

information retrieval system using the different collections

in the pre-processing phase to expand the terms. Using the

bioCADDIE collection for training the word vectors mar-

ginally improves the baseline (sibtex-1) for the infNDCG

metric while it degrades the results for the other metrics.

On the other hand, using the PMC collection marginally

improves the infAP metric while also degrading the other

two metrics. Finally, the Medline collection improves all

the baseline metrics, increasing the infAP metric

byþ4.1%, the infNDCG metric byþ3.4%, and the P@10

(þpartial) metric byþ3.4%.

Discussion

In this manuscript, we described our methods to improve

ranking of biomedical datasets using an information re-

trieval engine. Our work was developed in the context of

the 2016 bioCADDIE Dataset Retrieval Challenge, which

aimed at developing innovative methods to retrieve bio-

medical datasets relevant to researcher’s needs. As strat-

egies to enhance retrieval performance, our system

proposes a query expansion model based on word embed-

dings, a similarity model (RTRL) that discriminates

key-relevant terms from the user query, and a query and

dataset categorizer that boosts the ranking of matching

query-dataset results. Our retrieval system was evaluated

using a corpus of 800k datasets and 15 official assessment

queries. It achieved the highest inferred average precision

among the 10 challenge participants. If the aggregation of

the best official metrics per participant is taken into ac-

count, it also achieved very competitive results, figuring on

an overall top-2 position. Nevertheless, due to the limited

size of the assessment set, i.e. 15 queries, it is hard to

Figure 4. P@10 (þpartial) performance at the query level for SIB Text Mining models. Results obtained using 5-fold cross-validation. Lowest horizon-

tal line: 1st quartile computed for all results. Highest horizontal line: 3rd quartile computed for all results. min avg horizontal line: minimum P@10

(þpartial) among the five models. max avg horizontal line: maximum P@10 (þpartial) among the five models.
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extract statistically significant comparisons among differ-

ent systems and methods.

The biomedical community is increasingly developing

data management systems based on advanced text ana-

lytics to cope with the extremely large size and variety of

datasets involved in scientific research (6–10, 39). Indeed,

this trend is not specific to publicly available data but also

directly affects large pharma and biotech companies,

which are struggling to transform silo-based drug

development models into more integrated platforms pow-

ered with advanced text analytics (40). Here, the dataset

retrieval model is especially adequate if we consider that

user queries in such large companies are likely to involve

simultaneously a large set of orthogonal entities (a chem-

ical compound, a therapeutic indication, a genetic profile,

etc.) from a large set of perspective (efficacy, toxicity,

mode of action, etc.) and modalities (structured laboratory

results, sequences, chemical structures, textual reports,

images, etc.).

The approach developed in this manuscript is data

driven rather than model driven. As such, it could with

some effort be transposed to other domains. In particular,

its application could be interesting in the health big data

context. One of the main challenges for health and clinical

research in large and distributed environments is to index

and search for existing datasets, in particular for cohort

identification in privacy-preserving frameworks. There are

many systems being investigated and developed that tackles

Table 9. Example of term expansion with embedding vectors trained on different corpora

Term bioCADDIE PMC Medline

Expansion Score Expansion Score Expansion Score

Cancer Carcinoma 0.737 Carcinoma 0.674 Breast 0.889

Cancers 0.720 Tumor 0.616 Cancers 0.855

Adenocarcinoma 0.669 Cancers 0.585 Prostate 0.801

Malignancies 0.626 Tumour 0.583 Colorectal 0.794

Lymphoma 0.621 Glioma 0.559 Tumor 0.779

Tumor 0.616 Carcinomas 0.545 Carcinoma 0.773

Transplantation 0.613 Melanoma 0.534 Tumorigenesis 0.761

Transplant 0.570 Tumorigenesis 0.532 Tumors 0.754

Myeloma 0.563 Carcinogenesis 0.530 Metastasis 0.745

Carcinogenesis 0.559 Glioblastoma 0.520 Tumour 0.733

Human Bovine 0.553 Mammalian 0.582 Mouse 0.756

Porcine 0.542 Murine 0.441 Mammalian 0.711

Murine 0.526 Rat 0.428 Also 0.661

Mouse 0.518 Vertebrate 0.417 Humans 0.661

Humans 0.486 Preeclamptic 0.400 Murine 0.656

Mammalian 0.483 Pompe 0.396 Present 0.650

Rat 0.483 Hepa1 0.392 Report 0.644

Chicken 0.471 Chicken 0.388 Function 0.641

Tissue 0.456 gpr84 0.380 Functional 0.632

Cellular 0.456 Cyprinid 0.373 Well 0.625

Repair Closure 0.515 Repairthe 0.597 Damage 0.794

Metabolism 0.510 Replication 0.570 Excision 0.764

Formation 0.509 ssbr 0.543 Double-strand 0.727

Grafting 0.504 Repairing 0.540 Nucleotide-excision 0.723

Implantation 0.502 Damage 0.516 Damaged 0.717

Reconstruction 0.498 Regeneration 0.499 Breaks 0.715

Autologous 0.489 Healing 0.498 mus7 0.699

Testing 0.474 Detoxification 0.493 dsb 0.697

Mobilization 0.469 Resection 0.489 Helix-distorting 0.681

Remodeling 0.468 Processing 0.479 Post-replication 0.679

Table 10. Retrieval performance for different collections as

query expansion source

Collection infAP infNDCG P@10 (þpartial)

� (baseline) 0.3557 0.4235 0.7267

bioCADDIE 0.3545 0.4243 0.7178

PMC 0.3571 0.4216 0.7178

Medline 0.3704 0.4377 0.7511

Note: The baseline results use no query expansion.
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the issue of preserving individual and patient privacy and con-

fidentiality so that personal datasets can be ethically shared

within trusted networks (41–43). While these systems are

very good in keeping data safe and private, they usually lack

functionalities that would allow the value of healthcare data-

sets to be unlocked due to the challenges of data integration.

If inserted in such secure frameworks, the methodology

described here could be a first step for indexing and effect-

ively searching for shareable datasets to enable, for example,

posterior patient counting and individual consent requests. A

main requirement for employing our approach to related use-

cases would be the availability of a corpus composed of data-

set metadata extracts pointing to encoded dataset object iden-

tifiers, which would roughly describe the content of the

dataset, as provided for example by the European Genome-

phenome Archive (43).

Query expansion approach

The analysis of the results show that use of the query ex-

pansion algorithm based on continuous embedding space

enhanced the average performance of the ranking system.

Exploiting a Medline collection with 200k abstracts as the

input for the word2vec algorithm resulted in a query ex-

pansion model that provides statistically significant

improvements in comparison with the baseline (sibtex-

3:þ5.0% for the infAP metric). Given the diversity and

richness of bioCADDIE dataset, we argue that it is imprac-

tical and unnecessary to implement syntactic and semantic

query expansion services using the myriad of biomedical

information resources scattered in the web if the goal is to

produce richer user queries. Instead, we propose to use ei-

ther the bioCADDIE dataset itself or a comprehensive bio-

medical corpus resource, such as Medline or PMC, fed to a

continuous embedding space algorithm to extract syntac-

tically and semantically closest concepts to a query term.

This approach has two advantages: (i) instead of having a

query expansion service connected to external resources

that are prone to changes over time, we need only a single

resource that can be stored and managed locally; (ii) it

might be able to provide more up-to-date terms, since new

terms are likely to appear first in the scientific literature

than on curated terminologies. The main drawback of such

approach is that, as showed in Table 9, there is little con-

trol on the type of terms resulted from the expansion, i.e.

the algorithm can produce synonyms, syntactic variations,

super classes, sub classes, etc. Thus, this approach should

fit more with a user supervised expansion than as deployed

in our system.

One of the main challenges for query expansion is to de-

fine which expanded terms are actually relevant for the

querying task. Syntactically and semantically close terms, as

those provided by word2vec, are natural candidates.

However, the degree of proximity can vary based on several

factors, such as the type of query, the input corpus, the ex-

pansion model, etc. In our setup, to select and weight the can-

didate terms from the embedding vector space, we combine a

term neighbourhood (trained for k¼10 in the official run)

with a similarity based threshold, by taking into account the

cosine similarity of the expanded term as a query weight vari-

able. There are many other possibilities for query expansion

though, such as training a word similarity cut-off, creating

word clusters in the embedding space (e.g. based on k-means)

or even performing the expansion per query rather than per

term. During the training phase, we have indeed assessed a

different method, based purely on the term similarity. In our

experiments, the neighbourhood based method described in

the manuscript yielded better performance (e.g. for sibtex-2:

sim¼ 0.80-> infAP¼ 0.0505; sim¼0.85 -> infAP

¼ 0.0530; sim¼ 0.90 -> infAP¼ 0.0542; sim¼ 0.95 ->

infAP¼ 0.0556; k¼10 -> infAP¼ 0.0570). Nevertheless, we

were more interested at exploring different biomedical cor-

pora as expansion sources and consider the assessment of the

various query expansion threshold algorithms as a subject for

another work.

RTRL similarity measure algorithm

Despite the simplicity of our similarity model, it provided

competitive results in comparison with more complex and

powerful models, such as the DFR framework.

Specifically, our model seemed to be more robust to differ-

ent short query and training scenarios. While there was a

large performance variance between the official run and

the cross-validated run for the DFR-based system (infAP:

18.3%; infNDCG: 8.6%), the RTRL similarity measure

model showed a small performance difference under these

distinctive tuning scenarios (infAP: 2.9%; infNDCG:

0.6%). Indeed, using Eqs. (5) and (6) to represent if-then

fuzzy rule-based forms and Eq. (7) to represent if-then

fuzzy rule-based form with multiple conjunctive ante-

cedents, our similarity measure approach can be reduced

to a fuzzy logic based method. As has been showed by

Gupta et al. (44), these systems outperform ranking mod-

els, such as BM25-Okapi, in certain ranking scenarios.

One of main assumptions of the RTRL similarity measure

algorithm is that the system shall deal with small user

queries, i.e. with 10 or less terms. Therefore, logic compo-

nents, such as query term frequency, can be removed from

the equation as the number of word occurrences in the

query is unlikely to be relevant in these cases (most likely

one occurrence per query). In addition, the algorithm im-

plements only a concise set of key information retrieval

ranking rules. Thus, even compared to other fuzzy logic
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models, our approach is still simpler. We believe that the

robustness of the results may derive from this characteris-

tic, as the system might be less prone to overfitting.

However, a larger training and assessment sets are still ne-

cessary to generalize such observations.

Query and dataset categorization

Our strategy for boosting performance using result classifi-

cation according to the query constraints did not achieve

significant improvements for most of the metrics and rank-

ing pipelines. As we can see from Table 8, apart from

theþ1.3% increase in the P@10 (þpartial) metric for

model sibtex-4, all the other models and metrics have mar-

ginally significant performance increase or decrease when

post-processing classification is included in the pipeline.

This could be due to the fact that the similarity measure

model is already correctly capturing the query constraints

and there is little room for improvement. It could be also

due to the failure of our categorization system to capture

correctly the query constraint, the result dataset class or

both. First, the extraction of the query constraints is per-

formed using an ad-hoc algorithm that searches for key-

word combinations in the query and match them against

the UniProt classification definition. Second, since our cat-

egorization algorithm was validated using scientific ab-

stracts (29), it may be behaving differently for the

bioCADDIE datasets. We have no gold standard to expli-

citly validate both classification approaches and the impli-

citly validation used via changes in the information

retrieval performance did not show significant results.

However, we believe that a larger assessment set together

with more investigation on the classifier tuning are still

needed to draw final conclusions about this approach.

Training and test set drifting

Looking at the results of the training and official assessment

phases, we notice a large variation between the model’s per-

formances. As expected, the official judgement, which was

initially obtained following the same methodology of the

training set, was enriched by pooling the participant’s meth-

ods. Indeed, while the training set contains on average 49

relevant (including partially) datasets judged per query, the

official set has on average 259, i.e. a 5-fold increase. We be-

lieve that the enrichment of the assessment set, with new

complementary datasets to those retrieved by the official en-

gines, resulted in a significant performance shift between the

training and official phases by better capturing the relevance

of the results provided by our models. This performance

drifting is seeing on both intra- and inter-model compari-

sons. When we make a model-wise performance comparison

between training (Table 4) and official (Table 5) phases, on

average, our models achieved during the official phase su-

perior performance levels of 520%, 61% and 692% for the

infAP, infNDCG and P@10 (þpartial) metrics, respectively.

Also, for inter-model changes, the performance of the

sibtex-4 model in the infAP metric, for example, degraded

by -28.6% compared to the baseline model in the training

phase (Table 4). For this same metric, the sibtex-4 model

outperformed the baseline byþ15.0% in the official results

(Table 5). Thus, it seems that the quality of the training set

was too poor to allow realistic parameter tuning.

Furthermore, it seems that our original similarity measure

model, RTRL, was able to bring new relevant documents to

the top ranking, which were not initially captured by the

four information retrieval engines used to generate the offi-

cial gold standard (training and test). These new relevant

documents were then deemed as relevant in the post-

judgement phase. To overcome the issues with the training

set, we performed a re-tuning of the system’s parameters

using the official assessment gold standard in a 5-fold cross-

validation fashion. With the enhanced gold standard, we

managed to better optimize the model parameters, in par-

ticular, for the systems using the DFR algorithm, for which

the term frequency normalization changed from 1 in the

training phase to 33 in the cross-validation assessment (see

Supplementary Table S2 and Table S3 in Supplementary

data for the training parameters used). Indeed, we think

that the size and depth of the training/test set are the main

limitations of the results.

Assessment methodology

An important point to notice is that the official gold stand-

ard results contain unjudged datasets (weight –1) obtained

during the pooling phase, in addition to the relevant

(weight 2), partially relevant (weight 1) and not relevant

(weight 0) judgments. Having unjudged datasets in the

gold standard is not an issue per se, as long as this factor is

properly propagated to the evaluation tool, in particular,

when unjudged datasets compose a significant part of the

relevance judgement, as it is the case of bioCADDIE’s offi-

cial results (86% of the 142 805 total results are unjudged

datasets). Nevertheless, it seems not to be case of the offi-

cial trec_eval assessment tool provided by the challenge

organizers. We made few experiments with our official re-

sults, where we (i) artificially changed the weight of the

unjudged datasets to 0, i.e. we deem them as not relevant,

and (ii) removed the unjudged dataset from the relevance

file. In both cases, there were average improvements

ofþ6% for the infAP metric and ofþ47% for the

infNDCG metric. Therefore, having unjudged datasets in

the result set had a higher negative impact on the official
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assessment than having datasets judged as not relevant, a

highly unexpected observation. This issue shall be also

verified in the other participants results and shall be taken

into account in future comparisons using bioCADDIE’s

benchmark.

Online deployment

Our system was designed to work on real time both for

data ingestion and for querying. For indexing, we use

Terrier, which allows incremental document indexing.

Nevertheless, we are not tightly coupled to an information

retrieval engine. We could change easily to ElasticSearch

for example. For the similarity model, the main parameter

is the query length (number of terms). Thus, we expect it

to provide robust performance in different scenarios with-

out the need of constant fine-tuning, as it was showed for

the official and cross-validated results. After the challenge,

we have implemented the document classifier and query

expansion modules as software as a service for Novartis

(NIBR NX TMS). The document classification service

takes on average 30 ms to classify a document on a non-

dedicated server with 40 IntelV
R

XeonVR CPU E5-2690 v2 @

3.00 GHz and 757GB of memory. In the challenge, we

post-processed 50% of the top returned datasets. If we set

this number to the top 100 retrieved results, it will take 3 s

per user query. For the query classification step, the time is

negligible since we perform only string matching (skip-

gram, bigram, unigram). Finally, for the query expansion

service, it takes on average 68 ms to expand a term (online

phase). In the challenge, each query had on average 5.6

terms (excluding stopwords). Hence, it should take only

0.4 s to expand an average user query.

Conclusion

Data management systems are increasingly being de-

veloped to integrate, store and provide scientists with easy

access to health and life science research data. In this

work, we introduce a ranking pipeline to improve search

of biomedical research datasets, which was assessed in the

context of the 2016 bioCADDIE Dataset Retrieval

Challenge. Our approach achieved competitive results in

comparison with the challenge participants, improving

byþ22.3% the median inferred average precision of the

overall participant’s best submissions. Based on these pre-

liminary results, we believe that the dataset retrieval engine

solution proposed in this work can be an alternative to re-

search data management frameworks that need enhanced

dataset search. Nevertheless, further experiments with

larger assessment sets shall still be performed to achieve

more conclusive results.
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