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Abstract

Information retrieval from biomedical repositories has become a challenging task be-

cause of their increasing size and complexity. To facilitate the research aimed at improv-

ing the search for relevant documents, various information retrieval challenges have

been launched. In this article, we present the improved medical information retrieval sys-

tems designed by Poznan University of Technology and Poznan University of Medical

Sciences as a contribution to the bioCADDIE 2016 challenge—a task focusing on informa-

tion retrieval from a collection of 794 992 datasets generated from 20 biomedical reposi-

tories. The system developed by our team utilizes the Terrier 4.2 search platform

enhanced by a query expansion method using word embeddings. This approach, after

post-challenge modifications and improvements (with particular regard to assigning

proper weights for original and expanded terms), allowed us achieving the second best

infNDCG measure (0.4539) compared with the challenge results and infAP 0.3978. This

demonstrates that proper utilization of word embeddings can be a valuable addition to

the information retrieval process. Some analysis is provided on related work involving

other bioCADDIE contributions. We discuss the possibility of improving our results by

using better word embedding schemes to find candidates for query expansion.

Database URL: https://biocaddie.org/benchmark-data

Introduction

Biomedical research produces ever increasing amount of

digital data, which is stored in a variety of formats and

hosted in a multitude of different sites. These sites could be

generated by original researchers, attached to journals as

supplementary material, organized as datasets and kept in

databases or repositories. The most common information

source is literature in the form of indexed journals that in
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electronic form reside of Pubmed platform or publisher

portals. The article format has its advantage—ease of read-

ing. Articles contain mostly unstructured information that

is hard to use specialized processing, comparison, aggrega-

tion and integration. Therefore, we need transformation of

this information into more structured form that can be

stored in databases, collection and repositories. This pro-

cess requires development of useful data structures and

indexing and extraction tools.

Data is a set of values of qualitative or quantitative vari-

ables. Pieces of data are individual pieces of information. A

dataset or collection of data often corresponds to the con-

tents of a single database table, or a single statistical data

matrix, where every column of the table represents a par-

ticular variable. Generic ontologies and metadata models

designed for description of datasets, supplement domain-

specific ontologies to describe the research field. The enor-

mous amount of biomedical literature, the existence of

data of different granularity and data heterogeneity, as

well as the lack of common metadata, makes it difficult to

selectively access increasingly complex relevant

information.

As pointed out by (20), ‘A typical dataset available in,

for instance, the gene expression repositories may contain

a description, a list of keywords and a list of organisms. A

typical dataset available in the protein structure reposito-

ries contains, in addition, a list of genes and a list of re-

search articles’. Thus, a global pharmaceutical company,

for instance, may need close to 30 different databases to

complete a clinical study. These sources of data require re-

cording provenance for datasets and data curation.

Moreover, the data resulting from biomedical experiments

often possess an implicit hierarchy (1). In terms of granu-

larity needed for specific databases, a PubMed article needs

to be decomposed into snippets which describe structured

data markup. Snippets may be organized using a compre-

hensive data type ontology which will provide definitions

of types of data (Protein, Phenotype, Gene Expression,

Nucleotide Sequence, Clinical Trials, Imaging Data,

Morphology, Proteomics Data, Physiological Signals,

Epigenetic Data, Data from Papers, Omics Data, Survey

Data, Cell Signalling and Unspecified). Snippets in differ-

ent databases may often be found at different levels of a

database schema. Since different types of metadata are of

importance for given specialized databases, historically

their schemas were developed independently, and do not

conform to any standardized pattern. Since datasets are

combination of structured and unstructured data, often

presented in incompatible ways (e.g. the same information

with different tags), using them in a complex processing

can be quite difficult. Futhermore, a significant percentage

of specific data that had been reported in clinical reports

does not made its way into journals (2). Nevertheless, data

needs to be compared and verified.

Often, cost and utility considerations make it necessary

to try a multi-sponsored clinical development approach

termed Portfolio of Innovative Platform Engines,

Longitudinal Investigations and Novel Effectiveness to gen-

erate a new hypothesis. In such environment (3), this need

for shared collaborative data governance forces a use of

integrated data—therefore, improving the effectiveness of

retrieval is paramount to finding state-of-the-art methods of

diagnosis, testing and treatment for individual patients.

Existing platforms such as Google and PubMed serve their

purpose providing an up-to-date sources of information

with various additional functionalities but it is difficult to

assess their effectiveness. Thus, the crucial aspect for ad-

dressing this complexity is the availability of annotated dis-

tributed datasets created by the scientific community, with

which researchers can test the effectiveness of various

approaches. That in turn leads to better data structures and

indexes of various granularities. This can be achieved only

within a shared task environment, which enables researchers

from many different institutions to work together at solving

important scientific problems. In the biomedical area, Text

REtrieval Conference (TREC) and bioASQ have contributed

the most towards achieving this goal. Collaboration occurs

at multiple level: definition of test collections, task defin-

ition, evaluation and analysis of results. For the last several

years, the National Institute of Standards of Technology’s

the TREC has concentrated on finding the most relevant

PubMed articles and clinical trial data in response to se-

lected medical records within its clinical decision support

(CDS) track evolving into Precision Medicine (4). In this

context, the bioASQ (5) challenge concentrates mainly on

the following broad tasks:

1. bioASQ Task on Online Biomedical Semantic

Indexing—classification of new PubMed documents

into the MeSH hierarchy concepts.

2. bioASQ Task on Biomedical Semantic query answering

(QA) related to information retrieval and query an-

swering—one of the most complex semantic tasks in

natural language processing (NLP).

Previous TREC CDS and earlier medical tracks and

bioASQ challenges had many specific task orientations,

data sources and retrieval conditions. For example, some

TREC sources were either full publications or abstracts.

The topics of a question could be electronic health records

(EHR) admission notes curated by physicians. Notes could

be of Diagnosis, Test and Treatment type. Notes could be

much longer compared with concise bioCADDIE ques-

tions. Currently, the format for run submissions of TREC

and bioCADDIE is the standard trec_eval format. The
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bioASQ contest shares a deep semantic approach to an-

swer questions with bioCADDIE when word embeddings

(WEs) are used for query expansion or within document

vector framework.

Based on these tasks, the Biomedical and healthCAre

Data Discovery Index Ecosystem (bioCADDIE) consor-

tium, funded by the US National Institute of Health Big

Data to Knowledge program, aims to empower researchers

to find data the most efficient way and expand sources and

types of data. These would include opinion on research on

non-scientific portals (i.e. conversations about scholarly

content) together with monitoring attention surrounding

particular work (altmetric).

BioCADDIE (6) has developed DataMed, a search en-

gine prototype of Data Discovery Index (DDI), using the

data tag suite (DATS) model to support the DataMed dis-

covery index (7). This enables searching data of various

types and formats (while maintaining a core set of elem-

ents), curated by separate institutions. DataMed based on

ISA formatted metadata aims to facilitate the discovery of

a digital object. At this time, DataMed has indexed close

to 1 400 000 datasets drawn from 66 repositories (8).

The bioCADDIE challenge concerned finding most rele-

vant docnos (elements of datasets) in response to 15 ques-

tions provided by bioCADDIE experts. The structure of the

questions followed the DataMed prototype idea of the rdf

type of relations between entities (‘data type’ ¼ w, ‘biolo-

gical process’ ¼ x, ‘species/organism’ ¼ y and ‘phenotype’ ¼
z) (9). The graph structure of a query suggests that if we also

transformed documents into graph structure the matching

process would be at the level of relations and not keywords.

The aim of the 2016 bioCADDIE Challenge (9) was the

retrieval of datasets from a collection that is relevant to the

needs of biomedical researchers; the purpose was to facili-

tate the reutilization of collected data and enable the repli-

cation of published results. Such work is the focus of WG4

of the bioCADDIE consortium: Use Cases and Testing

Benchmarks. The goal is to develop usability specifica-

tions/requirements and appropriate benchmarks with asso-

ciated testing content for DataMed.

To address this goal sections, later discuss the following

aspects:

• The Related work section discusses the content of al-

ready published bioCADDIE articles

• The Methodology section presents the methods, algo-

rithms and solutions prepared by our team, divided into

following subsections:

• The Overview, describing the model of our informa-

tion retrieval system

• The Collection, with information on the bioCADDIE

datasets

• An Analysis of document structure and content, pre-

senting the differences among various repositories

• A Selection of documents with valuable data for index-

ing, with the description of our algorithm evaluating

whether a document is worth indexing

• An Index of data, including information of corpus

preparation for indexation

• Query preprocessing

• Query expansion, describing the methods chosen to

expand the query

• Information retrieval and evaluation, with information

on the retrieval platform

• The Results and discussion section is divided into the

following subsections:

• Selection of the optimal baseline system

• Query expansion

• Further analysis

• The Conclusions and future work section summarizes

the main outcome of the article

Related work

At present, details of bioCADDIE Challenge systems exist

for selected contributions. Apart from standard similar

preprocessing similar to that presented in this work, pro-

cessing can be divided into advanced preprocessing, re-

trieval and re-ranking.

The University of California San Diego (UCSD) team

that obtained the top infNDCG result (9) implemented a

two-step ‘retrieval plus re-ranking’ strategy (10). Based on

this idea, they developed a method to find the Google top

10 returned documents and then transformed these docu-

ments into queries for relevant datasets. This strategy was

used by East China University in their winning contribu-

tion to TREC CDS 2015 (11). Their baseline was Elastic

search (a Lucene-based search engine that is part of a

DataMed technology).

The Elastic search top 5000 retrieved datasets were re-

ranked based on the concatenated documents using the

pseudo sequential dependence (PSD) model (12). The best

run used the PSD-allwords model.

UCSD used the concept matching formula with

Dirichlet smoothing, with weights based on the annotated

dataset repository. In contrast to the original algorithm in

(12), an actual term frequency was increased by a con-

stant¼ 5. UCSD found (as we do) that neither ordered nor

unordered bigrams have improved performance. We would

like to point out that the UCSD results presented in (10) do

not exactly match the official results (9).

Elsevier (13) used two approaches: word embeddings

and ontology-based indexing (queries and data sources

were tagged with named entities from MeSH and Entrez
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Gene) with indexing and search platform Apache Solr.

For WEs, fastText (14) gave better results than word2Vec

(15) and GloVe (16) that we both used. FastText, based on

a skip-gram model, uses character n-grams and smaller

windows that translate to better WEs for query expansion.

Elsevier used an additional advanced modification of

queries:

• Abbreviated species names were expanded to full names

(e.g. M to Mus).

• Greek characters were replaced with English spelling.

It has been noted in (13), for example, that for ‘glycoly-

sis’ (a word that does not appear in the bioCADDIE ques-

tions), the word2Vec model returned ‘tca_cycle’,

‘mitochondria_remodelling’ and ‘reroute’. FastText de-

livered more reasonable similar words/phrases. For ex-

ample, for the phrase ‘glycolysis’, the top three similar

phrases returned by fastText were ‘gluconeogenesis’,

‘glycolytic’ and ‘glycolytic_pathway’.

However, it is well-known that WE methods are ex-

tremely sensitive to a training corpus (we used the PubMed

abstracts). With word2vec, we obtained the following most

similar words (characterized by the cosine similarity measure)

to ‘glycolysis’: [(gluconeogenesis, 0.804), (glycogenolysis,

0.797), (glyconeogenesis, 0.771), (gluconeogenic, 0.751),

(glycogen, 0.7405), (lipogenesis, 0.738), (ureogenesis, 0.738),

(glycogenic, 0.738), (ketogenesis, 0.737) and (glycogenolytic,

0.734)].

Elsevier obtained the best result with Elsevier four run

modified queries (all additional modifications)þ concept

expansionþmulti-phase execution; Search: Apache Solr,

stemmed index) but only 2% better than their baseline.

SIBTex (17) divided query terms into non-relevant, rele-

vant and key, assigning larger weights to key relevant

terms compared with relevant terms. This is the same strat-

egy that we used for expanded terms. Universal protein re-

source (UniProt) was used to constrain query and datasets

to a set of 14 biomedical topics (18). They used the

Gensim word2vec library (as we did) for finding expansion

candidates. Their best run SIBTex 3 was achieved with a

baselineþ query expansion with weighted termsþ results

categorization in the post-processing phase.

OHSU assumed a variable number and relative weighting

of MeSH terms for query expansion in the work after the

challenge. Additional runs determined the optimal number of

MeSH terms and weighting. Their best overall score used five

MeSH terms with a 1:5 terms: words weighting ratio (19).

This is the same ratio we used in our best run when query ex-

panded terms are derived from word2vec.

The University of Melbourne, UM (20) provided useful

determination of appearance of most important metadata

in bioCADDIE used repositories. This information could

be helpful for determination whether a query term belongs

to a concept expressed by metadata or using weights for

answers coming from different repositories. UM applied

transformation of the initial query into a multi-field query

that is then enriched with terms that are likely to occur in

the relevant datasets.

Methodology

The overview

The information retrieval process, we used was divided

into four steps:

1. Analysis of repositories structure and their information

content.

2. Selection of the optimal baseline system.

3. Selection of optimal possible system extension.

4. Optimization of parameters of the complete system.

The model of the system developed to generate informa-

tion retrieval for the bioCADDIE challenge includes the

following elements:

1. Preparation of database with valuable information

from datasets

2. Indexing of data collection

3. Query preprocessing

4. Preparation of two vector space models based on data

from bioCADDIE datasets and PubMed abstracts

5. Query expansion with the use of prepared vector space

models and pseudo-relevance feedback (PRF) (provided

by Terrier)

6. Information retrieval by the Terrier engine

7. Evaluation of the results.

The collection

The bioCADDIE corpus was a collection of metadata

(structured and unstructured) from biomedical datasets

generated from a set of 20 individual repositories

(Table 1). A total of 794 992 XML documents were made

available for use from the set of indices that was frozen

from the DataMed backend on 24 March 2016 (21). Data

in each document was organized into the following tags:

<DOCNO>: document number,

<TITLE>: document title,

<REPOSITORY>: biomedical repository used to gen-

erate document,

<METADATA>: various data from the repository pre-

sented in json format.
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Table 1. Characteristics of the collection

Repository Description of repository Number of

documents

Number of different json

key patterns within

<METADATA> tag

Number of documents with valid

Title Keywords Description

arrayexpress Data from high-throughput functional

genomics experiments

60 881 17 60 817 0 60 804

bioproject Collection of genomics, functional

genomics and genetics studies and

links to their resulting datasets

155 850 41 155 631 117 577 149 399

cia Archive of cancer imaging data 63 1 44 0 63

clinicaltrials Collection of data concerning pub-

licly- and privately supported clin-

ical studies of human participants

conducted around the world

192 500 5518 192 486 138 983 191 934

ctn Repository of data from National

Drug Abuse Treatment Clinical

Trials Network

46 1 46 44 46

cvrg CardioVascular Research Grid 29 5 29 0 28

dataverse Open-source research data repository

software

60 303 7 60 037 0 60 303

dryad General-purpose database for wide

diversity of databases

67 455 98 62 795 60 957 58 421

gemma Database for genomics data (espe-

cially gene expression profiles)

2285 1 2272 0 2285

geo Datasets focused on gene expression 105 033 4 96 264 0 105 033

mpd Collection of measured data on la-

boratory mouse strains and

populations

235 1 235 0 235

neuromorpho Collection of digitally reconstructed

neurons associated with peer-re-

viewed publications

34 082 1 30 016 0 34 082

nursadatasets Repository of data on the role of nu-

clear receptors (NRs) in human dis-

eases and conditions in which NRs

play an integral role

389 2 389 387 389

openfmri Collection of magnetic resonance

imaging data

36 1 35 0 36

pdb Database with protein aminoacid

sequences

113 493 1410 113 424 113 492 113 331

peptideatlas Public compendium of peptides identi-

fied in mass spectrometry prote-

omics experiments

76 1 55 0 76

phenodisco Repository of data from studies inves-

tigating the interaction of genotype

and phenotype in Humans

429 1 429 0 429

physiobank The archive containing digital record-

ings of physiologic signals and

related data

70 1 70 0 70

Proteomexchange Mass spectrometry proteomics data 1716 1 1706 1716 1716

Yped Open-source proteomics database for

high throughput proteomic and

small molecule data

21 1 21 0 21

Total 794 992 7113 776 801 433 156 778 701

In many documents, certain data are missing or are removed as uninformative. Of all documents, 97.71% had valid title, 54.49% keywords and 97.95%

description. In total, 99.98% had no valid title, keywords or description.
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Analysis of document structures and their

information content

Each repository uses different json schema to organize

data. Moreover, in some cases a variation was noted

within the same repository (Table 1).

To prepare a text corpus for indexing, tags and keys

with potentially valuable information were selected and

their values were exported to the SQL database. The data

was then assigned to one of three categories: Title,

Keywords or generalized Description. For one of the repo-

sitories (geo), the generalized description contained add-

itional text data, obtained from geo database online

resources, based on the ‘geo_accesion’ code found in the

metadata (Table 2).

Selection of documents with valuable data for

indexing

Because documents from some repositories (e.g. dryad,

geo) contained very little useful information (see examples

in Table 3), we decided to assess if a document’s content is

worth indexing using MeSH. MeSH, which stands for

‘Medical Subject Headings’, is a vocabulary thesaurus used

by the National Library of Medicine (NLM) to index art-

icles stored in PubMed (22).

At this point it does matter whether we use words or

lemmatized words, so we chose to remain with the former.

Terrier tokenises a query and documents so various word

forms are treated exactly the same. In WE methodology

various words forms represent different elements of space

but when these words became expanded terms only the

token form count.

For each category (Title, Keywords or Description) of

each record (from the previously prepared SQL database),

a score was calculated according to the following heuristic

algorithm that removes meaningless records before index-

ing (i.e. shown in Table 3):

1. Let X represent the total number of words in the

record.

2. Let Y1 represent the number of words which are recog-

nized as English words.

3. Let Y2 represent the number of words which are not

recognized as English words (e.g. ‘MIP-2’, ‘CD69’ and

‘LDLR’) but are recognized as MeSH words found in

Table 2. Preparation of text data for title, keywords and description categories

Repository Categories

Title Keywords Description

Arrayexpress title description

Bioproject title dataItemkeywords organismtargetspecies, dataItemdescription

Cia title anatomicalPartname, diseasename, organismname,

organismscientificname

Clinicaltrials title keyword criteria, StudyGroupdescription, Diseasename, Treatmentdescription,

Treatmentagent, Datasetdescription

Ctn title datasetkeywords datasetdescription, organismscientificName, organismname

Cvrg title datasetdescription

Dataverse title publicationdescription, datasetdescription

Dryad title datasetkeywords datasetdescription

Gemma title dataItemdescription, organismcommonName

Geo title dataItemsource_name, dataItemorganism, dataItemdescription, text data

downloaded from geo database on the basis of the geo_accesion code

Mpd title datasetdescription, organismscientificName, organismname

Neuromorpho title anatomicalPartname, cellname, organismscientificName, organismname

Nursadatasets title datasetkeywords datasetdescription, organismname

Openfmri title datasetdescription

Pdb title dataItemkeywords dataItemdescription, organismsourcescientificName,

organismhostscientificName, genename

Peptideatlas title datasetdescription, treatmentdescription

Phenodisco title inexclude, desc, disease, history

Physiobank title datasetdescription

Proteomexchange title keywords organismname

Yped title datasetdescription, organismname

Items in the table represent column names from the SQL database (prepared on the basis of documents’ JSON keys). In most cases, more than one column was

used to prepare text categorized as Description. Thirteen repositories did not provide any keywords.
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MeSH terms (descriptors and their synonyms in the

MeSH database).

4. If there are no words (e.g. the document is lacking key-

words) set the Score to �1.

5. Calculate the Score ¼ (Y1 þ Y2)/X.

6. For Title and Description categories, if the Score is >0

and X is >2, take the record for indexing.

7. For the Keywords category, if the Score is >0 (as fol-

lows from the condition at Step 4), take the record for

indexing.

The Descriptor/Concept/Term structure makes it pos-

sible to attach various data elements in MeSH to the ap-

propriate object. This sentence is directly taken from

https://www.nlm.nih.gov/mesh/concept_structure.html.

Word (linguistic notion), term (appears in a query), data

element (part of a taxonomy structure) differ in context—

here they are used in the meaning of word.

MeSH terms used in the previous algorithm were pre-

pared according to the following procedure:

1. ‘Descriptor’, ‘Substances with pharmacologic action’,

‘Qualifiers’ and ‘Supplementary records’ files were

downloaded from the MeSH database website (20).

2. Words were collected from specific tags depending on

the file (<DescriptorName> and <ConceptList> tree

from ‘desc2017.xml’; <DescriptorName> and <Phar

macologicalActionSubstanceList> tree from ‘pa2017.

xml’; <QualifierName> and <ConceptList> tree from

‘qual2017.xml’; <SupplementalRecordName> and

<ConceptList> tree from ‘suppl2017.xml’).

3. For each word characters such as ‘,’, “(‘or’)” were removed.

4. The list of words was reduced by removing duplicates

of each word.

5. The resulting list of unique terms consisted of 479 545

words.

Indexing of data

After the removal of documents without valuable data, the

text corpus for indexing was prepared in the form of an xml

file, with the content of every document placed within a DOC

tag (a format required by Terrier). Such prepared text corpora

were tokenized and indexed by the Terrier 4.2 engine (8).

Query preprocessing

The queries were provided as natural language sentences,

containing a lot of noise words. To improve the retrieval,

stop-words and common non-informative phrases (e.g. ‘find’,

‘data’ and ‘related to’) were removed from each query.

Query expansion

To expand the queries, we used WEs, choosing the word2-

vec algorithm (15). Two vector space models were calcu-

lated the first based on the corpus from the bioCADDIE

collection and the second utilizing the much larger text

corpus based on PubMed article abstracts. Calculated vec-

tors were then used to find the words most similar to query

terms. To enable setting the different weights for original

and expanded query terms, the query was not passed

through the tokenizer (class SingleLineTRECQuery).

Additional query expansion was carried out by the Terrier

engine in the form of PRF utilizing the Rocchio algorithm.

Information retrieval and evaluation

Information retrieval was done using the Terrier 4.2 plat-

form. The results were then evaluated using the qrel file

provided by the challenge organizers.

Results and discussion

The complexity and fragmentation of the repositories

made it difficult to index the data. For the original chal-

lenge, due to lack of time and inexperience of our team

with DataMed, the data was not fully indexed and we

achieved a poor result, shown in Table 4 (9).

Having made modifications of our system, our present

results are much better. Application of our algorithm for

selection of documents with valuable data for the indexing

Table 3. Examples of datasets having very little useful information

No. Docu-ment number Repository Title Keywords Description

1 104242 dryad chr19 NULL NULL

2 108196 dryad Chr8 NULL NULL

3 124757 bioproject Sobemovirus NULL NULL

4 151909 bioproject Alphaflexiviridae NULL NULL

5 500000 geo A375R_RPL10a_vivo__

Ronly_vem10d_rep2

NULL melanoma

6 500002 geo A375_vitro_vehicle_rep3 NULL melanoma

NULL means that in the source file there was no information that could be categorized as ‘Title’, ‘Keywords’ or ‘Description’.
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revealed that 97.71% of documents had ‘Title’ assessed as

valid for indexing (see Table 1 for details). A similar value

was observed for ‘Description’ (97.95%). Only slightly

more than half of documents (54.49%) had valid keywords

(this was mainly due to the fact that in many datasets key-

words were not present). One hundred and fifty-five data-

sets were assessed as having no valid ‘Title’, ‘Keywords’

and ‘Description’. Only one of them was present in the

qrels file (dataset no. 5322) and was marked as ‘non-

judged’ (�1).

Selection of the optimal baseline system

Our selection of Terrier (23)—the open-source search en-

gine written in Java—was motivated by its maturity and its

use of state-of-the-art retrieval weighting models and tech-

niques that can be used to index large collection of various

documents.

In particular, some of the notable weighting models im-

plemented include Okapi BM25 (best matching model),

term frequency inversed document frequency (TFIDF) and a

whole group of Divergence From Randomness Framework,

DFR [mostly originating in (24)]. DFR models have their

origin in information theory (Amati, Encyclopedia). A word

that is randomly distributed according to some distribution

in documents is not informative, whereas a word that does

not obey this distribution conveys information. The models

were obtained by representing the three components of the

framework: selecting a basic randomness model, applying

the first normalization and normalizing the term frequencies

with respect to the document-length. In this work, the so-

called Normalization 2 was applied with the hyper-

parameter c¼ 1.

The following divergence from randomness (DFR) mod-

els were used based on Terrier (DFR Framework, http://ter

rier.org/docs/v3.5/dfr_description.html):

BB2 (Bernoulli–Einstein model with Bernoulli after-

effect and Normalization 2),

DFR version of BM25, DFree (parameter-free DFR model),

DLH and its improved version DLH13 (parameter-free

DFR model, assuming hypergeometric term frequency

distribution),

DPH (parameter-free hypergeometric model with

Popper’s normalization),

IFB2 (inverse term frequency model with Bernoulli

after-effect and Normalization 2),

ExpB2 (inverse expected document frequency model

with Bernoulli after-effect and Normalization 2; it uses

logarithm Base 2),

In_ExpC2 (same as the previous one but with logarithm

base e),

InL2 (inverse document frequency model with Laplace

after-effect and Normalization 2),

LGD (a log-logistic model for information retrieval)

(23, 25) and

PL2 (Poisson model with Laplace after-effect and

Normalization 2).

We direct a reader to the original source (26) for complex

model formulas. So far, it has not been demonstrated theoret-

ically why some of these models perform better than others.

Another valuable feature implemented in Terrier is PRF

query expansion—a mechanism allowing for extraction of

n most informative terms from m top ranked documents

(ranking created in the first search run) which are then

added to the original query in the second retrieval rank.

Terrier provides both parameter-free (Bose–Einstein 1;

Bose–Einstein 2; Kullback–Leibler) and parameterized

(Rocchio) models for query expansion (27). The Rocchio

feedback approach was developed using the vector space

model. The modified vectors are moved in a direction

closer or farther away, from the original query depending

on whether documents, are related or non-related.

In recent work (28), several leading systems were eval-

uated within the Open-Source Information Retrieval (IR)

Reproducibility Challenge for the Gov2 test collection to se-

lect the best DFR variant. Among the options was Terrier 4.0

with DPH ranking function, which is a hypergeometric

parameter-free model from the Divergence from Randomness

Table 4. Original Poznan consortium results as submitted for the challenge vs. the best participant results for a given evaluation

measure (in bold font)

Group Submission infAP infNDCG NDCG@10 P@10 (þpartial) P@10 (�partial)

IAII_PUT Biocaddie dphresults.txt 0.0876 0.3580 0.4265 0.5333 0.1600

UCSD armyofucsdgrads-3.txt 0.1468 0.5132 0.5303 0.7133 0.2400

SIBTex sibtex-5_0.txt 0.3664 0.4188 0.6271 0.7533 0.3467

Elsevier elsevier4.txt 0.3049 0.4368 0.6861 0.8267 0.4267

UIUC GSIS sdm-0.75-0.1-0.15.krovetz.txt 0.3228 0.4502 0.5569 0.7133 0.2867

BioMelb Post-challenge 0.3575 0.4219 0.7733

Poznan—this work LGD word2vec and Terrier Rocchio 0.3978 0.4539 0.6375 0.7700 0.4000

The results of the current Poznan consortium work are shown in italics.
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family of functions (8). The query expansion version—the

‘DPH þ Bo1 QE’ uses PRF, which is known to find poten-

tially relevant terms by first querying the index and looking

for new terms in high-ranking documents. Specifically, 10

terms are added from three PRF documents.

Research by in (28) found that the ‘DPH þ Bo1 QE’

run of Terrier 4.0 was statistically significantly better than

all other runs including Terrier’s BM25 run, with all other

differences not significant. In particular, it was 0.04 better

compared with the Lucene-based solutions for the mean

average precision (MAP) at 1000 measure. We corrobo-

rated this finding with the relatively successful Poznan

University of Technology (PUT) TREC CDS 2016 contri-

bution (29), where Terrier DPH Bo1 was used, and the

data consisted of a subset of the PubMed articles.

The baseline information retrieval results are presented

in Table 5. Fourteen weighting models implemented in

Terrier were tested, with the log-logistic DFR model pro-

viding the best infNDCG.

For the Biocaddie data, which are not continuous data,

surprisingly the best results for infNDCG were achieved with

LGD, not BB2 (DPH Bo1), which provides the best results

for infAP and P@10. These results could not had been pre-

dicted before the evaluation of the Challenge results.

Therefore, for original challenge our results could have been

0.02 lower in comparison to what we present now.

Our baseline results compare quite favourably with the

best original baseline bioCADDIE teams’ results in spite of

the fact that no advanced preprocessing was used. The best

Terrier option LGD gives the infNDCG value 0.4355,

compared with UCSD 0.4498 (official bioCADDIE evalu-

ation)/0.433 (10), and Elsevier’ 0.4292 (13), UIUC GSIS

0.4207, SIBTex 0.3898 (17).

Query expansion

Expanding queries by adding potentially relevant terms is a

common practice in improving relevance in IR systems.

There are many methods of query expansion. Relevance

feedback takes the documents on top of a ranking list and

adds terms appearing in these document to a new query. In

this work, we use the idea to add synonyms and other simi-

lar terms to query terms before the PRF. This type of ex-

pansion can be divided into two categories. The first

category involves the use of ontologies or lexicons (rela-

tional knowledge). In biomedical area UMLS, MeSH (22),

SNOMED-CT, ICD-10, WordNet and Wikipedia are used

(30). Generally, the result of lexicon type expansion is

positive (in the bioCADDIE contest see for example (19,

20)). We did not use this method in our work because of

lack of access to MeSH medical text indexer service. The

second category is WE, i.e. word2vec—mapping a word on

a corresponding vector. This belongs to a class of distribu-

tional semantics, feature learning techniques in natural lan-

guage processing. Such language modelling derives word

space from linguistic items in context. Space with one di-

mension per word is transformed to a continuous vector

space with much lower dimension. Meaning is obtained by

defining a distance measure between vectors corresponding

to lexical entities (here words). In the WE query expansion

methods, terms are added to a query based on their similar-

ity to original query terms. Goodwin and Harabagiu (31)

used the skip-gram word2vec method for query expansion

with negative effect compared with the baseline, as we did

for TREC CDS (29).

Analysis of the effects of query expansion is difficult, as

stressed in (32). There, it was shown that various methods

gave very different top expansion terms in response to a

query ‘foreign minorities Germany in Google (as of April

2009)’. The methods were automatic-query expansion,

mutual information, local context analysis Rocchio, binary

independent model, Chi-square, Robertson selection value,

Kullback–Leibler and relevance model. Only the binary in-

dependent model, Chi-square and Kullback–Leibler gave

‘frisians’ and sorbs ‘2’ as the top two expanded terms.

Some of the methods got none of the intended correct

terms among the first eight expanded terms.

In this work, we used MeSH only for filtering, so that

query expansion terms stayed in the medical domain. The

query was expanded with most similar terms obtained

from a collection of PubMed Biomedical journal citations

(titles and abstracts) and from the Biocaddie data challenge

collection. Similarity was calculated for each dataset using

word2vec, an efficient model allowing for learning vector

representations of words from unstructured text data (15)

with the following parameters:

Table 5. Baseline information retrieval results

Algorithm infAP infNDCG P@10 (þpartial) P@10 (�partial)

BB2 0.3550 0.4184 0.7133 0.3533

BM25 0.3547 0.4055 0.7067 0.3400

DFR_BM25 0.3723 0.4085 0.7067 0.3533

Dfree 0.3664 0.4248 0.7533 0.4067

DLH 0.3617 0.4120 0.7200 0.3333

DLH13 0.3640 0.4207 0.7533 0.3733

DPH 0.3442 0.4125 0.7200 0.3400

IFB2 0.3494 0.3948 0.6853 0.3400

In_ExpB2 0.3534 0.4079 0.7222 0.3667

In_ExpC2 0.3379 0.4015 0.7367 0.3333

InL2 0.3791 0.4181 0.7367 0.3600

LGD 0.3773 0.4355 0.7333 0.3933

PL2 0.3474 0.4009 0.7222 0.3067

TFIDF 0.3530 0.4120 0.7067 0.3400

Bold font indicates the highest values for a given measure.
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• PubMed collection: number of dimensions ¼ 100; win-

dow size ¼ 5; minimum word count ¼ 10; this resulted

in the collection of 1 498 219 words;

• BioCaddie collection: number of dimensions ¼ 100; win-

dow size ¼ 20; minimum word count ¼ 5; this resulted

in the collection of 296 503 words.

A similarity threshold was set to 0.9 for vectors gener-

ated from PubMed abstracts and 0.8 for vectors calculated

on the basis of bioCADDIE datasets (lower values resulted

in dissimilar query terms).

As in (29) and (31), if queries are expanded with WE

obtained terms and added to a list of query terms with the

same weight as the original terms, the results, in general,

get worse, because a query drift is introduced. In Question

9 (question pertains to ‘ob’ and Mus musculus), adding

terms such as ‘mouse’ or ‘mice’ to a question does not im-

prove the result.

The most important result of this work is observation

that the results improve if query expanded terms are given

a much smaller weight than the original terms.

The weight of original query terms was set to 100,

terms obtained from PubMed to 20 and terms provided

with bioCADDIE embeddings to 1. This is justified by the

relative smallness of the bioCADDIE dataset.

In (26), we used MeSH not only for filtering but also

for query expansion, with positive results. For the purpose

of this work, we use MeSH only for filtering because the

free access interface was discontinued.

We tried query expansion with WE using two

approaches:

1. The skip-gram method (15) on abstracts of the entire

PubMed using Gensim library (33).

2. The Glove method (16) on free TREC 2016 PubMed

documents.

In our case, vectors obtained from word2vec and Glove

were quite different, and in case of Glove gave negative re-

sults (data not shown). However, this may be related to the

relative smallness of the corpora used. We plan to extend

the current work to larger corpora (e.g. 34) for neural net-

work training.

Table 6. Baseline information retrieval results with the best word2vec query expansion and PRF

Algorithm Run parameters infAP indNDCG P@10 (þpartial) P@10 (�partial)

BB2 terrier Rocchio 0.3911 0.4325 0.7900 0.3200

BB2 word2vec and terrier Rocchio 0.4001 0.4533 0.7900 0.3200

BM25 terrier Rocchio 0.3719 0.4158 0.7067 0.3200

BM25 word2vec and terrier Rocchio 0.3601 0.4286 0.6933 0.3200

DFR_BM25 terrier Rocchio 0.3883 0.4066 0.7214 0.3133

DFR_BM25 word2vec and terrier Rocchio 0.3801 0.4311 0.7267 0.3133

Dfree terrier Rocchio 0.3910 0.4371 0.7500 0.3667

Dfree word2vec and terrier Rocchio 0.3888 0.4454 0.7567 0.3733

DLH terrier Rocchio 0.3683 0.4181 0.7400 0.3000

DLH word2vec and terrier Rocchio 0.3604 0.4292 0.7400 0.3000

DLH13 terrier Rocchio 0.3759 0.4324 0.7733 0.3467

DLH13 word2vec and terrier Rocchio 0.3692 0.4422 0.7733 0.3467

DPH terrier Rocchio 0.3779 0.4194 0.7500 0.3133

DPH word2vec and terrier Rocchio 0.3751 0.4276 0.7567 0.3200

IFB2 terrier Rocchio 0.3669 0.4005 0.7233 0.3133

IFB2 word2vec and terrier Rocchio 0.3813 0.4284 0.7367 0.3067

In_ExpB2 terrier Rocchio 0.3720 0.4108 0.7433 0.3133

In_ExpB2 word2vec and terrier Rocchio 0.3816 0.4330 0.7433 0.3133

In_ExpC2 terrier Rocchio 0.3720 0.3999 0.7367 0.3133

In_ExpC2 word2vec and terrier Rocchio 0.3672 0.4157 0.7367 0.3133

InL2 terrier Rocchio 0.4001 0.4259 0.7533 0.3133

InL2 word2vec and terrier Rocchio 0.3902 0.4360 0.7467 0.3200

LGD terrier Rocchio 0.3990 0.4456 0.7633 0.3867

LGD word2vec and terrier Rocchio 0.3978 0.4539 0.7700 0.3933

PL2 terrier Rocchio 0.3648 0.4082 0.7467 0.2800

PL2 word2vec and terrier Rocchio 0.3542 0.4213 0.7467 0.2800

TFIDF terrier Rocchio 0.3641 0.4023 0.7317 0.3133

TFIDF word2vec and terrier Rocchio 0.3523 0.4154 0.7250 0.3133

Bold font indicates the highest values for a given measure.
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We focused on the Terrier Rocchio method optimizing

the beta parameter, a number of top documents and a

number of extracted terms to obtain an optimal infNDCG

result. For the same conditions, the Rocchio query expan-

sion method slightly outperforms the Terrier parameter-

free expansion method Bo1 http://terrier.org/docs/v3.5/jav

adoc/org/terrier/matching/models/queryexpansion/Bo1.

html). For LGD with word2vec, the difference is 0.0049.

For infAP the reverse occurs—the parameter-free expan-

sion slightly outperforms Rocchio by 0.0034.

Terrier PRF was configured to use the Rocchio algo-

rithm with the following parameters: number of top docu-

ments used for query expansion¼ 2; number of terms

extracted from each document¼2; beta parameter for

Rocchio algorithm¼ 0.5.

The results of information retrieval with expanded

query are presented in Table 6. Once again, LGD was

found to provide the best infNDCG measure. The

percentage-wise gain obtained by the query expansion over

the baseline result is a little over 4%, smaller than achieved

in (29). However, the bioCADDIE data have quite irregu-

lar structure (some data types missing in many documents),

and this might make a difference.

Further analysis

To better understand the results, we did evaluation for indi-

vidual questions (Table 7) for our best result: LGD with

query expanded with word2vec and Terrier PRF. Strikingly,

the highest value of measure is for Question 15 (for which,

similar to Question 7 no Score 2 of evaluation was assigned).

Further analysis of which particular databases carry in-

formation gain is required. For example, neuromorpho

provided 11% of the contribution to infNDCG measure,

although it constitutes <5% of data volume.

Table 8 presents the details of run options for the LGD

algorithm using the same or different weights for original

and expanded terms and shows that expansion terms

should not have the same weight as original terms.

We evaluated the results using the query relevance file

with partially relevant documents denoted as non-relevant.

We have noticed that search results benefit from query ex-

pansion in any form. We have evaluated three forms of ex-

panding the query: no expansion (denoted as NoEXP),

Terrier default query expansion (denoted as Terrier) and

query expansion with the WEs (denoted as Emb). Results

are presented in Table 9.

We can see that commonly used BM25 and its extension

InL2 gives surprisingly good results, better than the best per-

forming algorithm in the full evaluation—LGD. In terms of

cumulative gain, TF-IDF is the worst performing algorithm.

Improvement for results obtained with query expansion is

consistent across all algorithms. Composition of both types

of query expansions gives the best results, reaching a normal-

ized discounted cumulative gain of 0.2687 for the InL2 algo-

rithm and 0.2086 Average Precision for the LGD algorithm.

Conclusions and future work

Shared tasks bioCADDIE challenge fulfilled an important

role in the advancement of biomedical Information re-

trieval methods using data snippets as datasets. Our post-

challenge analysis indicates that bioCADDIE data is quite

different from continuous biomedical data. There are quite

a number of documents that basically present the same in-

formation duplicated in NML databases. Manual expan-

sion, in general, makes the results worse. Word2vec based

query expansion improves the results but expansion term

weights have to be much smaller than the original weights.

For effectiveness of word2vec, a method for calculating the

similarity of candidate expansion terms to the original

query terms is crucial. In this work, we use the pure

word2vec.

Several recently proposed theoretical approaches to

query expansion reporting positive results (34–42) deserve

to be applied in a bioCADDIE context [including word2-

vec (38)]. There are many studies on WE information re-

trieval in the biomedical domain (34, 39).

The work of Fudan group within the bioASK contest

(43) used deep semantics comparing query and document

text on a sentence basis (D2V, document vectors). D2V-

TFIDF, which concatenates both dense and sparse seman-

tic representations, performed very well in application to

ranking of MeSHLabeler.

Table 7. Variation of measures for each bioCADDIE question

Query number infAP infNDCG P@10 (partial)

1 0.4217 0.6504 0.9000

2 0.3933 0.3338 0.8000

3 0.5832 0.6898 0.9000

4 0.6999 0.5177 1.0000

5 0.1620 0.2897 0.4000

6 0.3256 0.4938 1.0000

7 0.1931 0.6197 0.2500

8 0.0856 0.4547 0.3000

9 0.2207 0.2607 0.8000

10 0.1186 0.1961 0.5000

11 0.6373 0.3402 1.0000

12 0.5860 0.4011 0.9000

13 0.3171 0.2919 0.9000

14 0.7005 0.3300 0.9000

15 0.5228 0.9384 1.0000

Average 0.3978 0.4539 0.7700
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It should be stressed that in (15), the pure word2vec

method (with cosine similarity) was presented as better

than it actually is by choosing an easy type of corpus such

as countries and capitals. Much better results are obtained

when sense disambiguation (44) and hubness reduction is

applied to the vector space. For similarity tasks, the results

in (45), where three different corrections to word2vec were

used (retrofit, hubness removal and ranking type similar-

ity), are up to 30% better than with the other method (15).

Such a method (enhanced to relatedness) could allow direct

comparison of query and target terms.

Other query expansion schemes are based on WE exist

(41–42). Terrier provides a state-of-the-art baseline system

but our perspective is that PRF and phrase query expansion

could be significantly improved within Terrier.

Direct comparison of this work results with original

bioCADDIE results is not warranted. Nevertheless, our re-

sults are strong. They are close to the top in most meas-

ures, and the best in infAP measure.

To summarize, the main conclusions of this article are

the following:

1. Use of language models created on the basis of distribu-

tion semantics to expand the query (using WE) has the

potential to significantly improve WE results in the

near future.

2. Assigning different weights to words in a query,

depending on whether the words were added in the

expansion process or originating from the original con-

tent of the query significantly improves the result.

Table 8. Evaluation of search results obtained with the LGD algorithm using the same or different weights for original and ex-

panded terms

Run infAP infNDCG NDCG@10 P@10 (þpartial) P@10 (�partial)

Separate words; terms added manually;

same weight of all terms

0.2896 0.3329 0.6656

Separate words; terms added manually;

original query words weight ¼ 100

0.3922 0.4525 0.7633

Terms from query as separate words

without query expansion

0.3773 0.4355 0.6375 0.7333 0.4000

Terms from query as separate words;

Terrier query expansion (PRF)

0.3990 0.4456 0.6425 0.7633 0.3867

Terms from query (weight 100) þ word2-

vec (weight 20 or 1, depending on the

corpus � PubMed or bioCADDIE) þ
Terrier query expansion (PRF)

0.3978 0.4539 0.6425 0.7700 0.3933

Manually added terms were chosen by a biology specialist.

Table 9. Evaluation of search results obtained with various algorithms without use of partially relevant documents

Expansion method NoEXP Terrier Emb NoEXP Terrier Emb

baseline method infAP infAP infAP infNDCG infNDCG infNDCG

InL2c 0.1940 0.2056 0.2085 0.2524 0.2689 0.2687

BB2 0.1853 0.2023 0.2079 0.2469 0.2624 0.2642

BM25 0.1813 0.1950 0.1980 0.2437 0.2591 0.2610

DFR_BM25 0.1893 0.1996 0.2040 0.2469 0.2590 0.2601

In_expB2 0.1841 0.1954 0.1995 0.2439 0.2578 0.2587

DLH13 0.1780 0.1815 0.1845 0.2495 0.2529 0.2585

LGD 0.1946 0.2013 0.2086 0.2599 0.2569 0.2579

DLH 0.1633 0.1664 0.1688 0.2392 0.2560 0.2579

DFRee 0.1779 0.1905 0.1981 0.2489 0.2547 0.2560

IFB 0.1684 0.1762 0.1824 0.2360 0.2467 0.2485

In_expC2 0.1754 0.1786 0.1829 0.2350 0.2408 0.2420

PL2 0.1660 0.1708 0.1735 0.2367 0.2371 0.2383

DPH 0.1584 0.1691 0.1777 0.2422 0.2343 0.2360

TF_IDF 0.1827 0.1880 0.1904 0.2456 0.2327 0.2345

Bold font indicates the highest values for a given measure.
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3. Filtering documents that do not convey informative

content (based on PyEnchant and MeSH) likewise im-

proves the result.

4. An important element influencing the final result was

the selection of the appropriate ranking function and

the adjustment of the PRF extension parameters (para-

metric, with the coefficient b, to use the two best art-

icles, instead of the standard three).

In achieving the competitive results of this work, we

used no advanced preprocessing, neither manual tasks nor

system training. These results could be treated as a new

baseline. It is our belief that with more sophistication by

including the aforementioned elements, particularly in ap-

plication to individual questions, we can potentially im-

prove infNDCG by 0.05. Even small improvement

amounts to a large economic gain as in the 2012 survey

(46), it had been found that that doctors performed an

average of six professional searches a day during their

course of work.

The bioCADDIE challenge results need to be further

analysed to understand which features of participating

team algorithms contributed to effectiveness of results for

particular measures. Such extended analysis was per-

formed or TREC CDS 2014 (47).

Comparing all bioCADDIE runs based on the infAP,

infNDCG, NDCG and P@10 there is surprisingly little cor-

relation between evaluated results for these measures (20).

The UCSD team was ranked first in term of infNDCG but

would rank ninth in the ranking based on the classic

NDCG metric. The UCSD method was optimized for

infNDCG but has not been universally strong across meas-

ures. This challenge deserves further work and should con-

tribute the development of a DDI prototype.

Finally, the result of bioCADDIE effort could be useful

for determination of relevance of particular data. For ex-

ample, evaluation performed in (48) showed that the gen-

ome-wide association studies dataset finder outperformed

PubMed significantly in retrieving literature with desired

datasets. This could indicate better usefulness of datasets

compared with literature for some semantic tasks.
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