
Original article

Probabilistic and machine learning-based

retrieval approaches for biomedical

dataset retrieval

Payam Karisani1, Zhaohui S. Qin2 and Eugene Agichtein1,*

1Department of Computer Science, Mathematics & Science Center, Emory University, Suite W401, 400

Dowman Drive NE, Atlanta, Georgia 30322, USA and 2Department of Biostatistics and Bioinformatics,

Emory University, 1518 Clifton Road NE, Atlanta, Georgia 30322-4201, USA

*Corresponding author: Tel: þ1 (404) 727-7962; Fax: þ1 (404) 727-5611; Email: eugene.agichtein@emory.edu

Citation details: Karisani,P., Qin,Z.S., Agichtein,E. Probabilistic and machine learning-based retrieval approaches for

biomedical dataset retrieval. Database (2018) Vol. 2018: article ID bax104; doi:10.1093/database/bax104

Received 16 April 2017; Revised 12 November 2017; Accepted 20 December 2017

Abstract

The bioCADDIE dataset retrieval challenge brought together different approaches to retrieval

of biomedical datasets relevant to a user’s query, expressed as a text description of a

needed dataset. We describe experiments in applying a data-driven, machine learning-

based approach to biomedical dataset retrieval as part of this challenge. We report on a

series of experiments carried out to evaluate the performance of both probabilistic and

machine learning-driven techniques from information retrieval, as applied to this challenge.

Our experiments with probabilistic information retrieval methods, such as query term

weight optimization, automatic query expansion and simulated user relevance feedback,

demonstrate that automatically boosting the weights of important keywords in a verbose

query is more effective than other methods. We also show that although there is a rich space

of potential representations and features available in this domain, machine learning-based

re-ranking models are not able to improve on probabilistic information retrieval techniques

with the currently available training data. The models and algorithms presented in this paper

can serve as a viable implementation of a search engine to provide access to biomedical

datasets. The retrieval performance is expected to be further improved by using additional

training data that is created by expert annotation, or gathered through usage logs, clicks and

other processes during natural operation of the system.

Database URL: https://github.com/emory-irlab/biocaddie

Background and motivation

With rapid technological development such as DNA

sequencing and brain imaging, ever increasing volumes of

massive datasets have been produced. Data sharing policies

mandated by agencies such as the NIH, have encouraged

high throughput experimental data to accumulate rapidly
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in public repositories. As an example, the NCBI Gene

Expression Omnibus has to-date (November 2017)

archived >91 000 experimental studies, which comprise

>2 million samples.

Such massive amounts of openly accessible data offer un-

precedented opportunities to advance our understanding of

biology, human health and diseases. There is little doubt that

biomedicine, like many other disciplines, are accelerating into

a new era of Big Data. However, along with exciting pro-

spects there are enormous challenges. It is impossible to con-

veniently browse through datasets collected from millions of

experiments. In a perspective article, which describes NIH’s

vision of Big Data to Knowledge (BD2K) (1), Margolis et al.

pointed out that ‘A fundamental question for BD2K is how

to enable the identification, access and citation of (i.e. credit

for) biomedical data.’ In Eric Green’s presentation on ‘NIH

and Biomedical ‘Big Data,’ the first ‘major problems to solve’

for big data is ‘Locating the data.’ This is the challenge on

which we focus in this paper: developing and evaluating tech-

niques for finding relevant biomedical datasets.

Fortunately, many techniques for searching online sour-

ces have been developed for the Web, which could be

adapted to search for biomedical datasets.

While biomedical literature remains the dominating

source of biomedical knowledge, the explosion of massive

biomedical data offers an attractive, alternative source for

biomedical knowledge since these assays provide somewhat

unbiased (no vetting from investigators), comprehensive view

of the study subject. However, to maximally exploit the new

information source, key informatics infrastructure needs to

be developed. One of the major aims of the recent BD2K

(https://datascience.nih.gov/bd2k) efforts (e.g. bioCADDIE) is

focused on making biomedical data searchable and reusable

to speed up discovery (2). To compare different approaches

to retrieving biomedical datasets in an objective and uniform

fashion, bioCADDIE investigators organized the

‘BioCADDIE Retrieval Challenge,’ which provided a small

amount of ‘training’ data (user queries and lists of dataset re-

sults, marked relevant or non-relevant for the query), as well

as a static ‘corpus’ – i.e. a snapshot of the datasets in 20 dif-

ferent online repositories. The participating systems were

evaluated on accuracy of retrieving datasets for hidden ‘test’

queries. More details about the Challenge are provided in the

bioCADDIE Challenge description articles, currently under

review for the Database journal (3, 4).

In this article, we describe our approach, system and

experiments in addressing the bioCADDIE Retrieval

Challenge task. Our system draws on a variety of informa-

tion retrieval techniques, and comprises of three main steps

in the retrieval process. First, the original user query, ex-

pressed as a textual description, is used to retrieve the ini-

tial set of datasets. For this step, the system matches the

query to the dataset description, extracted from the web-

site from which the dataset was drawn. Specifically, the

query words are matched against the available text fields

(i.e. the dataset title, text and description). Second, by ana-

lysing the top retrieved datasets, and the relevant external

resources available online, the system automatically refor-

mulates and expands the original query to build a more in-

formative query. The expanded query is used to retrieve a

second list of datasets. Finally, the system extracts an add-

itional, more comprehensive list of features to describe

each dataset and its match to the query (e.g. textual simi-

larity of the query to each of the text fields). This expanded

representation of the query and dataset is then used in a

machine-learned ranking, by using a learning to rank

framework to generate the final ranked list of datasets.

One technique from information retrieval which has been

effective in improving a match of a query to relevant datasets

is called ‘Blind Relevance Feedback’ (BRF) (11), which analy-

ses the top retrieved documents to identify frequent shared

terms, which in turn could be used to expand the query to re-

trieve more documents like it. The BRF technique is described

in detail in the Query reformulation and expansion section.

Our experiments show that if the user query is long, auto-

matic BRF is less effective than detecting important query

terms and boosting (automatically increasing) their weights.

Another technique is to automatically learn the importance

of query terms, and other characteristics of documents

and their matches to a query, by using a machine-learned

ranking (LTR) (5, 6). LTR models automatically learn to

weight query-dataset match features for an improved

ranking function. However, we find that with the avail-

able (small) amounts of expert-annotated training data,

LTR model does not improve the relevance of the results,

compared to the optimized probabilistic information re-

trieval methods. However, our experiments also indicate

that by using additional, potentially erroneous (noisy)

judgements for training data, the quality of the LTR model

(described in the Learning to rank section) learned over the

training set can be significantly improved and the LTR model

becomes more robust for new, unseen queries. This is an im-

portant finding, since implicit feedback, such as user clicks on

the results in the retrieved list, can be considered a type of

noisy judgement and can be used to further improve the ef-

fectiveness of the LTR framework continuously, after the sys-

tem is deployed.

bioCADDIE challenge overview

The bioCADDIE dataset retrieval challenge (3) aims to

develop an infrastructure for building a unified system

that can facilitate the access to the variety of datasets built by

medical researchers (primarily, bioinformatics researchers.)
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The participants were provided with a training corpus con-

taining 794 992 dataset descriptions, crawled from 20 differ-

ent web domains (4). Each dataset initially contained the

following fields:

• DOCNO: unique dataset ID, which is used to evaluate

the relevance of the result.

• TITLE: dataset title, part of the textual description.

• REPOSITORY: source of the dataset.

• TEXT (In the original corpus this field is named

METADATA, but for clarity we name this field TEXT to

distinguish from other fields.): textual detailed descrip-

tion of the dataset.

As we will describe in the Indexing and initial retrieval sec-

tion, we further expanded and enriched the dataset descrip-

tion with external resources.

Training data: In order to optimize the retrieval systems

prior to the official Challenge date, a small amount of

training data was provided, with expert labels of judge-

ments describing the relevance of top datasets, retrieved by

a commercial search system, ElasticSearch, for each train-

ing query. More details on the dataset construction are

described in reference (3). Due to the high cost of manually

labeling the relevance of the datasets to the queries by bio-

medical experts, only six queries with relevance judgments

were provided for training of the systems, which is lower

than previous information retrieval challenges. Additional

30 queries, without relevance judgments, were also pro-

vided for training, to give a better idea of the kind of

queries users might ask.

Test data: In the test phase of the Challenge, 15 queries,

without any relevance judgments were provided. The sys-

tems then retrieved up to 100 ranked results for each of the

test queries, and submitted these results to the Challenge

organizers for expert evaluation. The retrieved datasets

were rated by the expert judges in the scale of 0 to 2, where

0 (‘Poor’) indicates an irrelevant dataset and 2 (‘Excellent’)

indicates a very relevant dataset to the query.

Evaluation Metrics: to evaluate the judged results, the

bioCADDIE Challenge organizers used established metrics

from information retrieval literature, namely infNDCG,

MAP and Precision at 1 and at 10. The infNDCG metric

from information retrieval (7) estimates the value of the

more commonly used NDCG metric, which gives increas-

ing discounts for relevance of results further down the

ranked list, through stratified random sampling and is ex-

pected to be more robust in the presence of incomplete

judgements (NDCG, MAP and P@10 are described in de-

tail in the Experimental setup section). More details on the

test and judging process is described in reference (4).

Challenges of the bioCADDIE retrieval challenge

for information retrieval

The bioCADDIE challenge differs from traditional infor-

mation retrieval tasks in multiple ways. First, the query in-

tent is to find a useful dataset to potentially use for

research, not to learn about the research topic, as in more

traditional information retrieval. Second, the corpus and

document characteristics are different from traditional text

or Web documents, which made for higher rate of query-

document term mismatch. Finally, the amount of available

training data is lower than in other informational retrieval

tasks. We describe these challenges in detail below.

Query intent and corpus characteristics: Unlike trad-

itional information retrieval tasks, where the majority of

the queries are informational (i.e. information need can

be satisfied by reading documents), the queries in

bioCADDIE challenge are primarily ‘transactional,’ (i.e.

the query intent is to find useful data to do some processing

to answer a question and the answer not contained in the

document explicitly). Additionally, due to the nature of the

datasets, and high degree of specialization and domain

knowledge in biomedical research, the dataset descriptions

often do not explicitly mention the related research areas.

Query and document mismatch: The key terms in the

query often do not appear in the relevant dataset descrip-

tions, suggesting the necessity for query reformulation and

expansion.

Training data: A very small number of training queries

presents difficulties during the development and system

tuning phases. This presents larger difficulties for the ma-

chine learning-based techniques (LTR) (5) which are heav-

ily dependent on the availability of rich and extensive

training data. However, we emphasize the effort that the

bioCADDIE Challenge organizers expanded in preparing

this dataset. Obtaining expert judgments from biomedical

researchers is an expensive and time-consuming process,

and thus the amount of the training and test data provided

is representative of what can be expected from replicating

the Retrieval Challenge in other biomedical retrieval

domains.

Methodology: retrieval system architecture
and implementation

In this section, we describe the system architecture and key

design decisions. The system architecture and data flow

diagram is depicted in Figure 1. The diagram illustrates

that the provided query is used to retrieve the initial set of

datasets, and to access the relevant external resources

(described in the Indexing and initial retrieval section). The
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discovered terms and a keyword detection algorithm are

leveraged to reformulate the query, and a new set of data-

sets is retrieved using the new query (discussed in the

Query reformulation and expansion section). The resulting

list is used to extract additional features, used in a learning

to rank model to derive the final dataset ranking (the

Learning to rank section).

Below we discuss the main design decisions that were

made in the development phase, and in each case, we also

discuss how it may potentially address the problems men-

tioned in the section bioCADDIE challenge overview.

Indexing and initial retrieval

Each dataset in the bioCADDIE corpus consists of two

main text sections, TITLE and TEXT. Our preliminary ex-

periments showed that the sections are complementary,

therefore, we decided to index each section separately

and train the retrieval model to learn the best settings.

Additionally, as we discussed in the bioCADDIE challenge

overview section, due to the high degree of specialization

and domain knowledge in building each dataset, these

fields often do not explicitly mention the related research

areas. Consequently, this may cause a high degree of query

document mismatch. To address this issue, we augmented

the datasets with ‘meta-data,’ retrieved from the descrip-

tion of the source database description online (e.g. the

‘About’ page from where the datasets were drawn), which

may contain the missing information to describe which

questions the datasets could answer [Although due to the

small number of repositories (20 sources) we manually col-

lected the mentioned webpages, with minimal effort this

process could be automated to collect the descriptions

automatically.] This additional information was added to

the METADATA field of the datasets, as the third text

field. This data was extracted once for each of the online

repositories, and automatically added to each of the dataset

descriptions (as a METADATA field) during the system

indexing of the datasets. No manual curation or filtering of

this field was performed. Finally, the retrieval model was

trained to learn the best parameter settings for the initial re-

trieval step (‘List 1’ in Figure 1). We used Apache Lucene as

the indexing and retrieval engine. To incorporate dataset

fields, we used Lucene multiple field search. More details

about the implementation decisions can be found in the

Experimental setup section.

Query reformulation and expansion

We approached query reformulation in two ways: Query

term weighting, and expansion with new terms.

Query term weighting. The queries prepared by the

bioCADDIE organizers are relatively verbose, averaging

15.8 terms (words) per query. Query term weighting and

keyword detection for such verbose queries have shown to

be effective in previous work (8, 9). We used one such tech-

nique, called Weighted Information Gain (WIG), intro-

duced by Zhou and Croft in reference (10), to detect the

most important keywords in the query and boost (assign a

higher weight to) these terms. WIG captures the change in

information when an average document is retrieved to the

state when the actual documents are retrieved. Thus, we

expect the WIG model to assign a higher weight to the

most important keywords in the query. More formally,

WIG is defined as follows:

wig qið Þ ¼
1
N

P
d2TN qið Þ log p qijdð Þ � log p qijCð Þ

�log p qijCð Þ (1)

where qi denotes the i-th query term, wig(qi) the assigned

weight to qi, TN(qi) the top documents retrieved in response

to qi, N the number of the selected top documents, p(qi jd)

the smoothed maximum likelihood of observing qi in

Figure 1. The system architecture and data flow diagram for biomedical dataset retrieval and bioCADDIE challenge.

Page 4 of 12 Database, Vol. 2018, Article ID bax104

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax104/4956082 by guest on 21 M

ay 2024

Deleted Text: 3.1. 
Deleted Text: &hx201C;
Deleted Text: &hx201D;,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: <xref ref-type=
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: 3.2. 
Deleted Text: E
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ]
Deleted Text: ,


document d and finally p(qi jC) the probability of observing

qi in the whole corpus C, and can be computed as follows:

p qijCð Þ ¼ FiP
j Fj

(2)

where Fi is the total frequency of observing qi in the whole

corpus. For query term weighting, we used the default

approach of Lucene (called boosting), which multiplies

the final contribution (to the score of a document) of

each query term by the weight which is assigned to that

query term.

Automated Query Expansion with new terms. As dis-

cussed, one of the key challenges for dataset retrieval is the

mismatch between the terms in the user query, and the

terms in the dataset title or description. A well-known tech-

nique in information retrieval is to perform automatic query

expansion, where new terms are added to the query that is

expected to match additional relevant datasets. For this, we

used internal and external resources for query expansion.

As an internal query expansion method, we used a

method called BRF (11), which assumes that the top

retrieved documents are relevant and adds the most fre-

quent words in these documents to the query.

As an external query expansion method, we used two

biomedical databases, specifically Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Available at: http://www.

genome.jp/kegg/kegg1.html) and HGNC (Available at:

http://www.genenames.org/), as well as restricted Web

search and PubMed search. KEGG is a large online data-

base resource that integrates disease and genomic informa-

tion, especially with the link to pathway and individual

gene information. KEGG API allows detecting whether a

given word is a gene name, a pathway name, or disease

name. Our approach categorizes each word in the query,

and then retrieves the most relevant information related to

each of the keywords recognized by the API, in order to ex-

pand the original query with extended retrieved contexts.

For example, for a query containing disease keywords, we

only expand the query with highly relevant information

with this disease.

Additionally, a commercial vertical search engine (A

search engine which is restricted to retrieve documents

from a specific web domain.) is used to retrieve the top-

ranked pages of Wikipedia and NCBI websites. To avoid

query drift (i.e. changing the meaning of the query by

introducing non-relevant terms into the expanded query),

we restricted the candidate terms to those which appear at

least once in the initial top datasets. Furthermore, we used

a list of manually collected medical terms (This list is dif-

ferent from the stopwords list, it consists of 14 000 medical

terms and is used to prevent the expansion of non-medical

terms.) to restrict querying the KEGG, HGNC and the

search engine. The final query expansion terms are selected

based on the frequency of their occurrences in the ‘pseudo-

document,’ created by concatenating all the retrieved ex-

ternal resources into a single text ‘document.’ The new, ex-

panded query is issued against the index to retrieve the

second rank list (‘List 2’ in Figure 1).

Learning to rank

Augmenting the original user query with new terms usually

improves recall (i.e. the fraction of relevant documents in

the returned list), because new terms help the retrieval

model to match query with documents which may not con-

tain any of the original query terms. However, this may re-

duce precision (i.e. the fraction of relevant documents

contained in the returned list), since the documents match-

ing the augmented query may not be relevant to the ori-

ginal query. Furthermore, the new expanded query terms

may be spurious, because the automated query expansion

algorithms are never perfect.

Using a machine-learned ranking, specifically the learn-

ing to rank (LTR) framework, is a way to address this issue,

by introducing a richer, more comprehensive representation

of the query match with the dataset, which goes beyond in-

dividual keyword overlap. Many algorithms, that aim to

learn the importance of the features, have been proposed,

and we describe them in detail below. The majority of them

use the same feature representation, summarized in Table 1.

The features are categorized into eight groups based on their

shared attributes. In the description column, ti indicates the

i-th common term in query q and dataset d.

The commonly used features used in LTR framework

are TF (Term Frequency), IDF (Inverse Document

Frequency), BM25 score and their derivatives. The weight

of the term in a document is captured through TF (term

frequency), and is estimated by the frequency of the term.

IDF (inverse document frequency) is used to capture the

‘importance’ of the term in the whole collection. There are

multiple variants for IDF, we used the following:

IDFi ¼ log
N

ni þ 1

� �
þ 1 (3)

where N is the number of documents in the collection, and

ni is the number of the documents that contain term ti. IDF

score is higher for less frequent, and therefore more im-

portant terms in the collection. The statistical interpret-

ation of the metric can be found in (12). BM25 retrieval

score (13) is an extension of the classic probabilistic model,

and attempts to estimate the probability that the document

and the query are relevant. To achieve higher accuracy, the
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BM25 model normalizes the TF scores by using the docu-

ment length, and uses additional tuning parameters b and

K1. A thorough analysis of the model is reported in (13).

In addition to the common features, we also used

DistanceFromStart, to quantify the position of the first

observed query term in the dataset TEXT to give a higher

weight to the description introductions. DomainWeight

feature computes the relative size of the source database

from which the dataset was retrieved, as the fraction of

number of datasets in the source database from all data-

sets, in order to boost the score of datasets drawn from

larger, potentially more important, databases.

Although LTR has proven to be effective in other re-

search areas (14), training set size has a large impact on the

final results. We will investigate the cases where LTR can

be potentially leveraged to improve result quality in the

empirical portion of the paper.

LTR Implementation: We used the RankLib (Available

at: https://sourceforge.net/p/lemur/wiki/RankLib/) library

to implement the learning to rank framework. Several LTR

algorithms were investigated: MART (15), RankNet (16)

and Co-ordinate Ascent (17). MART (Multiple Additive

Regression Trees) tries to learn a regression tree as ranking

model. It combines boosting paradigm with regression

trees so that it can have all the advantages of tree-based

models, while overcoming the inaccuracy of these models.

RankNet is a pairwise method, with Cross Entropy cost

function to minimize the number of incorrectly ranked

documents. It employs a neural network with Gradient

Descent to learn the ranking, via minimizing the cost func-

tion. Co-ordinate Ascent is another, alternative method for

learning a ranking. It is an iterative algorithm to optimize

a multivariate function by doing one-dimensional search

over a variable while fixing all the other variables. It is a

list-wise method, and is known for good generalizations

properties. We used all of these methods (with the recom-

mended settings) to re-rank the top 100 datasets in the se-

cond list (in Figure 1), and to generate the final list of

result datasets. In the Experiments section, we report the

results achieved by the MART algorithm, since we did not

observe a significant improvement in using other LTR

methods.

Experiments

We describe the training phase of the system in the

Experimental setup section, and report the results in the

Results section. We discuss and analyse the results, and re-

port observations in the Discussion section.

Experimental setup

We used the Apache Lucene system to pre-process, index

and retrieve the dataset descriptions. Porter stemmer, and

Table 1. Features used to describe query-dataset match for the Learning to Rank (LTR) machine learned ranking

Group No Feature name Description

1 BM25 BM25 similarity score of the whole dataset

1 BM25Title BM25 similarity score of the TITLE

1 BM25Text BM25 similarity score of the TEXT

1 BM25Meta BM25 similarity score of the METADATA

2 1GramTFTitle
P

ti2q\d TF ti; dð Þ in TITLE (sum of frequencies of matching terms in dataset title field)

2 1GramTFText
P

ti2q\d TF ti; dð Þ in TEXT (““““““in text field)

2 1GramTFMeta
P

ti2q\d TF ti; dð Þ in METADATA (““““““in metadata field)

3 1GramIDFTitle
P

ti2q\d IDF ti; dð Þ in TITLE (sum of inverse frequencies of matching terms in dataset title field)

3 1GramIDFText
P

ti2q\d IDF ti; dð Þ in TEXT (“”“”“”in dataset text field)

3 1GramIDFMeta
P

ti2q\d IDF ti; dð Þ in METADATA (“”“”“”in dataset metadata field)

4 1GramTFIDFTitle
P

ti2q\d TF ti; dð Þ:IDF ti; dð Þ in TITLE (sum of TF*IDF scores of matching terms in dataset title field)

4 1GramTFIDFText
P

ti2q\d TF ti; dð Þ:IDF ti; dð Þ in TEXT (sum of TF*IDF scores of matching terms in dataset text field)

4 1GramTFIDFMeta
P

ti2q\d TF ti; dð Þ:IDF ti; dð Þ in METADATA (sum of TF*IDF scores of matching terms in dataset

metadata field)

5 1GramTFWhole
P

ti2q\d TF ti; dð Þ in the whole (concatenated) dataset

5 1GramIDFWhole
P

ti2q\d IDF ti; dð Þ in the whole (concatenated) dataset

5 1GramTFIDFWhole
P

ti2q\d TF ti; dð Þ:IDF ti; dð Þ in the whole (concatenated) dataset

6 2GramsTitle Number of common word 2-grams in the query and TITLE

6 2GramsText Number of common word 2-grams in the query and TEXT

6 2GramsMeta Number of common word 2-grams in the query and METADATA

6 2GramsWhole Number of common word 2-grams in the query and the whole dataset

7 DistanceFromStart Position of the first query term in the dataset TEXT field

8 DomainWeight Ratio of the number of datasets belong to the dataset’s web domain to the whole datasets in the corpus
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the Lucene default stop words were used to pre-process the

dataset descriptions and queries. For each dataset, we

stored the TITLE, TEXT and METADATA as described in

the Methodology: retrieval system architecture and imple-

mentation section. BM25 model was used to retrieve the

initial datasets. Lucene multiple field search was used to do

query-term matching over all the three parts of the

datasets.

For performance evaluation, we use P@10, MAP and

NDCG metrics. P@10 is precision (or the fraction of the

relevant documents) retrieved in the top 10 documents.

This metric measure the user’s satisfaction, since users

often judge the results based solely on the top documents.

MAP (Mean Average Precision) is an attempt to summar-

ize the overall ranking in a single number. The main idea is

to compute the average from all the precision values after

observing each relevant document in the rank list. One

limitation of MAP is that it is a binary based value, and

cannot distinguish between the systems that retrieve the

higher relevant documents first. NDCG (Normalized

Discounted Cumulative Gain), a metric to incorporate

graded relevancy, is used to compare different results for

different queries. NDCG is extended from Cumulative

Gain, which is the sum of the graded relevancies for the

retrieved documents; and Discounted Cumulative Gain

(DCG), which is the discounted values of the relevancy

gains, so that those documents which are retrieved first are

weighted more.

The dataset descriptions tended to be short, and contain

specialized language, which required domain-specific par-

ameter tuning. The official training, and test queries (the

sum total of 21 queries) were used in a 4-fold cross

validation such that the system was trained on 15–16

queries, and tested on the remaining ‘test fold’ queries,

where in each test fold there were at least five queries. The

reported results in the next sections are the averages over

the folds and optimized for the highest NDCG. Grid search

was used to optimize the parameters in each training fold.

To reduce the grid search complexity, we optimized the

initial retrieval—which includes the parameters in

Table 2—over the official training queries, and fixed them

for the subsequent cross validation experiments. Table 2

summarizes the tuned parameters, the corresponding inves-

tigated ranges and their optimal values.

Table 2 shows that, among dataset fields, the highest

weight is assigned to the METADATA which signifies the

importance of this field. BM25 parameters show that

document length normalization is crucial in the retrieval

step (with the value of b close to 1). Table 3 reports the

tuned parameters, the corresponding investigated ranges

and their optimal values for the query reformulation steps

in the cross validation experiment. The optimal values

were chosen based on their occurrence frequency in the

folds.

In order to reduce the complexity and search space for

parameter optimization, we set the number of top datasets

for WIG model, BRF and external expansion (all described

in the Indexing and initial retrieval section) to the same

value. We found that the optimal number of datasets for

expansion is five, thus making our model somewhat con-

servative in including only a small number of pseudo-

relevant datasets for query expansion. We also observe

that the number of external terms and their corresponding

weights is larger than their internal counterparts, signifying

Table 2. Initial (first phase) retrieval model parameters, with the range of values and the empirically tuned best value for each

parameter

Parameter Description Range Best value

TITLE weight Weight of TITLE in the retrieval 0.1, 0.3, 0.5, 0.7 0.1

TEXT weight Weight of TEXT in the retrieval 0.1, 0.3, 0.5, 0.7 0.3

METDATA weight Weight of METADATA in the retrieval 0.1, 0.3, 0.5, 0.7 0.5

BM25 k1 K1 parameter in BM25 0.6, 1, 1.4, 1.8 1.8

BM25 b B parameter in BM25 0.3, 0.5, 0.7, 0.9 0.7

Table 3. Query reformulation parameters, with the range of values and the empirically tuned best value for each parameter

Parameter Description Range Best value

Top datasets Top datasets selected for WIG model, BRF and external expansion 5, 10, 30 5

Internal terms Number of terms added to the query by BRF 5, 10, 30 5

Weights for internal terms Weight of the terms selected by BRF 0.1, 0.3, 0.5 0.1

External terms Number of terms added to the query using external resources 5, 10, 30 10

Weights for external terms Weight of the terms added using external resources 0.1, 0.3, 0.5 0.5
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the importance of external resources in the expansion

process.

To simplify training, we fixed all the parameters in

Tables 2 and 3 before training the LTR framework.

Results

Table 4 reports the performance results for the 4-fold cross

validation experiment described in the previous section.

Table 4 shows that the most effective measure to take is

the query term weighting, which has the highest NDCG

improvement (Improvement is computed based on the per-

centage change: 100 � (new_value – original_value) / origi-

nal_value) (17.06%) over the original retrieval model. This

improvement can be explained as follows: using query

term weighting the retrieval model can detect the most in-

formative words and discard the query terms which may

potentially match irrelevant documents (see Discussion

section for some examples). The results also indicate that

given the verbose queries, and in the presence of an effect-

ive keyword detection method, we are unable to gain a sig-

nificant benefit from the BRF expansion method.

However, using external resources, conditional on the

presence of the new terms in the top datasets, we observe

an additional improvement (19.69% in NDCG) when

using query expansion with external resources. Combining

both expansion methods does not lead to a significantly

better performance (we will refer to this run as IROpt in

the following sections). The experiment also shows that if

we remove METADATA field (row BM25Opt-META in

Table 4), we observe a 2.4% degradation in NDCG. This

signifies that the METADATA field on average helps to re-

duce the mismatch between the query and the dataset de-

scriptions. Figure 2 demonstrates the precision-recall plots

for the models reported in Table 4. We can observe that

WIG extension (BM25Wig) is highly correlated with BRF

extension (BM25WigBRF). The precision of both methods

start to decline at recall 0.1, while using external resources

slows the decline.

Table 5 shows the performance changes when we used

LTR. The results show that applying LTR in the scarce

training data environment causes overfitting, and the final

model causes 5.1% degradation in NDCG, compared to

the IROpt (The reason that we observe some difference in

IROpt models in Tables 4 and 5 is that, as mentioned in

the section Experimental setup, for the LTR part we fixed

all the information retrieval parameters in Tables 2 and 3

and assumed there is a universal tuned parameter settings

which can be used in the domain.) system. In the next sec-

tion, we discuss potential ways to make LTR more

effective.

Discussion

One of the problems mentioned in the section

bioCADDIE challenge overview was the lack of sufficient

training data to properly train the LTR models. Small

training data at development stage may cause over-fitting

(high variance), and at analysis time may cast doubt on

Figure 2. Retrieval performance of the query reformulation extensions.

Table 4. Performance results for the steps described in the Methodology: retrieval system architecture and implementation section

Model NDCG MAP P@10

BM25Opt: Optimized BM25 0.457 0.187 0.499

BM25Opt-META: Optimized BM25 – METADATA field 0.446 0.180 0.463

BM25Wig: Optimized BM25 þWIG model 0.535 0.261 0.601

BM25WigBRF: Optimized BM25 þWIG model þ Expansion with BRF (1) 0.534 0.259 0.606

BM25WigExt: Optimized BM25 þWIG model þ external terms (2) 0.547 0.272 0.590

IROpt: Optimized BM25 þWIG model þ Expansion with (1) and (2) 0.549 0.272 0.586

The bold numbers indicate the highest achieved performance.

Table 5. Performance changes in using LTR

Method NDCG MAP P@10

BM25Opt 0.457 0.187 0.499

IROpt 0.568 0.292 0.626

IROpt þ LTR 0.539 0.254 0.462

The bold numbers indicate the highest achieved performance.
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the conclusions. To provide the models with more train-

ing data, one solution is to use Leave-One-Out cross val-

idation instead of the common k-fold cross validation.

To further investigate the changes in performance after

applying the steps described in the Methodology:

retrieval system architecture and implementation section,

we report NDCG, MAP and P@10 for the models with

Leave-One-Out cross validation in Tables 6 and 7.

Specifically, Table 6 reports the results of using this

method to optimize the parameters of the probabilistic

information retrieval methods. The highest performance

is achieved by the method using ‘BM25WigExt:

Optimized BM25þWIG modelþ external terms (2).’

The changes indicated by a are statistically significant

using paired t-test (P< 0.05).

Table 7 reports the performance using the LTR method.

When trained on the slightly larger training data offered by

the Leave-One-Out cross validation, LTR performance on

the NDCG metric improves from 0.539 to 0.550, but still

does not reach the performance of the IROpt model. The

overall improvements are consistent with the results re-

ported with 4-fold cross validation.

Table 8 shows that it is likely that LTR causes

‘overfitting’ if it is used in the same settings. We hypothe-

size that LTR could be effective if we had access to a noisy

judgment about a larger set of queries.

Noisy labels could be derived from implicit user feed-

back, such as result clicks, and collected by the search

engine, as is commonly done in Web search. In an attempt

to examine this hypothesis, we created a very limited and

noisy training data as an additional set of 30 queries that

were provided, without expert judgments, by the

bioCADDIE organizers. We used the IROpt model

(described in Table 4) to retrieve the top datasets, and tried

to label them. A number of criteria were used to consider a

dataset to be relevant: The data type and species asked by

the query must match the retrieved dataset, otherwise the

dataset was labeled irrelevant. Additionally, the presence of

the gene and disease names, also indicated moderate rele-

vancy. Finally, biological process descriptions, such as ‘cel-

lular differentiation,’ also can be used as a signal for further

investigation. For each query we provided, on average, 5.7

labels in the same scale that was used by the organizers to

prepare the official document-query judgements—on aver-

age each query in the official training and test sets has 984.1

labels. The judged queries were added to the training parts

of the cross validation to retrain LTR framework.

Table 8 shows that although LTR still cannot outper-

form IROpt model, with a small effort to increase the

training size, we observed a moderate improvement in per-

formance—2.41% in NDCG and 16.66% in terms of

P@10 in comparison to our previous LTR model reported

in Table 5. The results indicate that implicit user feedback

may be helpful—if available in a large scale. Figure 3

shows that the improvement is mostly made in the top

retrieved datasets, which is promising specifically for the

Table 6. Performance results for the steps described in the Methodology: retrieval system architecture and implementation sec-

tion, with Leave-One-Out cross validation

Model NDCG MAP P@10

BM25Opt: Optimized BM25 0.465 0.194 0.495

BM25Opt-META: Optimized BM25 without the METADATA field 0.450a 0.185a 0.481

BM25Wig: Optimized BM25 þWIG model 0.563a 0.279a 0.629a

BM25WigBRF: Optimized BM25 þWIG model þ Expansion with BRF (1) 0.559a 0.277a 0.619a

BM25WigExt: Optimized BM25 þWIG model þ external terms (2) 0.567a 0.284a 0.619a

IROpt: Optimized BM25 þWIG model þ Expansion with (1) and (2) 0.561a 0.283a 0.624a

The changes indicated by a, are statistically significant compared to BM25Opt using paired t-test (p< 0.05).

The bold numbers indicate the highest achieved performance.

Table 7. Performance changes in using LTR, with Leave-One-

Out cross validation

Method NDCG MAP P@10

BM25Opt 0.457 0.187 0.499

IROpt 0.568 0.292 0.626

IROpt þ LTR 0.550 0.272 0.524

The bold numbers indicate the highest achieved performance.

Table 8. Retrieval performance for retrained LTR using the ex-

tended training data

Method NDCG MAP P@10

BM25Opt 0.457 0.187 0.499

IROpt 0.568 0.292 0.626

IROptLTR: IROpt þ LTR 0.539 0.254 0.462

IROptLTRExt: IROpt þ LTR 0.552 0.267 0.539

The bold numbers indicate the highest achieved performance.
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real world deployment of a search system as most clicked

(and viewed) search results are those ranked high by a

search system.

In addition to the overall results, we performed cross

validation on the extended training set to explore the im-

portance of the different feature groups in the LTR frame-

work (full feature set listed in Table 1). Our goal is to

quantify how much each feature group contributes to per-

formance improvements relative to the rest of the features.

We performed feature group ablation (by removing one

feature group at a time from the model). The results are re-

ported in Table 9. The results show that BM25 scores (fea-

ture Group 1), have the highest importance, as they

degrade the retrieval results the most when removed. We

can also see that Group 6, which consists of the shared

bigrams, and Group 4, which consists of the TF-IDF scores

for the shared unigrams in query and dataset fields, have

the least effect when removed, so can be considered as less

important.

To measure the effectiveness of the external resources

used in the query expansion step, we re-trained

BM25WigExt model (described in Table 4) once using web

search (Wikipedia and NCBI) and once using the API

(HGNC and KEGG). Table 10 reports the improvement,

Figure 3. Retrieval performance of the LTR framework when extended

training data is used.

Table 9. Feature group ablation in learning to rank model

Rank Category NDCG after

omission

1 (group 1) BM25 scores 0.538

2 (group 3) unigram IDF in the dataset fields 0.544

3 (group 5) unigram in the whole (concatenated)

dataset fields

0.548

4 (group 7) DistanceFromStart 0.550

5 (group 2) unigram TF in the dataset fields 0.550

6 (group 8) DomainWeight 0.553

7 (group 6) shared bigrams 0.557

8 (group 4) unigram TF-IDF in the dataset fields 0.558

Groups are mentioned in Table 1.

Table 10. Performance improvements using external expan-

sion resources

External expansion resource NDCG MAP P@10

API 0.534 0.259 0.612

Web search 0.547 0.272 0.586

Web search þ API 0.547 0.272 0.590

Table 11. Changes in retrieval performance before and after

query modification for query numbers 1, 3, 10, and 15. Query

terms enclosed in ‘[]’ are added using external resources,

and query terms enclosed in ‘<>’are added by BRF. Query

terms marked by ‘1’ are keywords with the highest weight in

WIG model

Query

No

Original query terms

and automatically

expanded terms

NDCG

before

modification

NDCG after

modification

1 Find protein sequencing

data related to bacterialþ

chemotaxisþ across all

databasesþ [citat cell bac-

teria gradient direct

respons develop system

primari organ] <nifh ncbi

thaw permafrost alaskan

5s harbor 23 bigsdb

campylobact>

0.111 0.291 (þ162%)

3 Search for all data types

related to gene

TP53INP1þ in relation to

p53þ activation across all

databasesþ [cell protein

express cancer tumor

induc function apoptosi

human dna] <ptm mmtv

ncbi ra sequenc muscl ebi

salivari restrict express>

0.342 0.710 (þ107%)

10 Search for data of all types

related to energy metab-

olismþ in obeseþM.

musculusþ [fat studi gene

profil cell] <fat obstrut

massag apneic simpl n

apnea sleep mechan

therapy>

0.373 0.436 (þ16%)

15 Find data on the NF-kBþ

signaling pathway in MG

(Myastheniaþ gravisþ)

patients [activ cell 2 rna

gene] <nfkbiz stat3 thym-

oma dlbcl protein myc

ncbi abc oci sequenc>

0.603 0.524 (-13%)
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which is achieved in each case. The experiment shows that

expansion using the API is mainly improving P@10. On

the other hand, expansion using web search improves the

overall retrieval performance (NDCG and MAP).

To gain intuition and insights into our system perform-

ance, we report case studies of applying the different sys-

tem variations on the retrieval performance, in Table 11.

Specifically, we report the results for the specific queries,

identified as 1, 3, 10 and 15 in the official test set, and the

performance changes before and after each modification

(using the IROpt model as the underlying first-stage re-

trieval method). Query terms which are marked by ‘1’ are

keywords which are detected by the WIG model and as-

signed the highest weight in the query. Query terms (pre-

processed to remove inflections, or stemmed) enclosed in

‘[]’ were added by external expansion, and query terms

(stemmed) enclosed in ‘<>’were added by BRF.

We can see that in most cases the automatically added

terms are relevant to the original query terms. For ex-

ample, in query number 3, the new terms ‘protein,’ ‘can-

cer,’ ‘tumor’ and ‘human’ are added to the query which is

directly related to gene TP53INP1. We can also observe

that WIG model succeed in detecting important query

terms most of the times. Detecting the keywords (by as-

signing a higher weight to them), and discarding the less in-

formative words are the main reasons for making 17.06%

improvement on the NDCG metric, reported in Table 4.

In summary, we have explored a variety of information

retrieval methods, ranging from probabilistic information

retrieval models such as automated query term weighting

(WIG) and BRF for query expansion, as well as the state-

of-the-art learning to rank (LTR) machine learned algo-

rithms for automatically learning the ranking functions.

We showed that the use of automatically collected meta-data

(e.g. website description of the source database from which

the datasets were derived) was helpful for providing add-

itional general information about dataset topic. Similarly, it

may be possible to incorporate meta-data about the prob-

ability of a match between the genes mentioned in the query

by name, and the actual data content of the dataset, as pro-

posed in reference (18). This match could be incorporated as

a feature, together with the textual matches, into the general

ranking models described in this paper.

Interestingly, our results show that with automatic opti-

mization and parameter tuning, traditional probabilistic

information retrieval methods outperform the machine-

learned approaches. This is due, in this case, to the small

amounts of labeled training data available through the

bioCADDIE Challenge. However, we showed that adding

even a moderate amount of additional training data im-

proves the machine-learned ranking (LTR), which suggests

a promising area of future work to incorporate additional

noisy training data in the form of clicks and other feedback

from the users of the system, e.g. as in Ref. (19).

Conclusions

We described the system implementation and experiments

used to evaluate the performance of an information re-

trieval system for finding relevant biomedical datasets, as

part of the bioCADDIE Dataset Retrieval Challenge.

Specifically, we experimented with optimizing traditional

probabilistic information retrieval techniques such as

fielded BM25 metrics, query term boosting and automatic

(blind) relevance feedback, as well as with the machine

learning-based ‘learning to rank’ approach for automatic-

ally discovering the ranking functions from a rich represen-

tation of the query and datasets. Our results showed

significant improvements that can be achieved with careful

optimization of the traditional information retrieval meth-

ods, while demonstrating that, at least for the bioCADDIE

challenge, machine learning-based techniques do not yet

outperform the traditional information retrieval tech-

niques. Extensive analysis was performed to understand

the benefits of the different system variations, providing

examples and case studies of specific improvements.

Together, the methods, results and the analysis presented

in this paper, as well as the provided data and code (The

code and data is available at: https://github.com/emory-

irlab/biocaddie) released to the research community, pro-

vide a valuable resource for biomedical researchers, practi-

tioners and developers who could build on our work for

similar biomedical dataset retrieval tasks.

Going forward, we believe that with additional training

data, and by using additional sources of evidence such as

the actual dataset contents and user feedback as features,

we could further improve the retrieval performance for this

challenging task.
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