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Abstract

The number and diversity of biomedical datasets grew rapidly in the last decade. A large

number of datasets are stored in various repositories, with different formats. Existing

dataset retrieval systems lack the capability of cross-repository search. As a result, users

spend time searching datasets in known repositories, and they typically do not find

new repositories. The biomedical and healthcare data discovery index ecosystem

(bioCADDIE) team organized a challenge to solicit new indexing and searching strategies

for retrieving biomedical datasets across repositories. We describe the work of one team

that built a retrieval pipeline and examined its performance. The pipeline used online

resources to supplement dataset metadata, automatically generated queries from users’

free-text questions, produced high-quality retrieval results and achieved the highest

inferred Normalized Discounted Cumulative Gain among competitors. The results

showed that it is a promising solution for cross-database, cross-domain and cross-

repository biomedical dataset retrieval.

Database URL: https://github.com/w2wei/dataset_retrieval_pipeline

Introduction

Information retrieval techniques have been applied to bio-

medical research for decades (1–3). As biomedical research

evolves over time, information retrieval is also constantly

facing new challenges, including the growing number of

available data and emerging new data types, the demand

for interoperability between data resources, and the change

in users’ search behaviors.

The number of publically available biomedical data-

sets grew exponentially in the last decade. For example,

from 2007 to 2018, the number of gene expression data-

sets in the Gene Expression Omnibus (GEO) database
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(https://www.ncbi.nlm.nih.gov/geo/, accessed on 29

January 2018) increased from 131 416 to 2 363 254 (as

of 29 January 2018), the number of registered studies in

ClinicalTrials.gov (https://clinicaltrials.gov/, accessed on

29 January 2018) increased from 49 241 to 264 450 (as

of 29 January 2018), and the number of macromolecular

structures in the Protein Data Bank (PDB) database

(http://www.rcsb.org/pdb/home/home.do, accessed on 29

January 2018) increased from 47 616 to 137 178 (as of

29 January 2018).

Over the last two decades, there were significant in-

creases in the diversity of available biomedical data types

for at least two reasons: (i) new technologies resulted in

new types of data, such as ‘next generation’ sequencing

(NGS) data (4); and (ii) information technology made

biomedical data, such as medical images, easier to access

(5, 6).

Biomedical datasets are stored in various data reposito-

ries that fulfill different functions. Users may need to query

various data repositories to collect all desired information.

To formulate effective queries, users need knowledge of

the research domain and of retrieval systems; however,

users may not be aware of all available repositories to

query and this may limit their searches.

Users’ search behaviors evolve over time. Formulating

queries is not only done by professional librarians, as users

want to be self-sufficient (7). In an NIH-wide survey (8),

95% of the respondents agreed that the most common way

they obtained information was through independent

search, i.e. without external assistance.

The challenge of finding datasets across repositories

without specialized assistance needs specialized solutions.

The growing amount of heterogeneous data makes it im-

possible to know for sure where some data of interest will

be, and requires effective systems for identifying and rank-

ing relevant datasets; new data types need compatible rep-

resentation models; interoperability requirements and the

change in users’ behaviors require intelligent systems for

formulating queries. Much effort has been made to develop

such effective and robust systems (9–11). However, exist-

ing systems are still focused on just one or a relatively small

number of repositories. The biomedical and healthcare

data discovery index ecosystem (bioCADDIE) (https://bio

caddie.org/, accessed on 29 January 2018) project, an

international effort to promote biomedical data discovery,

aims at encouraging data sharing, promoting metadata

standardization and indexing, and advancing data discov-

ery (12). Specifically, bioCADDIE has developed DataMed

(12), a biomedical dataset search engine to help users

search across repositories.

DataMed has indexed 2 336 403 datasets from 74 repo-

sitories (as of 29 January 2018), and these numbers keep

increasing. However, the system faces important chal-

lenges, including how to represent datasets in a compact,

yet comprehensive fashion, how to effectively formulate

queries and how best to rank retrieved datasets. First,

existing dataset metadata do not always provide sufficient

descriptions of the datasets. Since the metadata from dif-

ferent repositories have been harmonized into the Data

Article Tag Suite (DATS) (13) model, detailed information

that is specific to a particular data type or repository may

not be easily transformed into the DATS format. Second,

DataMed is expected to take users’ free-text questions as

inputs and reformulate them to comply with the retrieval

system. Finally, identifying and appropriately ranking

relevant datasets depend on the specific questions a user is

trying to answer. Since many users already know some

datasets, they are expecting them to appear on top of

retrieved lists, which is not always the case. To improve

DataMed and overcome some of the abovementioned

obstacles, bioCADDIE launched a broad call for the com-

munity to participate in the 2016 bioCADDIE Dataset

Retrieval Challenge (14) (here on referred to as the

‘Challenge’) to solicit innovative ideas. The Challenge, de-

veloped by a team from the University of Texas, is

described in an article by Roberts et al. (14). The

University of California, San Diego (UC San Diego) team

developed a pipeline and examined its performance on the

Challenge-provided platform. The pipeline consisted of

five main modules:

1. Automatic collection of additional information beyond

metadata for existing datasets,

2. Dataset indexing using metadata and the additional

information,

3. Query formulation by analysing users’ free-text questions,

4. Dataset retrieval using Elasticsearch (https://www.elas

tic.co/, accessed on 29 January 2018) and

5. Re-ranking of retrieved results, using multiple

algorithms.

Related work

Retrieval systems

Since 2003, the National Center for Biotechnology

Information (NCBI) has started building a cross-database

search engine, Entrez Global Query Cross-Database Search

System (Entrez) (10). In 2012, Entrez provided access to

37 databases that together contain 690 million records

(15). This system supports text searching using simple

Boolean queries, and it can efficiently retrieve datasets in

various formats such as sequences, structures and refer-

ences. In Europe, the European Bioinformatics Institute

(EBI) also created a cross-database search engine, EBI
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search, to access its biological databases (11).

bioCADDIE’s DataMed is different from NCBI and EBI

search engines in scope. Additionally, it is open source,

allowing the community to propose modifications or lever-

age the code for their own applications.

Dataset representation. Most biomedical dataset retrieval

systems are built on the metadata of datasets, rather than

on the contents of these datasets. Compared with the con-

tent, metadata are more compact and frequently use ontol-

ogies to standardize concepts from different sources. Butte

and Kohane (16) mapped words in the metadata of GEO

datasets to the Unified Medical Language System (UMLS)

(17) concepts. Shah et al. (18) developed an ontology-

based approach to identify gene expression and protein ex-

pression datasets that address the same diseases. They

mapped metadata of datasets from a tissue database and a

microarray database to ontology concepts, and therefore

enabled identification of datasets on specific diseases

across these databases.

Query formulation. Various methods have been developed

to help users formulate effective queries, such as query ex-

pansion (19, 20). Dramé et al. (21) explored MeSH

thesaurus-based and UMLS-based query expansion meth-

ods for information retrieval in the medical domain.

Almeida et al. (22) developed a biomedical literature

search engine, which included a dedicated module for for-

mulating queries from free-text questions. The module

identified key concepts from questions and then expanded

them using the UMLS metathesaurus. Abdulla et al. (23)

developed an approach to linearly combine different query

expansion methods, and significantly improved mean aver-

age precision performance.

Results ranking. The performance of an information re-

trieval system is eventually determined by the number of

relevant results and the way they are ranked. Re-ranking

algorithms can be used to refine the order of retrieved ob-

jects. They can be roughly classified into four categories

(24): (i) self re-ranking, using the initial results from a

search engine to further improve the results in next search;

(ii) example-based re-ranking, using query examples to

find the desired results; (iii) crowd re-ranking, using online

crowdsourcing knowledge; and (iv) interactive re-ranking,

involving user interaction to guide the re-ranking process.

The challenge data and information

The Challenge provided a collection of metadata (The

Challenge data: https://biocaddie.org/benchmark-data, ac-

cessed on 29 January 2018) from 794 992 biomedical

datasets collected from 20 repositories. Due to the diversity

of the repositories, datasets varied in contents and formats.

For example, a dataset could be a clinical trial documenta-

tion from ClinialTrials.org, a comprehensive description of

a protein from PDB, or genomic sequences and the associ-

ated annotation from GEO. However, all the metadata of

the datasets followed the DATS model (13), and the meta-

data were formatted in both XML and JSON formats.

Users’ questions were formulated in free-text format,

such as ‘Search for data of all types that mention ALP

gene in an osteosarcoma across all databases’. The ques-

tions were artifacts fashioned after TREC topics (TREC

topics: http://trec.nist.gov/data/topics_eng, accessed on 29

January 2018) that emulated the tasks to professional li-

brarians. In the Challenge, 51 questions were generated

from three use cases (25). Among the questions, six came

with judgements (i.e. a list of relevant datasets), 30 ex-

ample questions came without judgements and 15 test

questions that were released in the middle of the Challenge

also came with no judgements.

The evaluation followed TREC evaluation procedures

for ad hoc retrieval tasks post hoc assessment, but without

pooling (26). A dataset was judged to be ‘relevant’ if it met

all the constraints in the question, or ‘partially relevant’ if

it met a subset of the constraints.

Participants could submit up to five automatic or

manual runs, although automatic runs were preferred.

Judgements were pre-determined but released after the

submission deadline.

Materials and methods

To achieve real-time retrieval on the extensive collection of

datasets, we employed a ‘retrieval plus re-ranking’ strategy

to improve the retrieval performance while maintaining ef-

ficiency. Our pipeline collected additional information for

datasets to supplement the metadata, build indices, auto-

matically analyse free-text questions and generate Boolean

queries, retrieve datasets using Elasticsearch, re-rank top

datasets from Elasticsearch and evaluate the performance

of retrieved results (Figure 1).

Additional data collection

Retrieval systems depend on comprehensive metadata to

obtain user-desired datasets. However, metadata often

contain limited information. For example, the metadata of

a typical ArrayExpress (https://www.ebi.ac.uk/arrayex

press/, accessed on 29 January 2018) dataset use a ‘descrip-

tion’ field to summarize the study in a few sentences.

At the same time, rich information embedded in related

sources, such as related publications, may not be fully
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exploited. To address this challenge, we extended the ori-

ginal metadata of the datasets using online resources in our

pipeline. We identified 158 963 datasets that have connec-

tions with GEO Series records, and collected the fields

‘Summary’, ‘Title’, and ‘Overall design’ for these datasets

from GEO. We named this collection of new fields and val-

ues ‘additional information’ in our project.

Indexing

The Challenge provided well-formatted metadata follow-

ing the DATS model. We developed customized mapping

schemas based on the DATS model. In particular, we se-

lected fields in the metadata as ‘standard fields’, which

contain the most valuable information about the datasets

from each database. The standard fields for each data re-

pository are provided in Supplementary Appendix S1 . The

metadata and the additional information were indexed

using Elasticsearch. During the construction of indices,

fields in the DATS model were classified into three groups:

exact matching (e.g. MeSH term), regular string matching

(e.g. description) and others (e.g. release date). The text

contents of metadata were analysed using the standard

tokenizer, English possessive stemmer, lower case filter,

non-ASCII character filter, stopword (https://www.ncbi.

nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwo

rds/, accessed on 29 January 2018) filter and the

Elasticsearch light English stemmer. All MeSH terms and

their associated entry terms (i.e. synonyms) were protected

against the stemmer.

Query generation

To enable automatic query generation, we built a module

to analyse users’ free-text questions, extract keywords

and generate Boolean queries. One example of the free-

text question is ‘find data of all types related to TGF-beta

signaling pathway across all databases’. In the module, a

rule-based filter removed less informative words from

questions and kept the key concepts. The less informative

words include the English stopwords from Natural

Language Toolkit (NLTK) (27) (module detail: nltk.cor-

pus.stopwords.words(‘english’)) and self-defined stop-

words: ‘database’, ‘databases’, ‘datasets’, ‘dataset’, ‘data’,

‘related’, ‘relate’, ‘relation’, ‘type’, ‘types’, ‘studies’,

‘study’, ‘search’, ‘find’, ‘across’, ‘mention’, ‘mentions’,

‘mentioning’, ‘i’ and ‘a’.

Next, the remaining words (in our example, ‘TGF-beta

signaling pathway’) were passed to PubMed for concept

expansion using NCBI E-utilities (28). In this step, key con-

cepts were identified and then expanded. In the example,

two concepts, ‘TGF-beta’ and ‘signaling pathway’, were

identified in the above question. Then, the ‘TGF beta’ was

expanded to two representations, ‘TGFbeta’ and ‘trans-

forming growth factor beta’, while the concept ‘signaling

pathway’ was expanded to ‘signal transduction’ and ‘sig-

naling pathway’. Queries generated based on expanded

concepts enabled Elasticsearch to search all fields and to

retrieve relevant datasets that would be likely missed

by the search based on queries without expansion. See

Figure 2 for an illustrative example.

Finally, the key concepts and the expanded associations

were formulated into nested Boolean queries based on their

relationships. Specifically, the representations of the same

concept were connected by the ‘OR’ operator, while the

different concepts were also linked by the ‘OR’ operator if

they satisfied a minimum-match parameter. A concept was

recognized as present if the original concept or the ex-

panded associations were observed in the metadata of a

dataset. A dataset was retrieved if at least one concept was

present. By changing the minimum-match parameter, we

performed the search by first retrieving datasets with all

Figure 1. The pipeline for dataset retrieval. Additional information was

collected as a supplement to the dataset metadata. Indices were built

on the combination of metadata and additional information. Once a

query was automatically generated from a user’s question, the system

retrieved relevant datasets. Next, these datasets were re-ranked using

two different algorithms, the pseudo sequential dependence model and

the snippet-based query expansion method. The re-ranked results could

be further merged to get an averaged result using the Ensemble

method. Re-ranked datasets were evaluated on the test set provided by

the Challenge organizers.
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concepts present, then obtaining datasets with one fewer

concept matching, and so on. Datasets with more matched

concepts were ranked higher. Lastly, we only kept the top

5000 datasets for each query.

Retrieval and re-ranking

We implemented a two-step ‘retrieval plus re-ranking’

strategy. In step 1, Elasticsearch retrieved datasets from the

entire collection. In this step, we maximized recall, i.e. we

attempted to capture as many relevant or partially relevant

datasets as possible in the top 5000 retrieval results, with

less focus on the ranking performance. In step 2, we

applied re-ranking algorithms to the top 5000 results and

aimed at higher inferred Normalized Discounted

Cumulative Gain (infNDCG). We explored multiple re-

ranking algorithms, and finally adopted a pseudo-sequen-

tial dependence (PSD) model, a snippet-based query expan-

sion method (SQEM) and an ensemble method.

Pseudo-sequential dependence model

The PSD model was derived from the sequential depend-

ence (SD) model developed by Metzler et al. (29) and

Bendersky et al. (30) The original SD models rank docu-

ments by considering the unigrams (i.e. single words),

ordered bigrams (i.e. two consecutive words) and un-

ordered bigrams (i.e. two words not necessarily consecu-

tive) in documents. In our scenario, the ‘documents’ refer

to the metadata of datasets to be re-ranked. In the ex-

periments, we found that neither ordered bigrams or unor-

dered bigrams provided contributions to the performance

improvement. One possible explanation is that most key-

words are independent of each other, and meaningful

bigrams (and n-grams) were likely too sparse and rarely at

the intersection of queries and metadata. For example,

‘chromatin modification’ contains more specific informa-

tion than ‘chromatin’ and ‘modification’, while ‘flu car’ is

as informative as ‘flu’ and ‘car’. Bigrams may help with the

former example, but not with the latter. In addition,

including bigrams results in higher computational com-

plexity, making real-time retrieval difficult. Therefore, we

removed the bigram components from the original for-

mula, and modified the unigram component to make it

compatible for dataset retrieval tasks, i.e. making ‘whether

a word occurs in the metadata’ more important than ‘how

many times a word occurs’.

find data on t-cell homeostasis related to multiple sclerosis across all databases

("t-lymphocytes"[MeSH Terms] OR "t-lymphocytes"[All Fields] OR "t cell"[All Fields])
AND

("homoeostasis"[All Fields] OR "homeostasis"[MeSH Terms] OR "homeostasis"[All Fields])
AND

("multiple sclerosis"[MeSH Terms] OR ("multiple"[All Fields] AND 
"sclerosis"[All Fields]) OR "multiple sclerosis"[All Fields])

t-cell homeostasis multiple sclerosis

[set(['t cell', 't-lymphocytes']),
 set(['homeostasis', 'homoeostasis']),
 set(['multiple sclerosis'])]

Question

Remove not-so-informative words

Use Pubmed to expand
the representation of concepts

Extract the representations
of each concept

Concept 1: match either 't cell' or 't-lymphocytes'
Concept 2: match either 'homeostasis' or 'homoeostasis'
Concept 3: match 'multiple sclerosis'

Query

Elasticsearch

Figure 2. Query interpretation: from a free-text question to a query. Uninformative words were removed using a rule-based method. The query ex-

pansion used the same method as PubMed does, relying on NCBI E-utilities.

Database, Vol. 2018, Article ID bay017 Page 5 of 10

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay017/4939515 by guest on 21 M

ay 2024

Deleted Text: , 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: , 
Deleted Text: , 
Deleted Text:  
Deleted Text: ,
Deleted Text:  
Deleted Text: (PSD) 
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;


Provided with a query and a list of candidate datasets

from Elasticsearch, PSD scores every candidate dataset and

re-ranks them all accordingly. The PSD score is defined in

Equations (1) and (2), based on Metzler and Croft’s work

(29, 31).

P ¼
X
qi2Q

f ðqi; DÞ (1)

f qi;Dð Þ ¼ log
Iðtfqi;D > 0Þðtfqi;D þ dÞ þ l

cfqi

jCj
jDj þ l

0
@

1
A (2)

In Equation (1), P is a sortable quantifier of relevance.

D is a dataset with metadata, Q is an input (e.g. a ques-

tion), q are words in the input and f qi; Dð Þ is the weight

of q in the metadata of dataset D.

In Equation (2), tf is the number of times word q

matches the metadata of dataset D, cfqi
is the number of

times word q matches the metadata of the entire collection

of datasets, Dj j is the word number of the metadata of

dataset D, C is the total word number for the collection

and l is an empirical hyper-parameter that is set to 2500.

Differently from the original algorithm, we added a con-

stant d ¼ 5, an empirical parameter to tfqi;D if it was >0

and Iðtfqi;D > 0Þ is an indicator function. This modification

puts a higher weight on the existence of a word in the

metadata than on the times the word occurs.

The default version of the PSD model took as input the

original Q, i.e. the free-text question. Therefore, we

named this version ‘PSD-allwords’. We further developed

a ‘PSD-keywords’ version that analysed only keywords

extracted from Q. To identify valuable keywords from

free-text questions, PSD-keywords firstly calls MetaMap

(32), a biomedical named entity recognizer, to identify

the UMLS concepts from Q and then uses the UMLS con-

cept set Q0 as input to PSD, with the aim of eliminating

the impact of less informative words in questions. In the

experiments, we used the default setting of MetaMap,

collected all recognized UMLS concepts and removed

duplicated concepts.

Snippet-based query expansion method

Hiemstra stated that in order to search a document collec-

tion, the user should first prepare a document that is simi-

lar to the needed documents (33). The idea has been widely

accepted and implemented, such as in relevance feedback

methods (1).

One way to measure the similarity between documents

is to compare the word frequencies. The closer the word

distribution of a surrogate document is to that of the user’s

document, the more likely the document will be relevant to

the user’s query. However, neither Elasticsearch or PSD

consider the difference of word distributions in users’ ques-

tions and the dataset metadata.

Based on this idea, we used Google to find surrogate

documents for users’ questions, and then transformed these

documents into queries for relevant datasets. Therefore,

the vocabulary and the word frequencies of each original

question were replaced by an expanded vocabulary and

updated word frequencies. This change potentially enriches

the query contents, but also introduces noise.

The original questions were sent to Google using an in-

house script, and then the top 10 retrieved text documents

(not limited to datasets) were concatenated into a docu-

ment that served as an input to the re-ranking algorithm.

Next, the Elasticsearch retrieved datasets were re-ranked

based on the concatenated documents using the PSD

model.

Ensemble method

This method was developed based on an assumption that

no single method works for all tasks. Our ensemble

method averaged the reciprocal of ranks from different

methods, and re-ranked datasets according to the mean of

rank reciprocals. We experimented with combinations

of different re-ranking algorithms, and finally chose the

combination of PSD-allwords and PSD-keywords. The per-

formance of different combinations is provided in Table 3.

Evaluation metrics

The primary metrics in the Challenge announcement was

infNDCG (34). In addition, inferred average precision

(infAP) (34, 35), Normalized Discounted Cumulative

Gain (NDCG)@10 (34), Precision@10(þpartial) and

Precision@10(-partial) were also evaluated. All these met-

rics are always between 0 and 1, and larger values indicate

better performance.

Among the metrics, infAP, Precision@10(þpartial) and

Precision@10(-partial) are precision-based binary-rele-

vance metrics: infAP is the extrapolated average precision

based on incomplete judgments; Precision@10(þpartial) is

the precision of the top 10 results when partially relevant is

counted as relevant; Precision@10(-partial) is the precision

of the top 10 results when partially relevant is counted as

irrelevant. Since they are binary-relevance metrics, the

three metrics are not very good to distinguish between rele-

vant and partially relevant datasets. In contrast, the DCG

series metrics are designed to assign a penalty for incorrect

ranking, and both infNDCG and NDCG@10 can distin-

guish between relevant and partially relevant documents

(test data are labeled with ranks e.g. 2, 1, 0 for relevant,

partially relevant and irrelevant). infNDCG considers all

retrieved documents, while NDCG@10 keeps the scope to
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the top 10 results. infNDCG is designed to handle in-

complete judgments, while NDCG@10 assumes that the

judgment is complete and does not penalize for missing

documents. Details of the metrics are available in

Supplementary Appendix S2.

Both infNDCG and infAP were computed using a tool

(http://www-nlpir.nist.gov/projects/t01v/trecvid.tools/sam

ple_eval/sample_eval.pl, accessed on 29 January 2018)

from the National Institute of Standards and Technology

(NIST), NDCG@10 was evaluated using TREC_EVAL

(http://trec.nist.gov/trec_eval/, accessed on 29 January

2018) from NIST, and the precision was evaluated using a

script provided by the Challenge organizers.

Results

Implementation

The pipeline was coded in Python, Java and Perl (Scripts

are available from https://github.com/w2wei/dataset_

retrieval_pipeline, accessed on 29 January 2018). The

metadata of datasets were indexed using Elasticsearch.

Third-party libraries were also used in the implementation,

including MetaMap for biomedical concept recognition.

Computation performance

The experiments were completed on an iDASH (36) cloud

virtual machine with 16 processors (Intel(R) Xeon(R) CPU

E7-4870 v2) and 32 GB RAM. Indexing all datasets ap-

proximately took 3 hours. PSD-allwords and PSD-

keywords each required �4 min to re-rank 5000 dataset

candidates on 45 questions.

Annotated questions

To facilitate the pipeline development, we manually anno-

tated 943 datasets for the provided 30 unannotated ques-

tions (Annotation is available from https://github.com/

w2wei/dataset_retrieval_pipeline, accessed on 29 January

2018). The self-made gold standard was used for optimiz-

ing configurations, tuning parameters and selecting models

before we submitted our results. For details of the self-

annotated questions, please refer to Supplementary

Appendix S3.

Performance in the competition

We submitted results from five methods (see Table 1),

Elasticsearch, PSD-allwords, PSD-keywords, SQEM

and the ensemble method. These methods were eval-

uated on the test set of 15 questions and all 794 992

datasets.

Among the five methods, PSD-allwords achieved the

highest infNDCG and the highest P@10(þpartial), and

SQEM was the best method in terms of infAP, NDCG@10

and P@10(-partial).

When compared with methods from other teams in

the Challenge, PSD-allwords achieved the top infNDCG

score among 45 submissions from 10 teams. Our best

infNDCG is �10% higher than the best infNDCG from

the other teams. The Ensemble method and SQEM

placed second and third for infNDCG in the Challenge.

PSD-allwords also tied for third place for P@10

(þpartial).

Breakdown analysis

The retrieval step of the pipeline includes three key fea-

tures: additional information collected from online re-

sources, standard fields in the mapping schema and query

expansion using NCBI E-utilities. To understand the con-

tribution of each feature, we evaluated the infNDCG val-

ues of the pipeline with different settings of combinations

for three features (Table 2) on the 15 test questions and the

associated judgements. We found that the retrieval step

achieved the highest infNDCG score when all three fea-

tures were included. Removing query expansion (row 4)

resulted in a larger decrease when compared to the removal

Table 1 The performance of five methods in infAP, infNDCG, NDCG@10, P@10(þpartial) and P@10(�partial)

Category Method infAP infNDCG NDCG@10 P@10 (þpartial) P@10 (-partial)

No re-ranking Elasticsearch 0.2446 0.4333 0.4228 0.5200 0.2733

Re-ranking PSD-allwords 0.2792 0.4980 0.6152 0.7600 0.3267

PSD-keywords 0.2391 0.4490 0.4088 0.5200 0.1667

SQEM 0.3309 0.4783 0.6504 0.7467 0.3600

Ensemble 0.2801 0.4847 0.5398 0.6800 0.2400

The indices were built on the provided metadata and the additional information. All methods used automatically generated queries. Method Elasticsearch did

not use any re-ranking methods. The other four methods used re-ranking algorithms. infAP is inferred average precision, infNDCG is inferred NDCG,

NDCG@10 is the NDCG score on top 10 results, P@10(þpartial) is the precision of top 10 results considering ‘partially relevant’ as ‘relevant,’ P@10(-partial) is

the precision of top 10 results considering ‘partially relevant’ as ‘irrelevant.’.
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of either additional fields (row 2) or standard fields

(row 3). This observation indicates that the contribution

from query expansion is more critical than the other two

features. When looked into individual features, we noticed

that additional fields alone (row 5) or standard fields (row

6) alone did not improve infNDCG when compared to

using no features (row 8). Combining this observation

with row 1, row 2 and row 3, we inferred that there exist

interactions between the features and the interactions also

help improve the infNDCG performance.

For the ensemble method, we explored all combinations

of PSD methods and SQEM (Table 3), and evaluated their

performance on the 15 test questions.

Discussion

An important aim of the Challenge was to examine if

linked evidence could improve retrieval performance. In

the study, we collected additional fields ‘Summary’, ‘Title’

and ‘Overall design’ for 158 963 datasets from

Arrayexpress, Gemma and GEO databases to enrich

the metadata of the datasets. In a breakdown analysis, we

found that including additional information improved the

performance of our pipeline. In the meantime, the perform-

ance may be further improved if the additional fields are

refined and irrelevant information is filtered.

Another aim of the Challenge was to automatically

generate queries from users’ questions. In our pipeline, we

defined rules to extract keywords from questions, and to

select concepts from the MetaMap output. Since these

rules were pre-defined, it was inevitable that some infor-

mation got lost when questions were converted into

queries. Machine learning methods may provide new so-

lutions for this problem. For example, using deep learning

methods, questions may be translated into sentence

embeddings to preserve all key information, and the sen-

tence embeddings could act as queries for more effective

dataset retrieval. We may pursue this approach in future

work.

SQEM used the commercial search engine Google to

collect relevant documents, and then identified relevant

datasets using the top retrieved results. The rationale was

that commercial search engines have been well optimized,

and we may use their results as features in our ranking

methods. We used only unigrams as features in this project.

Therefore, it is possible that the performance of this re-

ranking method may be further improved if better features

are extracted and noise is removed. The performance of

SQEM is slightly higher than PSD-allwords on the test set

in terms of infAP, NDCG@10 and P@10(-partial). We

compared the scores on each test question: complete results

are included in Supplementary Appendix S4. Overall, the

current test set is not large enough to conclude which

method is actually better, and more labeled test questions

will help us better understand the methods and their

tradeoffs.

There are important limitations in this work. Before

indexing, concepts in both the metadata and add-

itional information were not normalized. For example,

transforming growth factor beta could be written as

TGF-beta, TGF beta, or TGF-b. A query containing only

TGF-beta will miss datasets that only have TGF-b in the

metadata. In addition, the re-ranking algorithms did not

consider complicated features such as named entities,

which might also help filter out ambiguous results.

Finally, disambiguation methods could have been

applied to the query expansion to decrease the retrieval

of irrelevant datasets.

Table 2 Comparison of the pipeline with settings of combina-

tions of three different features

Additional fields Standard fields Query expansion infNDCG

1 Y Y Y 0.4333

2 N Y Y 0.4164

3 Y N Y 0.4159

4 Y Y N 0.3961

5 Y N N 0.3868

6 N Y N 0.4015

7 N N Y 0.4084

8 N N N 0.4019

infNDCG measurements are scored in the rightmost column. When both

additional fields and standard fields were excluded, all fields in the metadata

were searched.

Y, the feature is included; N, the feature is not included.

Table 3 The performance of the Ensemble methods

PSD-allwords PSD-keywords SQEM infAP infNDCG NDCG@10 P@10 (þpartial) P@10 (-partial)

Y Y Y 0.3120 0.4560 0.6089 0.7267 0.3067

N Y Y 0.3120 0.4442 0.5649 0.6800 0.2800

Y N Y 0.3216 0.4735 0.6439 0.7733 0.3333

Y Y N 0.2801 0.4847 0.5398 0.6800 0.2400

Y, the feature is included; N, the feature is not included.
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Conclusion

We explored online resources to collect additional infor-

mation and supplement the metadata of datasets, designed

and implemented methods to automatically interpret users’

questions and formulate queries complying with the re-

trieval system, and developed a ‘retrieve plus re-rank’ strat-

egy to identify the most relevant datasets. Our pipeline

achieved the highest infNDCG score in the Challenge using

a new ranking method (PSD-allwords). The Ensemble

method and SQEM placed second and third in terms of

infNDCG in the Challenge. The breakdown analysis sug-

gests that the additional information and NCBI E-utilities-

based query expansion also helped improve the infNDCG.

In summary, we provided a promising solution for cross-

database, cross-domain, cross-repository biomedical data-

set retrieval.

Supplementary data

Supplementary data are available at Database Online.
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