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Abstract

Non-semantic approaches to bioinformatic data analysis have potential relevance where se-

mantic resources such as annotated finished reference genomes are lacking, such as in the

analysis and utilisation of growing amounts of sequence data from non-model organisms,

often associated with sequence-based agricultural, aqua-cultural and environmental sam-

pling studies and commercial services. Even where rich semantic resources are available,

semantic approaches to problems such as contrasting and comparing reference assemblies,

and utilising multiple references in parallel to avoid reference bias, are costly and difficult to

fully automate. We introduce and discuss a non-semantic data representation approach in-

tended mainly for bioinformatic data called non-semantic labelling. Non-semantic labelling

involves tensorially combining multiple kinds of model-based entropy-reducing data repre-

sentation, with multiple representation models, so as to map both data and models into

dual metric representation spaces, with goals of both reducing the statistical complexity of

the data, and highlighting latent structure via machine learning and statistical analyses con-

ducted within the dual representation spaces. As part of the framework, we introduce a

novel algebraic abstraction of data representation mappings, and present four proof-of-

concept examples of its application, to problems such as comparing and contrasting se-

quence assemblies, utilisation of multiple references for annotation and development of

quality control diagnostics in a variety of high-throughput sequencing contexts.

Database URL: https://github.com/AgResearch/data_prism

Introduction

To find structure in high-entropy datasets we need to throw

away information via entropy-reducing data representations

that simplify the data while preserving structural features of

interest. Sequence annotation involving labelling DNA or

protein sequence observations with matches [e.g. top hits
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from BLAST (1)] in a reference database is a good example

of such a representation: the information content (entropy)

of the set of labels is much less than that of the original

data, but the biological meaning of the original data is pre-

served assuming each original sequence is represented by a

‘functionally equivalent’ (in some sense) matched hit in the

reference dataset. This is a semantic data representation

technique, in that the original observations are represented

as linguistic objects such as reference sequence names or

blocks of text in the reduced dataset.

By contrast, calculating the mean and standard devi-

ation of a numerical sample, an everyday entropy-

reduction technique applied to datasets, is a non-semantic

entropy-reduction, in that each original observation is rep-

resented by an unlabelled point in a 2D metric space. As

Stigler notes (2) ‘The taking of a mean of any sort is a ra-

ther radical step in an analysis. In doing this, the statisti-

cian is discarding information in the data; the individuality

of each observation is lost. . .’. In this paper we outline and

apply an entropy-reducing data representation approach

intended mainly for bioinformatic data that we term non-

semantic labelling, in which the semantic individuality of

data values such as sequences and taxonomy names is lost,

and the data is labelled by points in a high dimensional

vector or tensor (i.e. vector-space product) metric space.

Methods

Algebraic abstraction of entropy-reducing data

representation mappings

We use a simple algebraic formulation to describe and ma-

nipulate entropy-reducing data representation mappings,

allowing us to combine and obtain new representations

which would be difficult to access using purely verbal rea-

soning and descriptions. We interpret and formulate below

some standard elementary summary statistics as entropy-

reducing data representation mappings to illustrate how

this abstraction works (without meaning to suggest that it

would be particularly productive to adopt this notation in

the standard cases used for illustration). Consider a dataset

consisting of N elements xi, i ranging from 1 to N which

we represent using entropy-reducing data representation

mapping operatorsM, S, R, etc. (as defined below); some

representation mappings such as taking ranks are model-

dependent (ranking depends on an ordering model), in

which case we will index the operator symbol by model,

for example Rj refers to a representation operator that

yields the rank of a data element according to ordering

model j. In these next examples the raw dataset elements

are numbers, but in general could be strings (such as DNA

sequences) or composites such as arrays:

Many entropy-reducing data representations are inject-

ive rather than aggregative—i.e. each data element is repre-

sented as a distinct point in the representation space:

The above entropy-reducing representation operators yield

scalar representations: scalar representations can be combined

to construct vector representations which represent data

• The mean-value representation mapping operator

Mmaps each dataset element xi to a constant

value �x, the mean of the entire collection of data-

set values x1 to xN. Here ‘taking an average’ is

thought of as an entropy-reducing data represen-

tation mapping that represents each data element

by a point in a (1D) metric space, with all data

elements in a collection represented by the same

singular point.

MðxiÞ ! �x

• The standard deviation operator S represents each

dataset element xi by the standard deviation of

the entire collection of dataset values x1 to xN

SðxiÞ ! s

• The ranking operatorRj represents each data-

set element xi as the rank of that data element

in the dataset, according to some ordering

model oj. Taking ranks is an entropy-reducing

data representation, representing each data

element as a point in a 1D space, but now the

mapping is injective in that each element is

represented by a different (depending on how

ties are handled) point in the space.

Rj xi
� �
! ri

j

Most entropy-reducing data representations are partially

aggregative:

• The binning operator Bj represents each data-

set element xi by the centre of a bin according

to some binning model bj :

Bj xi
� �
! ci

j

• The empirical frequency operator F j repre-

sents each dataset element xi by a count of

how many elements fall into the parent bin of

xi according to some binning model bj:

F j xi
� �
! f i

j

• The model-fitting operator G represents each

dataset element by a fitted value according to

some general model of the data.

GðxiÞ ! bxi

• We define a data representation transform-

ation I j under which each data element xi is

represented by the self-information hi
j of that

element, relative to some probability model mj

of the data, with hi
j ¼ �lnpj xi

� �
[pj the (often

empirical) probability of xi according to mj]

I j xi
� �
! hi

j
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elements as vectors in a metric space of more than one dimen-

sion. For example:

Scalar-valued entropy-reducing representations such as

ranking, binning or self-information (Rj, Bj & F j and I j

above) are parameterised respectively by an ordering, bin-

ning or probability model so that vector-valued representa-

tions may also be constructed by indexing over multiple

models. For example, vector-valued representations con-

structed by indexing over M probability or ordering mod-

els of the data could be expressed as:

I1; I2; . . . IM½ � xi
� �
! ðhi

1; h
i
2; . . . hi

MÞ

R1;R2; . . .RM½ � xi
� �
! ðri

1; r
i
2; . . . ri

MÞ

Furthermore we can generalise in both of these ways—

i.e. use both multiple kinds of entropy reducing representa-

tion, and multiple models associated with each representa-

tion. For example a ‘flat’ vector valued representation

made by combining R and I and also indexing across M

models could be expressed as:

R1;R2; . . .RM; . . . I1; I2; . . . IM½ � xi
� �

! ðri
1; r

i
2; . . . ri

M;h
i
1; h

i
2; . . . hi

MÞ

[Noble (3) refers to this way of combining different rep-

resentations of the input data as ‘early integration’]. We

have found it more useful to construct higher order repre-

sentations by taking a formal tensor product of the model

space with the space of representation operators. This

yields a nested rather than flat data representation:

m1;m2; . . . mM½ � � R; I½ �½ � xi
� �

!
�

ri
1;h

i
1

� �
; ri

2;h
i
2

� �
; . . . ri

M;h
i
M

� ��

Vector-valued representations are then just special cases

of this abstraction, for example

m1;m2; . . . mM½ � � R½ �½ � xi
� �
! ri

1; r
i
2; . . . ri

M

� �

m1;m2; . . . mM½ � � I½ �½ � xi
� �
! hi

1; h
i
2; . . . hi

M

� �

Duality between data and representation models

There is an interesting and useful duality between data and

models. Consider for example the vector representation:

m1;m2; . . . mM½ � � I½ �½ � xi
� �
! ðhi

1; h
i
2; . . . hi

MÞ

This characterises each data element xi by our ‘surprise’

at seeing it, as measured by its self-information according

to a panel of M different probability models of the data

(with low probability hence high self-information implying

greater ‘surprise’). The dual expression:

½ x1; x2; . . . xN
� �

� I½ ��ðmjÞ ! ðh1
j ; h

2
j ; . . . hN

j Þ

exchanges the role of data and model: it characterises model

mj by how surprising it is to see each of the data items ac-

cording to that model. We refer to the representation

si ¼ ðhi
1;h

i
2; . . . hi

MÞ as the spectrum of data element xi rela-

tive to the panel of probability models, and the dual repre-

sentation sj ¼ ðh1
j ;h

2
j ; . . . hN

j Þ as the co-spectrum of model

mj relative to the dataset. For this particular representation

operator, which is information based, we would refer to in-

formation spectra and co-spectra; for a panel of ranking op-

erators we would refer to ranking spectra and co-spectra,

etc. In these examples the spectra and co-spectra are vectors,

but for higher order representations such as R; I½ � above

they may be, for example matrices. As we will see in the ex-

amples below, sometimes we are mainly interested in the

structure of the spectra, sometimes in the co-spectra, and

sometimes both. This duality increases the flexibility of our

data representation abstraction.

Metric structure for data and models

Vector-valued entropy-reducing data representations

endow distances between pairs of data elements (dually,

• The entropy-reducing representation

½M; S� represents each data element as

a singular point �x; sð Þ in a 2D space,

corresponding to the mean and stand-

ard deviation of the collection. Various

kinds of metric (usually based on the t

distribution) can be constructed to

assign a statistical distance between

points in this space, and hence between

the data collections they represent.

M; S½ � xi
� �

! ð�x; sÞ

• The entropy-reducing representation

Bj; F j

� �
represents each data element

as a point ðci
j; f i

j Þ in a 2D space, corres-

ponding to the bin centre and member-

ship count of the parent bin of xi

according to a binning model bj. The

space corresponding to a particular bin-

ning model is usually visualised as a

histogram.

Bj; F j

� �
xi
� �
! ðci

j; f i
j Þ

Database, Vol. 2018, Article ID bay029 Page 3 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay029/4962528 by guest on 21 M

ay 2024

Deleted Text: Scalar 
Deleted Text: vector 
Deleted Text: vector 
Deleted Text:  &hx2013; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: (
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: )
Deleted Text: Vector 
Deleted Text: D
Deleted Text: R
Deleted Text: M
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: Vector 


pairs of models) via finding a suitable metric on the vector

space of corresponding spectra (dually, co-spectra). This is

provided at a high level of abstraction by a suitable inner

product between pairs of spectra or co-spectra, whether

vectors, matrices or higher order tensors. We illustrate the

development of a number of inner-product based metrics

for both vector and matrix spectra and co-spectra in the

application examples below.

Application examples

Example 1: Alignment of sequences against multiple references

In this example we aligned a dataset of 203 333 cattle ex-

pressed sequence tags (ESTs) (AgResearch, Genesis and

Primary Industry Victoria Bovine EST Project 2006, un-

published data) to a panel of 10 sheep and cattle genomes

and transcriptomes using BLAST, in order to

1. investigate the possibility of non-semantic annotation

of these sequences, using alignments against multiple

reference genome and transcriptome assemblies to

embed the sequence collection in a metric representa-

tion space in which distances between sequence repre-

sentations are related to biological distance; and

2. investigate the possibility of using the dual embedding

of the panel of genomes and transcriptomes to investi-

gate and visualise the relationships between them, via a

suitable metric on the dual representation space.

The transcriptome and genome references are described

in Table 1.

In this analysis the EST collection is aligned against

each assembly in turn, yielding a self-information measure

for each EST relative to each assembly as follows: an EST

that aligns at a locus in one of the assemblies at which

many other sequences also align, is assigned a low self-

information relative to that reference, whereas a sequence

that aligns at a locus where no other sequences in the

collection align, is assigned a high self-information relative

to that reference.

Specifically, the self-information hi
j of each EST xi rela-

tive to reference mj is calculated as follows: each mj pro-

vides an empirical probability model of the sequence

collection, with the empirical probability pj xi
� �

associated

with sequence xi taken as the alignment depth in a window

centred on the alignment position of xi in mj divided by the

total number of sequences that were aligned, and

hi
j ¼ �logðpj xi

� �
Þ.

A vector-valued entropy-reducing representation of the

EST dataset is then obtained by representing each EST se-

quence xi by an information spectrum si consisting of the

respective self-information of that EST relative to each of

the references. This representation is expressed using our

abstraction as:

m1;m2; . . . m10½ � � I½ �½ � xi
� �
! hi

1; h
i
2; :h

i
10

� �
¼ si

Dually each reference is represented by an information

co-spectrum sj relative to the EST dataset:

h
x1; x2; . . . x203333
� �

� I½ �
i
ðmjÞ ! h1

j ;h
2
j ; . . . h203333

j

� �
¼ sj

The information spectrum for each EST sequence pro-

vides a non-semantic label for it based on how ‘surprised’

we are to see the sequence, according to the alignment of

the sequence collection against each of the reference assem-

blies. Dually, the information co-spectrum for each refer-

ence assembly provides a dual non-semantic label for it

based on the pattern of self-information of the EST collec-

tion relative to that assembly. (We refer to these as kinds

of label rather than as kinds of data feature, because they

are constructed using a collection of external labelling

models, rather than being intrinsic to the data; also the col-

lection of models can be arbitrarily large, such that we

could if useful uniquely label each data element.)

Table 1. The panel of assemblies used to label the EST dataset

Assembly name Reference type Species Description

BovineVelvetSE Transcriptome Cattle Assembly of Single End Illumina NGS Reads

cs39 Transcriptome Sheep Assembly of sheep EST sequences

cs34 Transcriptome Cattle Assembly of cattle EST sequences

dfciBt Transcriptome Cattle DFCI Bos taurus gene indices

dfciOa Transcriptome Sheep DFCI Ovis aries gene indices

Bgisheep Genome Sheep BGI sheep genome assembly

Btau42 Genome Cattle Baylor College Cattle assembly 4.2

Btau461 Genome Cattle Baylor College Cattle assembly 4.6.1

Umd2 Genome Cattle University of Maryland Cattle assembly version 2

Umd3 Genome Cattle University of Maryland Cattle assembly version 3
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We developed an inner-product-based metric structure

for the collection of ESTs based on their spectra, and for

the panel of reference assemblies based on their co-spectra,

as described in detail in the Supplementary Material.

Figure 1 depicts the EST metric structure for a selection

of EST’s representing the genes from Table 2.

These genes were chosen among those that were well

represented in the dataset, across a range of different biolo-

gical functions. The distance between each pair of EST’s in

Figure 1 corresponds directly to the distance assigned by

the metric.

This metric segregates the different genes reasonably

well, although there is considerable overlap between

KRT4, KRT8 and SEP15. Interestingly a close biological

association between keratinocytes and selenoproteins has

been noted (4).

As described in the Supplementary Material we also de-

veloped an inner-product-based metric on the reference

assembly co-spectra, which mathematically involves clus-

tering the EST spectra. The dendrogram in Figure 2 pro-

vides a visualisation of this metric based on 300 distinct

EST clusters, mostly ranging in size from 30 to 2500 se-

quences (with only two large sequence clusters outside this

range, of sizes 7567 and 13 714). This choice of metric cap-

tures salient technical and biological relationships between

the assemblies:

• The five transcriptomes on the right are distinguished

from the five genomes on the left.

• Within the genomes, the sheep reference on the left segre-

gates from the four cattle genomes, and the UMD and

Baylor assemblies segregate together respectively.

• Within the transcriptomes the two sheep transcriptomes

on the left segregate from the three cattle transcriptomes

on the right, and the short-read-based cattle transcrip-

tome segregates from the two Sanger-based transcrip-

tomes on the far right.

We found that metrics based on <100 or >600 clusters

captured some but not all of these features, so that it ap-

pears a roughly 300 dimensional co-spectrum sub-space is

required to capture all of these features. This metric will

have the effect of giving roughly equal weight to each gene

or gene family, whereas a Euclidean metric would give

greater weight to highly expressed genes.

In Figure 2 each row depicts the full information

spectrum

m1;m2; . . . m10½ � � I½ �½ � xi
� �
! hi

1; h
i
2; :h

i
10

� �
¼ si

for each sequence xi.

By including only two assemblies in the representation

operator, we can plot the spectrum of each sequence as a

point in a 2D visualisation. Figure 3 depicts the informa-

tion spectra

mBtau4:6:1;mumd3½ � � I½ �½ � xi
� �
! hi

Btau4:6:1;h
i
umd3

� �
:

While Figure 2 provides a “birds-eye-view” of the rela-

tionships between references via the metric structure

endowed by their co-spectra, Figure 3 enables drilling

down to specific regions of potential difference represented

by off-diagonal points on a plot of 2D EST sub-spectra.

For example the off-diagonal point that is circled discloses

[via the UCSC Liftover tool (5)] a 1.5 MB rearrangement

in UMD3 relative to Btau4.6.1, with a segment of this

length at chr5: 9 500 000 in Btau4.6.1 moved to chr5:

104 000 000 in the UMD3 assemblies. Rearrangements

such as these change the probabilities that sequences align,

thus changing the information spectrum for a sequence (as

well as influencing the dual co-spectra and metric distance

between assemblies).

Figure 1. Metric structure on a selection of spectra for each of 120 EST

sequences from the dataset. Each point in this plot represents an EST

and is labelled by a letter corresponding to the EST gene, as listed in

Table 2.

Table 2. Gene names and single letter symbols plotted

Gene Symbol

Prolactin (PRL) P

Selenoprotein (SEP15) S

Eukaryotic Translation Elongation Factor (EEF1A1) E

Keratin (KRT4) 4

Keratin (KRT8) 8

Alpha-S1-casein (CSN1S1) C

Database, Vol. 2018, Article ID bay029 Page 5 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay029/4962528 by guest on 21 M

ay 2024

Deleted Text: product 
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay029#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay029#supplementary-data
Deleted Text: product 
Deleted Text: , 
Deleted Text: 2 
Deleted Text: , 
Deleted Text: , 
Deleted Text: 5 
Deleted Text: 5 
Deleted Text: 4 
Deleted Text: 2 
Deleted Text: 3 
Deleted Text: read 
Deleted Text: 2 
Deleted Text: Sanger 
Deleted Text: 2 
Deleted Text: two-
Deleted Text: dimensional
Deleted Text: 2
Deleted Text: two
Deleted Text: -dimensional
Deleted Text: (
Deleted Text: )
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 


Figure 2. The information spectra and co-spectra for the EST dataset. Each row depicts the spectrum of an EST, and each column depicts the

co-spectrum of a reference.
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Figure 4 illustrates an application of this approach to a

larger number of assemblies. The representation form

½ x1;x2; . . . x1055875
� �

� PctID½ ��ðmjÞ ! b1
j ;

�
b2

j ; . . . b1055875
j Þ

¼ sj labels each of 122 unfinished bacterial strain genome

assemblies mj with a co-spectrum sj in which bi
j is the per-

centage identity of the best BLAST hit of oligo xi to assem-

bly mj, as described in detail in the Supplementary

Material. Each assembly consists of a set of unordered un-

oriented contigs which makes direct alignment-based (i.e.

semantic) comparisons difficult to interpret. The non-

semantic approach was useful in giving us a quick visual-

isation of the broad relationships between the bacterial

strains, with segregation of the assemblies matching ex-

pectations based on the characteristics of the samples.

Example 2: Summarising blast results obtained as part of

sequencing centre quality control

An important quality control step in any sequencing lab

processing taxonomically diverse sequencing projects in-

volves blasting a random sample of short reads from each

distinct output batch against a reference database in order

to look for contamination and processing errors such as

barcode swaps and labelling errors. The choice of reference

database is a trade-off between sensitivity, specificity and

speed. For non-model organisms the full NCBI nt nucleo-

tide database (6) is sometimes used as it is fast and fairly

sensitive, but has poor specificity, with many hits to gene

homologs and paralogs, leading to a fairly high-entropy

dataset consisting of counts of hits to a very large number

of taxa, which can be difficult to interpret. Interpretation

is usually semantically based, involving ignoring all but the

two or three highest-frequency taxa in the tabulation of

hits and subjectively assessing whether the hit taxa

adequately match the sample description. As well as dis-

carding less frequent but potentially informative taxa hits

this also discards contextual across-samples information

(‘how does this sample compare with others generated by

the facility’) which may be relevant to a diagnosis of pos-

sible contamination or systematic error.

To develop an intuitive visualisation of blast results that

utilises all taxa hits and also contextual information we

adopted a non-semantic approach based on considering

the tabulation of all taxonomy name hit counts as a high

dimensional non-semantic label of a sample, without inter-

preting the taxonomy names. This also allows us to use

contextual information by clustering samples so that we

can check how the latest sample clusters with previous

samples from the centre.

As described in detail in the Supplementary Material

each batch is represented by an information co-spectrum sj

relative to the collection of all taxonomy names observed

in a blast search of a random sample of sequences from

each batch:

h
x1;x2; . . . xT
� �

� I½ �
i
ðmjÞ ! h1

j ;h
2
j ; . . . hT

j

� �
¼ sj

where T is the number of distinct taxonomy names hit

across all batches, currently approaching 4000 for a typical

series of sequencing lanes in a facility handling a diverse

range of species.

Figure 5 depicts the metric structure of the cumulative

collection of sequencing batch co-spectra as at a certain date,

with the nominal sample species of each batch coded with a

single letter as in Table 3. (Usually this is the actual species,

unless a batch is comprised of two or three species multi-

plexed, in which case the letter corresponds to one of the

species.) The main commercial species handled by the lab

can be clearly seen (ryegrass—the cluster of grey R;

salmon—the cluster of yellow F; white clover—the cluster of

purple T; Mussel—the cluster of green M; Deer—the cluster

of red D; sheep, cattle and goat—the cluster of A, C and G).

Outliers are usually due to multiplexing of multiple species

in a single lane. The metric is again inner-product based.

This application relates to a lab that processes mainly

eukaryotic samples and we are interested in quickly pick-

ing up events such as miss-labelling, cross-contamination

between eukaryotic samples, and bacterial contamination.

As part of the quality control process associated with each

run of eight samples, this plot is generated: all cumulative

samples are included in the analysis but the sample ID

Figure 3. 2D sub-spectra for all EST sequences in the dataset. Each

point in this plot corresponds to one EST sub-spectrum, but often cor-

responds to multiple ESTs (which have the same sub-spectrum).

Whereas the full EST spectrum has 10 elements, the sub-spectra de-

picted here have 2 elements.
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numbers of just the eight latest samples under review are

overlaid. A metric on the space of sample co-spectra yields

a distance matrix consisting of distances between each pair

of sequencing batches and this is embedded in a 2D visual-

isation using multi-dimensional scaling. This visualisation

of the q/c blast results provides immediate indication

whether or not there is evidence of systematic error due to

events such as mislabelling, or significant between-sample

contamination from different species, by providing an im-

mediate visual answer to the question “how do these sam-

ples compare taxonomically with previous samples from

the same species?”. Thus rather than using just the most

frequent blast-top-hit taxa in a batch to annotate it, we use

all of the blast-top-hit taxa counts to non-semantically

label each batch (with its co-spectrum as above), with met-

ric structure on the space of labels then providing a

Figure 4. Alignment-based spectra of 1 055 875 oligo probes, and co-spectra of the 122 unfinished bacterial strain genome assemblies that the probes

were aligned against. Each row depicts the average spectrum of a cluster of probes, with row labels based on annotation of a representative probe

from the cluster; each column depicts the co-spectrum of a bacterial assembly. (Only some rows and columns are labelled.)
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sensitive internal consistency check of current versus previ-

ous batches.

Example 3: k-mer analysis of a de-novo sequence assembly

project

We characterised sequencing data from three fungal strains

as part of quality control and diagnostic work associated

with de-novo fungal genome assemblies using these data, by

summarising the DNA 6-mer frequencies in a 0.001 random

sample of each of the 16 sequencing data-files involved.

The samples and sequencing are described in Table 4.

As described in detail in the Supplementary Material

each 6-mer xi is represented by an information spectrum

siconsisting of the respective self-information of that 6-mer

relative to each of the files of sequencing data:

m1;m2; . . . m16½ � � I½ �½ � xi
� �
! hi

1; h
i
2; :h

i
16

� �
¼ si

Dually, each sequencing file is represented by an infor-

mation co-spectrum sj relative to the collection of all pos-

sible 6-mers:

h
x1; x2; . . . x4096
� �

� I½ �
i
ðmjÞ ! h1

j ;h
2
j ; . . . h4096

j

� �
¼ sj

In this application we are interested in both the spectra

and co-spectra, which are depicted in Figure 6. The main

structure noticeable visually in the sample co-spectra is

the segregation of the three species Epichloë (left-most

four columns), Lecanicillium (next four columns) and

Acremonium (remaining eight columns). A notable feature

of the 6-mer spectra is a band of low self-information (i.e.

relatively more frequent) 6-mers (indicated by darker row

colouring) in the Epichloë samples. We confirmed that this

is related to the abundance of short repeats in Epichloë (7)

(�1% of its genome) by extracting sequence fragments ex-

hibiting the 140 most enriched 6-mers and searching these

back against a database of repeat consensus sequences

from (7) and obtaining significant matches. Another not-

able feature of the 6-mer spectra is the narrow alternating

pattern of high and low self-information at the bottom of

the plot. Unlike the other band of low self-information 6-

mers, this pattern does not appear to be related to a biolo-

gical feature, because it segregates by sequencing method

rather than by sample. We confirmed that the 33 6-mers

from this part of the spectrum could be assembled into a

complete adapter contaminant.

To further explore the structure of this dataset,

we developed a tensorial representation form involving

both ranking and self-information operators, yielding a

Figure 5. A total of 659 distinct samples from a cumulative series of 109

Illumina Hiseq flow-cells are plotted and labelled by colour and a single

letter to indicate the nominal species that was sampled. All cumulative

samples are plotted but the sample ID numbers (SQnnnn) of just the

eight latest samples under review are overlaid, to visualise how the bio-

logical content of the latest samples compares with previous samples.

Table 3. Sample details and single letter species symbols

plotted

Species Symbol Sample ID

(current run)

Description

sheep A SQ0578 Atlantic Salmon (all)

salmon F SQ0579 Atlantic Salmon (all)

cattle C SQ0582 Chinook Salmon (all)

deer D SQ0583 Atlantic Salmon (125),

Goat (167)

seal S SQ0584 Deer (all)

goat G SQ0585 Deer (all)

mussel M SQ0586 Deer (69), Goat (315)

pea P SQ0587 Goat (all)

ryegrass R

clover T

weevil W

fungus E

Table 4. Fungal genus and sequencing protocol

Sample name Sequencing method Genus

C7N0GANXX-1804-01-4-1 Illumina paired-end Epichloë

C7N0GANXX-1804-01-7-1 Illumina mate-pairs

C7N0GANXX-1804-02-4-1 Illumina paired-end Lecanicillium

C7N0GANXX-1804-02-7-1 Illumina mate-pairs

C7N0GANXX-1804-03-4-1 Illumina paired-end Acremonium

C7N0GANXX-1804-03-7-1 Illumina mate-pairs

C7N0GANXX-1804-04-4-1 Illumina paired-end Acremonium

C7N0GANXX-1804-04-7-1 Illumina mate-pairs
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Figure 6. 6-mer spectra (rows) and sample sequencing file co-spectra (columns). The dendrogram and row clustering are based on a standard

Euclidean metric (only every 40th 6-mer is labelled).
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matrix-valued rather than vector-valued co-spectrum for

each sample:

h
x1;x2; . . . x4096
� �

� R; I½ �
i
ðmjÞ

!
�

r1
j ;h

1
j

� �
; r2

j ; h
2
j

� �
; . . . r4096

j ;h4096
j

� ��
¼ sj

These co-spectra are depicted in Figure 7, in which each

co-spectrum matrix defines a functional relationship be-

tween log rank and self-information. We refer to these as

zipfian plots, because they are closely related to the plots

of log frequency versus log rank often used to investigate

power-law relationships (the difference being that we re-

scale frequencies as probabilities and change sign after tak-

ing the log to obtain a self-information measure—hence

our plots have positive rather than the typical negative

slope of zipf power-law plots). The main structure notice-

able visually is the predominantly linear relationship be-

tween log rank and self-information (apart from a steep

tail in the right hand part of the plots)—this is due to

the commonly observed power law relationship between

the rank and frequency of DNA words in genomes.

The slope of the linear sections segregates by species, with

the Epichloë samples having a steeper slope than the

Acremonium and Lecanicillium samples. As noted above

the Epichloë genome is known to be relatively repeat-rich,

and the steeper slope is due to the presence of a number of

low-information 6-mers associated with these repeats. This

feature suggests that the Acremonium and Lecanicillium

genomes are expected to be less repeat rich than the

Epichloë genomes, and similarly repeat-rich to each other.

There is also a prominent turning point in the plot, a non-

biological feature as it segregates by sequencing method ra-

ther than species. It is due to the presence of adapter con-

tamination, as was also disclosed by the heat-map plot.

The advantage of the matrix-valued representation

form is its ability to clearly visually highlight a number of

different biological and technical features of the data via

first and second derivatives of the co-spectrum functions,

such as relative repeat content (slope, i.e. first derivative),

and adapter contamination (turning points, i.e. second

derivative).

Application Example 4: k-mer analysis of
tags from a genotyping-by-sequencing
project

Genotyping by sequencing (GBS) (8) is a molecular tech-

nique which itself implements an (in-vitro) entropy reduc-

ing representation of genomic sequence, using restriction

enzyme-based sampling to avoid relatively uninformative

repetitive regions of genomes and efficiently target more

informative lower copy regions. After enzyme digestion

sample fragments are barcoded so that multiple samples

can be sequenced on a single sequencing-machine lane,

thus yielding a powerful and cost-effective assay of gen-

omic variation. While the final product consists of allele

counts by sample and locus, an important intermediate

product after sequencing and de-multiplexing is typically a

set of per-sample frequency distributions summarising the

numbers of all distinct medium length (64 bp in this ex-

ample) DNA tags.

While high-throughput technologies such as GBS are

powerful, they depend critically on the integrity of long

and complex chains of meta data and data processing, so

that it is important to deploy a range of complementary

processing metrics as part of quality controlling the process

as a whole. As part of such a wider suite of quality control

metrics, we individually characterise and contrast these tag

distributions by summarising DNA 6-mer frequencies in

each and obtaining a co-spectrum matrix representation of

each individual sample:h
x1; x2; . . . x4096
� �

� R; I½ �
i
ðmjÞ

!
�
r1j ; h

1
j

� �
; r2j ; h

2
j

� �
; . . . r4096j ; h4096j

� ��
sj

Figure 8 depicts two examples of such co-spectrum

spaces: the left-hand plot of Figure 8 depicts co-spectrum

matrices for 192 GBS samples, recorded as being from cat-

tle; the right-hand plot of Figure 8 depicts co-spectrum

matrices for 96 GBS samples, recorded as being from rye-

grass. As above, each co-spectrum matrix defines a

Figure 7. Each co-spectrum matrix consists of a list of ordered pairs and

can be thought of as defining a functional relationship between rank

and self-information as depicted in this plot.
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functional relationship between log rank and self-informa-

tion, so that respectively 192 and 96 distinct functions ap-

pear on each of these plots.

In the cattle set there were two negative-control samples

and these can be visually distinguished (the two outlying

curves in the left-hand plot, which lie above the cluster of

biological samples in the right-hand part of the plot, and

step down to the two flat sections in the left-hand part of

the plot); whereas in the ryegrass plot the two negative con-

trols can’t be distinguished, suggesting a technical difference

in plate preparation methods between the two species.

The relationship between log rank and self-information

is again linear in the main part of the cattle plot, without

any sharp turning point, while the ryegrass plot exhibits a

central turning point which steps down to a flatter part of

the curve indicating a small set of co-abundant enriched

(i.e. low self-information) 6-mers, probably due to biased

and variable sampling of one or more ryegrass repeats.

The parts of these plots at the right margins which turn

fairly sharply upward represent rare 6-mers (i.e. high

self-information): we have noted that turning points in

these kinds of plots correspond to non-biological sampling

artefacts—for example in Figure 7 the turning point corres-

ponds to an adapter contamination (and we have noted in

other work that amplicon-based sequence data yields plots

of this type that curve prominently along their entire

length). We think it is likely that the high self-information

6-mers represented by the steeply curved right-hand mar-

gin of these plots are due to non-biological sampling arte-

facts such as infrequent sequencing errors.

There are two broad clusters of spectra visually appar-

ent in the cattle plot, with slightly different slopes. This

suggested that the samples from this lane were not

taxonomically homogenous, since we find empirically that

sequence data from different species have different slopes

when characterised in this way, and vice-versa, taxonomic-

ally homogenous GBS lanes exhibit only a single cluster of

this kind of spectrum. It turned out that indeed a small

number of deer samples (corresponding to the lower clus-

ter) had been included in this lane of predominantly cattle

samples.

In order to enable computational clustering of these ma-

trix co-spectra to complement and confirm the clusters

that are apparent from visual inspection, we developed an

inner-product-based metric that can be used to assign dis-

tances between pairs of co-spectra: this involves summing

the squared differences in self-information, inversely

weighted by rank—details of this formula and its deriv-

ation are given in the Supplementary Material. Figure 9 il-

lustrates the metric structure thus obtained, on the space of

cattle and deer sample co-spectra depicted in the left-hand

plot of Figure 8 that is yielded by our metric.

Discussion

In their chapter Large Scale Data Representations [chapter

5 in Frontiers in Massive Data Analysis (9)], the National

Research Council Committee on the Analysis of Massive

Data (NRC Committee) describe data representation as

the choice of a mathematical structure with which to

model the data or, relatedly, to the implementation of that

structure and go on to distinguish three basic kinds, five

broad goals and six challenges and future directions of

large-scale data representation. This discussion focuses

mainly on mapping our work onto the NRC Committee’s

taxonomies of data representation kinds, goals and challenges

Figure 8. GBS tag-derived co-spectrum matrices from two sequencing lanes, the lane on the left nominally cattle, the lane on the right ryegrass.
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in order to clarify the provenance, goals and contribution of

the non-semantic labelling approach we describe above.

The three kinds of data representation given by (9) are:

Basic data structures such as hash tables, indexes etc.; More

abstract, but basic, mathematical structures, such as sets,

vectors, matrices, graphs and metric spaces; Derived math-

ematical structures, such as clusters, linear projections, data

samples. In this paper we present an approach which yields

dual tensorial (i.e. vector, matrix or higher) representations

of both data and models, with corresponding dual metric

structures: this is an example of the NRC committee’s se-

cond category, ‘More abstract, but basic, mathematical

structures’. As alluded to in their opening definition of ‘data

representation’, there is a continuum between the initial

data representation stage of data analysis and subsequent

analysis stages that utilise those representations (e.g. via ma-

chine learning and/or statistical modelling). Thus for ex-

ample, while our work focuses on data representation,

rather than machine learning or statistical modelling, we

find ourselves using statistical modelling and machine learn-

ing tools such as k-means clustering and principal compo-

nents analysis internally, to mathematically induce a metric

on the data representation space. (See for example the

Supplementary Material for Example 1, where we explain

how this works mathematically, with clustering of the EST

spectra corresponding to projection of the reference assem-

bly co-spectra, hence yielding a metric on the co-spectra.)

According to (9), there are typically five broad goals of

data representation: Reducing Computation; Reducing

Storage and/or Communication; Reducing Statistical

Complexity and Discovering the Structure in the Data;

Exploratory Data Analysis and Data Interpretation;

Sampling and Large-Scale Data Representation. Our data

representations are tensorial combinations, of scalar

entropy-reducing representation mapping operators such

as I j (which represents a data element by its self-

information according to a probability model of the data),

or of more technical representation operators such as rep-

resenting a sequence by the percentage identity in a BLAST

alignment with another sequence from a database (as used

in the representation presented in Figure 4). Each scalar-

valued representation reduces the statistical complexity of

the data, without eliciting much structure, however by tak-

ing a tensorial combination of a number of complementary

representation operators, we obtain dual high dimensional

entropy-reducing representations which are able to reveal

structure: we refer to these as spectra and co-spectra, and

generically as ‘non-semantic labels’. They support explora-

tory data analysis and interpretation, and reflect the main

goals of our work which are (in terms of the NRC tax-

onomy) Reducing Statistical Complexity and Discovering

the Structure in the Data, and Exploratory Data Analysis

and Data Interpretation. Although not the main focus of

our work to date, our data representations, which live in a

metric space, also support metric query-by-example of

large-scale databases, via calculating distances between the

data representation of an exemplar query, and a database

of representations. The result of such a query is a ‘ball’ of

query ‘matches’ that are within a given radius of the query:

this aspect falls under the goals of Reducing Computation,

and Sampling and Large-Scale Data Representation.

Six challenges associated with data representation at

large scales that are highlighted by the NRC Committee are:

How to Extend Existing Methods to Massive Data Systems;

Heavy-Tailed and High-Variance Data; Primitives: Develop

a Middleware; Manipulation and Integration of

Heterogeneous Data; Understanding the Relative Strengths

of Data-Oblivious and Data-Aware Methods; Combining

Algorithmic and Statistical Perspectives. In their discussion

of the Challenge of Primitives, the committee calls for

‘. . .[identification of] a set of primitive algorithmic tools

that (1) provide a framework to express concisely a broad

scope of computation; (2) allow programming at the appro-

priate level of abstraction. . .’. We have outlined an algebraic

abstraction of data representation in which data representa-

tions can be expressed concisely at a high level of abstrac-

tion via algebraic combination of lower order

representation operators: thus for example in Example 1, on

the face of it Figure 2 appears to be doing something quite

different to Figure 1, however the abstraction clarifies that

these are simply algebraic duals of one another, with

Figure 9. Distances between pairs of co-spectra depicted in the left-

hand plot (cattle and deer) of Figure 8 have been calculated using a met-

ric, and the resulting distance matrix embedded in a 2D visualisation

using multi-dimensional scaling.
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Figure 1 visualising the representation m1;m2; . . . m10½ ��½
I½ �� xi
� �
! hi

1; h
i
2; :h

i
10

� �
¼ si; and Figure 2 visualising the

dual representation ½ x1;x2; . . . x203333
� �

� I½ ��ðmjÞ ! h1
j ;

�
h2

j ; . . . h203333
j Þ ¼ sj. Similarly Figure 3 appears to be a differ-

ent representation again, but is in fact just a lower dimen-

sional version of Figure 1, as made clear by its algebraic

form mBtau4:6:1;mumd3½ � � I½ �½ � xi
� �
! hi

Btau4:6:1; h
i
umd3

� �
. In

Example 3 we are able to concisely interpret a set of zipf

plots of log k-mer frequency versus log rank, as being ma-

trix-valued data representations ½ x1;x2; . . . x4096
� �

� R; I½ ��

ðmjÞ !
�

r1
j ; h

1
j

� �
; r2

j ;h
2
j

� �
; . . . r4096

j ; h4096
j

� ��
¼ sj. We sug-

gest that this kind of concise high-level abstraction could

contribute to programing data representations at a higher

level of abstraction as the NRC Committee calls for.

As noted by the NRC Committee in their discussion of

the challenge of Manipulation and Integration of

Heterogeneous Data, and also by other authors such as

Alpaydin [in his discussion in Chapter 17 in (10)], a com-

mon data representation approach of ‘putting everything

into a feature vector’, has a number of drawbacks. We

showed in Example 3 how a higher order tensorial (matrix

valued in this case) data representation was able to reveal

structure not apparent from a vector representation, and

went on to show how to develop an inner-product-based

metric on this kind of representation. While the suggestion

of using tensor rather than vector-based data representa-

tion is not new [see, e.g. Cai et al. (11)], our work contrib-

utes usefully in several ways: first by presenting a

straightforward practical application of a higher order

(than vector) tensorial data representation; second as we

have discussed by introducing an expressive algebraic ab-

straction of higher order data representations; third by

showing an example of developing a metric on a space of

higher order representations, at a high level of abstraction

(which we did by looking for an inner product on the space

of matrix-valued representations, interpreted as functions).

We offer an entropy-reduction perspective on another

of the NRC challenges—Combing Algorithmic and

Statistical Perspectives. An interesting and important po-

tential of non-semantic data representation not utilised ex-

plicitly in this paper (nor very often in bioinformatics, but

standard practice in statistical modelling and analysis) is

quantitation of latent structure via analysis of residuals—

i.e. of differences between the original data and its

representation: if residuals exhibit a maximum entropy

probability distribution then we know we have ‘thrown

away as much information as possible’—so that it will not

be possible to find any other representation which will ex-

tract more structure from the data. For example the normal

distribution has maximum entropy among all distributions

with a specified variance, so that normally distributed

residuals indicate that the entropy-reducing data representa-

tion used (e.g. this could be a model that was fitted) has ex-

tracted as much structure from the data as possible, by

throwing away as much information as possible—i.e. the

representation is ‘optimal’ in that sense. By contrast assess-

ing whether we have thrown away as much information as

possible in a bioinformatic semantic entropy-reducing repre-

sentation such as contig assembly (e.g. that we have not

under-assembled) is complex and mainly qualitative.

While we cannot calculate residuals between the data

originals and representations for the kinds of representa-

tion mappings applied in our test cases (such as mapping

DNA sequence strings to numeric self-information vec-

tors), we can make inferences from the distributional prop-

erties of the lower-entropy data representations—i.e. of the

numeric spectra and co-spectra. For example if there is a

good fit to these by a maximum entropy distribution such

as the multi-variate normal, then since the information

content of the original data themselves before entropy-

reducing representation is by design higher than that of

their data representations, it follows that the original data

features must also have a maximum entropy distribution,

and hence we can infer that little or no structure in those

original data features is available. Conversely if, as in the

cattle plot in Figure 8 of Example 4, the distribution of co-

spectra representations clearly does not have a maximum

entropy distribution (i.e. here it is bi-modal), then we can

infer the existence of latent structure in the data—and in-

deed it turned out there was more than one species

sequenced. Our inference that there was latent structure

was really based on an implicit premise, that the data rep-

resentations do not have a maximum-entropy distribution:

in this case that was obvious (they have a bi-modal distri-

bution), but in general it would be necessary to statistically

test the truth of this premise. Our point here is that the

non-semantic data representation approach we have out-

lined potentially supports quantitative rather than just

qualitative judgements about the existence of latent

structure in typical bioinformatic datasets consisting of

sequence strings and other non-numeric data items.

Finally, an important data representation challenge not

mentioned by the NRC Committee, relates to increasing the

scope and utilisation of new computational paradigms such

as quantum computing, which will require innovative data

representations. The rapid progress in bioinformatics and

computational biology in the last 30 or so years has been

made possible by extraordinary advances in micro-processing

power as described by Moore’s law, which observes that

since around 1965 the number of transistors on a processor

doubles every 2 years. However there is general agreement

that the limits of this technology have been reached and that

we will no longer be able to rely on Moore’s law to deliver
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compute platforms capable of solving problems currently out

of reach: ‘In future the revolution will have to continue by

other means’(12). Recent advances in quantum computer

technology and algorithm development suggest these other

means will include quantum computing (13), while quantum

computing appears likely to be relevant both to specific hard

bioinformatics problems such as protein fold prediction (14),

and also to classes of algorithms relevant to bioinformatics

such as optimisation and constraint satisfaction; graph prob-

lems such as determining connectivity, minimum spanning

trees and shortest path; pattern matching; Markov chain-

based searches and sampling (via quantum walks); solving

linear equations; data fitting and various tasks in machine

learning (15). By representing bioinformatic objects such as

sequences, reference assemblies and sample data files in high

dimensional linear spaces, with a rich metric structure, which

are particularly suited to a quantum computing approach, a

non-semantic data representation framework of the kind we

have sketched could have a role to play in providing data rep-

resentations suitable for quantum computing platforms of

the near future.

Summary and conclusions

We described and applied a data representation frame-

work, non-semantic labelling, that embeds datasets in dual

metric spaces, together with a novel algebraic abstraction

of data representation which offers concise expression,

manipulation, communication and implementation of data

representation mappings. Using this framework we demon-

strated as a proof-of-concept non-semantic sequence annota-

tion using alignments against multiple reference genome and

transcriptome assemblies to represent the sequence collection

in a metric space in which distances between sequence repre-

sentations are related to biological distance; and shown how

the dual metric representation of genomes and transcrip-

tomes highlights important technical and biological relation-

ships between them, including for example specific structural

differences such as rearrangements via investigating outlier

sequence representations. This non-semantic approach is

scalable to large numbers and various different classes of

assemblies, including unfinished and un-annotated.

We showed how “zipfian” k-mer (k¼ 6 in our ex-

amples) self-information versus log rank plots, can be ob-

tained abstractly as a formal tensor product of a 2D

entropy-reducing data representation operator (ranking,

binning) with a vector of representation models (in the

form of sequence data-files), yielding a matrix-valued rep-

resentation which clearly reveals data features not appar-

ent from lower order scalar or vector representations. This

suggests that algebraic abstraction of data representation

could contribute to the development of other higher order

data representations to aid visualisation and understanding

of large and complex datasets.

We found that the first derivative (slope) of the zipfian

function plots suggested by the framework tended to

broadly segregate sequence data by species of origin, while

the second derivative (turning points) helps identify tech-

nical and biological sequence data features such as adapter

contamination and relatively highly abundant repeats. We

hypothesise that turning points in this kind of plot are al-

ways non-biological in origin, due, for example, to un-

trimmed adapter fragments or biased molecular sampling

and have found the presence of this feature to be a reliable

and easy to obtain diagnostic indicator of these kinds of

event. We note that de-novo assembly of co-abundant low-

self-information 6-mers as disclosed by zipfian plots into

complete contaminants and in some cases (e.g. associated

with biased sampling of repeats) repeat units is straightfor-

ward and useful and as part of further work are investigat-

ing a non-semantic information-based sequence trimming

and filtering approach based on sculpting the zipfian plot

to remove turning points, which would not require any

prior knowledge of contaminant sequence.

We have discussed how our approach is subsumed

under taxonomies of data representation approaches, goals

and challenges outlined in (9) by the NRC Committee, and

drawn attention to its potential relevance to the emerging

challenge of designing data representation algorithms to

enable wider utilisation of the new computing paradigm of

quantum computing.

Supplementary data

Supplementary data are available at Database Online.
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