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Abstract

Knowledgebases play an increasingly important role in scientific research, where the

expert curation of biological knowledge in forms that are amenable to computational ana-

lysis (using ontologies for example)–provides a significant added value and enables new

types of computational analyses for high throughput datasets. In this work, we demon-

strate how expert curation can also play a more direct role in research, by supporting the

use of network-based dynamical models to study a specific biological process. This cur-

ation effort is focused on the regulatory interactions between biological entities, such as

genes or proteins and compounds, which may interact with each other in a complex man-

ner, including regulatory complexes and conditional dependencies between co-regulators.

This critical information has to be captured and encoded in a computable manner, which

is currently far beyond the current capabilities of automatically constructed network. As a

case study, we report here the prior knowledge network constructed by the sysVASC con-

sortium to model the biological events leading to the formation of atherosclerotic plaques,

during the onset of cardiovascular disease and discuss some specific examples to

illustrate the main pitfalls and added value provided by the expert curation during this

endeavor.
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Introduction

New types of computational analyses, such as network-

based dynamical models, take advantage of the enor-

mous amounts of data that biologists today are able to

generate at relatively low cost. However, expert curation re-

mains critical to transform available data—including publi-

cations—into computable knowledge. Network-based

dynamical models are abstractions of reality that can be used

to simulate the behavior of complex biological systems and

to predict their responses to environmental stimuli and dis-

ease, providing an essential support for hypothesis gener-

ation and experimental design (1, 2). In this work, we focus

on network-based dynamical models in the Boolean frame-

work (3–6), where states of the constituent elements, the

nodes of the network, are Boolean variables that can take

only two values: 0 (inactive) and 1 (active). Interactions be-

tween nodes are specified using logical rules consisting of a

combination of AND, NOT and OR logical operators.

Network-based dynamical models can be directly

inferred from experimental data, such as gene expression

data, molecular concentrations or phenotypes, in normal

and perturbed states (7, 8). The parameters of the model

are obtained by fitting the model to the experimental data.

Alternatively, network-based dynamical models can be cre-

ated using prior knowledge obtained from the literature––

resulting in a list of regulatory interactions termed a prior

knowledge network (PKN; 9, 10). This approach requires

expert curation of regulatory interactions, which can be

performed specifically on the model, or which can be

sourced from existing curated knowledgebases. Expert cur-

ators summarize experimental findings and encode the in-

formation in such a way that it can be easily queried and

linked to other types of data by using shared identifiers

and ontologies (11). Examples of such curated knowledge-

bases are UniProtKB/Swiss-Prot (12) and IMEx (13). The

two approaches to construct network-based dynamical

models (inferred from data and derived from prior-

knowledge) can also be combined (14–16). Indeed, it has

been demonstrated that incorporating pre-existing biolo-

gical knowledge improved inferring causal molecular net-

works from data (17). However, human expertise remains

essential for the construction of useful PKNs (18–20).

In this work, we describe the creation of a PKN, which

describes regulatory interactions that play a role in the for-

mation of atherosclerotic plaques (Supplementary Table

S1). This PKN can be used as the basis for the construction

of a network-based dynamical model describing the forma-

tion of atherosclerotic plaques during the onset of cardio-

vascular disease. The PKN includes logical rules that

describe complex interactions between multiple network

components––rules which cannot be encoded automatically,

from data––and in the second part of this work, we illus-

trate how these logical rules improve the quality of the

network-based dynamical models derived from the PKN.

Constructing a PKN of the formation of
atherosclerotic plaques

Motivation for building a PKN encoding

regulatory logic rules

The sysVASC consortium (Systems Biology to Identify

Molecular Targets for Vascular Disease) consists of 17

European partners funded by the European Union’s

Seventh Framework Program for research, technological

development and demonstration (http://www.sysvasc.eu/).

The consortium aims to elucidate the pathological mechan-

isms underlying the onset and progression of cardiovascu-

lar disease and to identify and validate novel biology-

driven key molecular targets for therapeutic intervention.

As a part of a comprehensive systems medicine approach

developed for this purpose, the consortium developed the

platform for in silico simulations of cardiovascular disease-

related biological processes, which ultimately relies on

the construction of network-based dynamical models

(Figure 1). Network-based dynamical models can describe

the evolution of a biological system in time, and provide

the means to investigate the effect of perturbations on that

evolution. They can be used to predict key molecular

events in normal and pathological states, serving as a guide

for experimental design and hypothesis generation (7).

These aims fit very well with the goals and expectations of

many experimental research projects including those of the

sysVASC consortium.

Figure 1. The sysVASC dynamical model of atherosclerotic plaque for-

mation flow chart. The sysVASC consortium attempts to elucidate

pathological mechanisms involved in the onset and progression of car-

divascular disease and to identify and validate novel biology-driven key

molecular targets for therapeutic intervention by in silico simulation of

the main driving biological processes. Among those processes, the for-

mation of atherosclerotic plaque plays a central role. In this work, we

use in silico simulation of a dynamical model based on an expert cura-

ted PKN, to optimize the model and to generate testable predictions for

further validation. Such predictions are used to iteratively improve the

model.
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One of the main limitations we encounter when at-

tempting to describe the overall dynamics of a complex

system is that the related kinetic parameters are mostly

unknown, or may have to be learned from a significant

amount of (potentially costly) experimental data. One way

to deal with this problem is to adopt a modeling formalism

that avoids the need for explicit determination of kinetic

parameters (21, 22). Such formalisms include logic-based

models, such as those based on Boolean logic, which adopt

a simplified description of a given biological system

(3, 23). In Boolean models, the state of the constituent

elements can be either ‘active’ or ‘inactive’, and the evolu-

tion of these states is defined by the state of their direct

regulators according to specific logical rules. The entire

collection of these rules, encoded as regulatory logic func-

tions, comprise a Boolean model. Although these models

lack temporal units, they can be used to explore properties

of biological systems such as the presence of attractors

(states of convergence, often phenotypes such as healthy or

disease states) and the alterations or perturbations that

drive transitions between them (24).

Description of the methodology used to
build the PKN: expert curation by Swiss-Prot
team

Expert biocuration of the PKN was performed by the

Swiss-Prot curation team, which consists of experienced

(generally PhD-level) biologists or biochemists with a

strong experience in wet lab research.

Expert curators assimilate information from a number

of sources, including full text publications, analyse and rec-

oncile conflicting results and integrate the data into a con-

cise but comprehensive network of functional interactions.

In order to ensure consistency, we used controlled vocabu-

laries and ontologies for all terms: gene names come from

the official HGNC nomenclature (https://www.genenames.

org/), chemical compounds from ChEBI (https://www.ebi.

ac.uk/chebi/), tissues or cells from Uberon (http://uberon.

github.io/) and biological processes or complexes from

Gene Ontology (http://www.geneontology.org/).

The PKN is composed of: (i) nodes representing biolo-

gical entities; (ii) regulatory interactions between biological

entities (edges) and (iii) logical rules that describe the

interplay between (co-)regulators. Nodes representing

biological entities in the network (1) may describe proteins,

complexes, small molecules, biological processes, or

phenotypes. Regulatory interactions (edges; 2) between

source and target nodes may positively or negatively

regulate the activity of the latter. These simple regulatory

interactions reduce biological processes as diverse as the

regulation of transcription, translation, transport and

post-translational modification to simple activation or in-

hibition. Logical rules (3) that specify how co-regulators

interact with respect to a target node are encoded using

three basic logic operators: ‘OR’, ‘AND’ and ‘NOT’.

Description of the PKN

Atherosclerotic plaque formation is a very complex process

that initiates with lipid accumulation followed by mono-

cyte infiltration, platelets recruitment and lipid core forma-

tion leading a chronic systemic inflammation state. In this

process, many pathways and crosstalks between different

cell types and tissues are involved. To build the PKN,

Swiss-Prot curation team mainly focuses, to start, on the

inflammasome activation produced by cholesterol crystals

in macrophages during chronic systemic inflammation,

which induces interleukine-1 beta (IL1B) production (25,

26). Starting from this process, they extended the curation

to the upstream mechanisms that lead to the inflamma-

some activation, but they also annotated the downstream

consequences that end in the atherosclerotic plaque

formation.

The PKN is composed of a total of 729 nodes, of which

432 are proteins and 297 are other entities such as metab-

olites or biological processes (Supplementary Table S1).

These nodes are linked by 3406 interactions (rows in

Supplementary Table S1) that describe the effect of one or

more regulatory nodes (column B) on their corresponding

target nodes (column E); 2878 of these edges describe acti-

vation (-> in column D) and 528 describe inhibition (-j in

column D) of the target nodes. Among these 3406 inter-

actions 1841 complex regulations are encoded with logical

operators while 1565 are simple activatory or inhibitory

edges of one node over another.

The diameter of the PKN i.e. the maximum eccentricity

(the greatest number of edges between a node n and any

other node) of any node is 14. Its radius -i.e. the minimum

eccentricity of any node is 1. The PKN is also fully con-

nected with one connected component meaning that there is

always an undirected path between each pair of nodes. The

shortest paths constitute 10% of the network. The average

number of neighbors for nodes is 6. It has 8 self-loops.

Added value of expert biocuration:
illustrative examples

Although some efforts have been made to collect directed

and signed cause-and-effect relationships from automated

text mining (27), text-mining methods are only really ac-

curate for named entity recognition (28). Expert curation

remains the only accurate means to extract complex regu-

latory relationships from text with the degree of accuracy
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required to construct computational models. Usually these

models include hundreds of interactions, and without the

help of expert curation, high error rates in the identifica-

tion of individual entities and their relations would make

the resulting models unusable. Signal transduction and

gene regulatory networks result from complex interactions

and from the regulation of elements acting in concert ra-

ther than independently of each other. Expert curation

allows us to capture this complexity and encode it in the

form of logical rules.

To illustrate the importance of this expert curation in

building PKNs and encoding complex regulations, we will

focus on the regulation of three central components of the

cardiovascular disease and atherosclerosis plaque forma-

tion network: peroxisome proliferator-activated receptor

alpha (PPARA), MAPK1/3 and IL1B secretion. For each of

these components, we will demonstrate how the correct

capture and encoding of the dependencies between its co-

regulators is essential to correctly predict its state in health

and disease. For this purpose, we compare predictions

made on network-based dynamical models extracted from

the PKN to data extracted from the literature on the state

of these model constituent nodes (genes) in healthy and dis-

ease phenotypes (Supplementary Table S2). Supplementary

Table S2 was built by collecting information from the lit-

erature reporting the correlation between states of PKN

nodes (column A) and cardiovascular disease (column B).

For nodes positively correlated with cardiovascular dis-

ease, a state 0 was assigned to healthy phenotype (column

F) and state 1 to diseased phenotype (column G). Similarly,

for nodes negatively correlated with cardiovascular dis-

ease, states 1 and 0 were assigned to healthy and diseased

phenotype, respectively.

For each component (PPARA, MAPK1/3 and IL1B

secretion), we created two versions of a network-based

dynamical model from the PKN keeping all the inter-

actions between the component as target node and its

regulators. The first version of the model retains the

logical rules from the PKN, while the second version of

the model was built by keeping only the information

on the topology and sign of interactions, neglecting

the prior knowledge concerning the specific regulatory

logic rules and adopting an inhibitory dominant system

instead, which is commonly used by default (29–32).

In the latter case, a node is considered active if at least

one of its activators (if any) and none of its inhibitors

(if any) are active; the node is considered inactive

otherwise.

For each model, we considered the healthy and disease

phenotypes obtained from the literature separately. For

each phenotype, we fixed the state of all input nodes to the

corresponding value in Supplementary Table S2. We used

boolSim (29) to predict the state of the output node and

compare it with the expected state according to the pheno-

type obtained from literature.

PPARA regulation

PPARA is a nuclear receptor activated by natural ligands

such as fatty acids, and it’s activation seems to inhibit early

processes contributing to atherosclerotic plaque formation

(33). PPARA is activated by PARGC1A, acting singly or

jointly with either TNF (10) SIRT1 (34) or in the absence

of MAPK14 (35). These relations can be formulated with

logical rules as follows:

• PPARA ¼ (TNF AND PPARGC1A).

• PPARA ¼ (TNF AND SIRT1).

• PPARA ¼ (NOT MAPK14 AND PPARGC1A).

These rules were encoded in a model, which subsequently

predicted the state of PPARA as active in healthy states and

inactive during atherosclerotic plaque formation (true).

The second model, using only information on the top-

ology and sign of interactions (i.e. combining activators

and inhibitors with OR logic gate and using the inhibitory

dominance rule), included the following rule:

• PPARA ¼ (SIRT1 OR PPARGC1A OR TNF) AND

NOT MAPK14.

This model predicts a constitutively active PPARA, which

is contradictory to what has been observed (33; Figure 2).

This illustrates the added value of expert curation in the de-

scription of complex signaling functions and their integra-

tion, a task that is beyond machines at the current time.

The model built using logic rules can be found in

SBML-Qual format (36) in BioModels (2) with the identi-

fier MODEL1712240001.

MAPK1/3 regulation

MAPK1 and MAPK3 are serine/threonine kinases that play

a central role in MAP kinase signal transduction pathway.

They are essential constituents of IFNG-mediated acti-

vation of STAT1 as well as the expression of key genes

implicated in atherosclerosis, and the uptake of modified

lipoproteins by macrophages (37). Among MAPK1/3 regu-

lators, Glyoxal (GO) and Methylglyoxal are metabolites

of glycolysis and lipid peroxidation that are increased in

patients with diabetes (38). They are highly reactive com-

pounds that have been shown to severely inhibit PDGF-

induced activation of MAPK (39).

This regulation of MAP kinases can be encoded as:

• MAPK1 ¼ (NOT GO AND PDGFB) OR (NOT methyl-

gyoxal AND PDGFB).
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• MAPK3 ¼ (NOT GO AND PDGFB) OR (NOT methyl-

gyoxal AND PDGFB).

These rules are part of a model that correctly predicts

MAPK1/3 states in the healthy and disease phenotypes

(Figure 3). Failure to incorporate this information will lead

to incorrectly predict the inactivation of MAPK1/3 during

atherosclerotic plaque formation.

The model built using logic rules can be found in

SBML-Qual format in BioModels with the identifier

MODEL1712240003.

IL1B secretion regulation

IL1B is a proinflammatory cytokine. The production of

IL1B occurs in two main steps, where inflammatory signals

(a)

(c)

(b)

Figure 2. Network-based dynamical model for the action of regulators upon PPARA with (a) and without (b) using logic rules from the PKN. Green

and red edges are activatory and inhibitory, respectively. Diamond nodes are ‘AND’ gates. (c) Input/output node states (either active or inactive) in

disease and healthy phenotypes according to literature and model predictions. States that do not behave as expected from the literature are shown

in red. Input nodes states are fixed according to information collected from literature (Supplementary Table S2).

(a)

(c)

(b)

Figure 3. Network-based dynamical model for the action of regulators upon MAPK1/3 with (a) and without (b) using logic rules from the PKN. Green

and red edges are activatory and inhibitory, respectively. Diamond nodes are ‘AND’ gates; (c) Input/output node states (either active or inactive) in

disease and healthy phenotypes according to literature and model predictions. States that do not behave as expected from the literature are shown

in red. Input nodes states fixed according to information collected from literature (Supplementary Table S2).
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stimulate the synthesis of pro-IL1B, while inflammasome

assembly leads to CASP1 activation and pro-IL1B process-

ing to form the active cytokine IL1B which is then secreted

(40). These steps are represented in the PKN by two dis-

tinct nodes: ‘IL1B’, representing the synthesis of the cyto-

kine and ‘IL1B secretion’ that describes its release. IL1B

secretion is subject to complex regulation so the proper in-

tegration of signals coming from its various regulators

using logical functions is critical. Regulators of IL1B secre-

tion are very diverse, ranging from metabolites such as glu-

cose and hydrogen peroxide (41) to complexes such as the

NLRP3/PYCARD/CASP1 inflammasome (42) and the

mitochondrial respiratory chain complex I (17) and all

must be correctly integrated according to experimental

knowledge in order to produce a model that makes correct

predictions about the secretion of IL1B in the healthy state

(Figure 4). When this interplay is removed, and regulators

are considered separately (i.e. combined with OR logic

gates), then the network is not able to correctly predict the

secretion of IL1B in the healthy state. The model built

using logical rules can be found in SBML-Qual format in

BioModels with the identifier MODEL1712240002.

(a)

(b)

Figure 4. (a) Network-based dynamical model for the action of regulators upon IL1B secretion using logic rules from the PKN. Green edges are activa-

tory edges. Red edges are inhibitory edges. Diamond nodes are ‘AND’ gates. (b) Input/output node states (either active or inactive) in disease and

healthy phenotypes according to literature and model predictions. States that do not behave as expected from the literature are shown in red. Input

nodes states are fixed according to information collected from literature (Supplementary Table S2).
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Other sources of model misbehavior: PKN
contextualization

It is worth noting here that even when available informa-

tion from the scientific literature is correctly encoded mod-

els may fail for other reasons––including gaps in the

literature (unknown mechanisms), model oversimplifica-

tion, or a failure to correctly contextualize a model for a

given biological system. With respect to the latter, PKNs

may include interactions described in different biological

contexts and experimental conditions; these interactions

could be absent or inactive in the specific biological pro-

cess under study. Therefore, creating a dynamical model

based on a PKN usually requires several rounds of opti-

mization, or contextualization, where the model is trained

against experimental data measured on the biological pro-

cess of interest. The contextualization usually consists in

pruning edges that are causing apparent dynamical model

misbehavior, until the dynamical model is able to success-

fully reproduce the experimental data or point out a mis-

match, which can be overcome with additional literature

search or even dedicated experiments (guiding the experi-

mental design). This optimization can be done manually,

but for large PKNs this can become difficult and time con-

suming. Alternatively, several tools exist that can automa-

tize this procedure (2, 14, 16, 43, 44).

To illustrate the importance of this optimization, we

use the example of AKT1 from our PKN. AKT1 has been

shown to have a protective effect by inhibiting atheroscler-

osis (45). However, the network-based dynamical model

extracted from our PKN, which includes all identified

regulators of AKT1, nevertheless fails to reproduce the ac-

tive state of AKT1 in the healthy phenotype. This is due to

the inhibitory edge from PPARGC1A to AKT1––which

represents the ability of PPARGC1A to reduce phospho-

AKT1 (Ser-473) levels in skeletal muscle cells (46)––that

prevents the activation of AKT1. Removing this edge is

sufficient to rescue proper behavior of AKT1 (Figure 5),

suggesting that this inhibitory effect should not be trans-

posed to the atherosclerotic context.

Conclusions

Although biologists today are able to generate enormous

amounts of data at relatively low cost, expert curation re-

mains critical to transform available data––including pub-

lications––into computable knowledge. The Swiss-Prot

competence center in biocuration has a long tradition in

the development, the annotation and reviewing of refer-

ence knowledgebases such as UniProtKB/Swiss-Prot (47).

In this work, we highlight the critical added value that the

application of expert curation can bring directly to re-

search projects, in particular for the construction of PKNs

intended to be used as network-based dynamical models

for the study of biological processes, such as diseases.

There are two main reasons why network-based dy-

namical models have generated interest as a means to study

complex biological systems. First, such systems usually

comprise a huge number of elements; experimentally

(a) (b)

Figure 5. (a) Network-based dynamical model for the action of regulators upon AKT1 built using logic rules from the PKN. Green edges are activatory

edges. Red edges are inhibitory edges. Diamond nodes are ‘AND’ gates. (b) Input/output node states in disease and healthy phenotypes according to

literature and model predictions. The corrected model succeeds to reproduce the healthy and disease states of AKT1 while the original one repro-

duced correctly only the disease state. Input nodes states are fixed according to information collected from literature (Supplementary Table S2).
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checking all constituent elements under all possible biolo-

gical conditions would be very costly. Second, given the

stochastic nature of biological systems, independent elem-

ents of the system have a limited utility either as disease

biomarkers or as intervention points; more robust and reli-

able predictions and responses should be obtained from

combinations of biomarkers and targets, respectively. Of

course, the search space of combinations of elements in

such a system is enormous, rendering a trial and error ap-

proach unfeasible. Simulations on network-based dynam-

ical models can help to evaluate and prioritize the best

disease biomarkers or therapeutic target candidates for fur-

ther experimental evaluation, reducing the search space

and guiding the experimental design.

We use our work on the onset and progression of car-

diovascular disease as a means to illustrate the essential

role for human intelligence–expert curation––to correctly

identify and encode complex regulatory interactions from

experimental literature. Failure to encode these relation-

ships correctly will dramatically change the behavior of the

model and the derived predictions. This logical modeling

framework is particularly suited to model complex and

poorly understood systems where continuous modeling

is impossible due to the lack of quantitative information

and/or the computational resources that quantitative

approaches require. The models we have produced

here are available for others to use as a basis to create

network-based dynamical models for atherosclerotic pla-

que formation process or specific pathways involved in

cardiovascular disease progression.

Based on our experience in this field, we strongly rec-

ommend the incorporation of (and budgeting for) expert

curation as an essential element in any computational

modeling project from the outset. We also recommend that

network-based dynamical models should be fine-tuned by

contextualization to the specific biological system under

study. Computational modeling requires a wide range of

expertise and provides a fantastic opportunity to catalyze

interdisciplinary research involving experts as diverse as

biocurators, experimental biologists and modelers.
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Supplementary data are available at Database Online.
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