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Abstract

Annotating functional terms with individual domains is essential for understanding the

functions of full-length proteins. We describe SDADB, a functional annotation database

for structural domains. SDADB provides associations between gene ontology (GO) terms

and SCOP domains calculated with an integrated framework. GO annotations are

assigned probabilities of being correct, which are estimated with a Bayesian network by

taking advantage of structural neighborhood mappings, SCOP-InterPro domain mapping

information, position-specific scoring matrices (PSSMs) and sequence homolog features,

with the most substantial contribution coming from high-coverage structure-based

domain-protein mappings. The domain-protein mappings are computed using large-

scale structure alignment. SDADB contains ontological terms with probabilistic scores

for more than 214 000 distinct SCOP domains. It also provides additional features include

3D structure alignment visualization, GO hierarchical tree view, search, browse and

download options.

Database URL: http://sda.denglab.org

Introduction

A protein domain is a conserved and functional unit of a

protein that can fold independently and has distinct func-

tions. Most proteins consist of one or several domains. A

unique domain may appear in a variety of different pro-

teins that capture specific functions. Usually, specific func-

tions of protein domains are highly independent, and

they are, in many cases, conserved across species (1).

For example, the catalytic domain of serine/threonine/

tyrosine protein kinases is highly conserved from E. coli to

human containing the catalytic function, and shares con-

served catalytic regions with both serine/threonine and ty-

rosine protein kinases (2). The N-terminal of the catalytic

domain has been shown to be involved in ATP binding,

while the central part of the catalytic domain plays impor-

tant roles in the catalytic activity of the enzyme (3, 4). A
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broad range of approaches has been developed to the prob-

lem of automatically identifying domain regions in protein

sequences based on some degree of relatedness shared be-

tween domain sequences. InterPro (5, 6) is the widely used

sequence-based domain database, which collates important

resources for protein domain classifications: Pfam (7),

CATH-Gene3D (8), SMART (9), ProDom (10),

SUPERFAMILY (11) and PROSITE (12). The Conserved

Domain Database (CDD) (13) maintains domain annota-

tions for sequences. It produces representative sequence

fragments, which are in agreement with domain bound-

aries as observed in protein 3D structure. A more reliable

way to assign structures to the domain families is using the

structural information. As the widely used hierarchical

classification scheme of proteins, SCOP (14) groups pro-

tein domains into Class, fold, superfamily and family

according to structural and evolutionary relationships

(15). The current version of SCOPe version 2.06 (16, 17)

contains over 240 000 structural domains.

Assigning ontological terms to specific domains are im-

portant for fully understanding functions of proteins. Gene

ontology (GO) has been a de facto standard for describing

gene and protein function (18, 19). It arranges in a directed

acyclic graph and discriminates between molecular func-

tion and biological process, as well as subcellular localiza-

tion. The GO terms in top levels describe general functions

such as catalytic activity and binding. While deeper GO

terms in the hierarchy represent more specific functions.

For sequence-based domains, a few have been manually

annotated with GO terms, and several computational pre-

diction methods have been developed. The InterPro2GO

mapping (20) is curated manually by the InterPro team,

who compare InterPro and protein entries, check the statis-

tic and conservation information, and assign most appro-

priate and specific GO terms to the InterPro domain. The

Pfam2GO mapping is subsequently created by mapping

InterPro domains to Pfam domains. Forslund and

Sonnhammer (21) developed a probabilistic model to pre-

dict the relationship between multiple Pfam domain and

annotation GO terms. Rentzsch and Orengo (22) use do-

main functional families (FunFams) to predict the func-

tions of whole proteins. They group domain sequences into

FunFams based on the GO annotations and associate the

FunFams with GO terms probabilistically.

Although sequence-based domain annotation and

domain-centric protein function prediction have been ex-

tensively studied, predicting functions for protein struc-

tural domains is, even more, difficult given the lack of

comprehensive structural domain information for proteins.

Only a few previous efforts have been performed to com-

putationally predict structural domain functions (11, 23,

24). The SUPERFAMILY database (11) contains SCOP

domain architecture and classification assignments to

sequences at the superfamily level by using hidden Markov

models. Based on the sequence homology to SCOP struc-

tural domain mapping in SUPERFAMILY, the dcGO data-

base (24) provides GO annotations for SCOP domains in a

probabilistic framework at the superfamily and family lev-

els. Daniel and Florencio (23) proposed a scop2go ap-

proach, which annotates SCOP domains with molecular

function GO terms based on the fold distribution of PDB

structures associated with given GO terms. Although these

resources are valuable, they only have coarse-grained level

function annotation and are largely incomplete in that

many domains are still not annotated.

Recently, we proposed a functional annotation ap-

proach for structural domains (SDA) that is largely based

on 3D structure-based domain-protein mappings (25). We

used a Bayesian network to integrate heterogeneous infor-

mation: (i) protein-to-domain mappings calculated using

all-against-all structural alignment of SCOP domains and

protein structures from the PDB database; (ii) SCOP-to-

InterPro domain mappings calculated using the

InterProScan software; (iii) SVM models generated based

on the position-specific scoring matrix (PSSM) profiles;

(iv) sequence homologs mapped to SCOP domains using a

Bayesian network. We showed the advantages of integrat-

ing large-scale structure-based mappings and other hetero-

geneous information sources for structural domain

function prediction.

Here, we present the SDA database, which provides do-

main GO annotations predicted from our integrated

method, and also includes links to other databases. The

server allows users to query functional annotations for in-

put proteins or domains. The results can be visualized in

an interactive 3D viewer and a tree viewer. SDADB is

available at http://sda.denglab.org.

Methods and data sources

Structural domains are downloaded from SCOPe version

2.06 (16, 17). GO annotations for the SCOP domains are

generated by our structure-based integrative function pre-

diction approach that combines structural mappings with

other sequence and evolutionary clues (25). A detailed il-

lustration of the data sources and framework is shown in

Figure 1. Briefly, for a query SCOP domain, GO annota-

tions are predicted with four component methods (struc-

ture-based, InterPro-based, PSSM-based and sequence

homology-based methods). A probability for each annota-

tion is calculated using a Bayesian network trained on a

dataset of SCOP domains (ending in dash) generated from

single-domain proteins.
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GO annotations predicted using protein-domain

structural mappings

We use a structure alignment algorithm (26, 27) to search

structural neighbors for SCOP domains against the PDB

database, and obtain a significant number of

protein-domain (P2D) mappings. The structural similarity

between proteins and domains is measured by protein

structure distance (PSD) (26). The PSD score integrates the

RMSD (root mean square deviation) and the secondary

structural alignment score to measure the similarity of two

Figure 1. Flowchart of SDADB construction. For each domain in the SCOPe database, GO annotations are predicted with the four component meth-

ods: (i) GO annotations predicted using P2D mappings: protein-SCOP domain mappings are calculated by large-scale structure alignment, then the

probability that a domain annotated by a specific function is computed; (ii) GO annotations predicted using Scop-InterPro mappings: we use

InterProScan to search InterPro domains for the SCOP domain, and transfer the annotations of these InterPro domains in the InterPro2GO database

to the target SCOP domain; (iii) GO annotations predicted using PSSM profiles: SVM models for GO function annotation are trained with fixed length

of PSSM vectors, which are calculated using ACC transformation; (iv) GO annotations predicted using sequence homologs: we transfer the GO anno-

tations of the sequence homologs in UniProt-GOA to the target SCOP domain. Finally, the SDADB database is built by integrating the outputs of the

four component methods with a Bayesian network.
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structures and is applicable both when two structures are

very similar, and when they are very different. Lower PSD

score corresponds to a good fit or better alignment be-

tween the structures. A protein is defined as the structural

neighbor of a SCOP domain when the PSD score is lower

than 0.1. We assign GO annotations to SCOP domains

based on the assumption that the most populated SCOP

domain in the mappings corresponds to the structural

neighbor proteins which are responsible for the function

(25). The GO annotations of proteins are extracted

from the PDB-GOA database (28). The probabilities

of transferring protein function annotations to

SCOP domains are computed as shown in the following

equation:

P1ðgjdÞ ¼
Pðd; gÞ
PðdÞ ;

where d is a SCOP domain, g denotes a GO term, P(d, g)

is the number of PDB proteins containing domain d

and having function g, P(d) is the number of PDB

proteins containing domain d calculated on the P2D map-

ping data.

GO annotations predicted using Scop-InterPro

domain mappings

We use the InterProScan tool (6) to search the InterPro

domains (5) against the SCOP sequences. GO terms of

InterPro domains in the InterPro2GO database (28) are

transferred to the corresponding SCOP domains. The

probability of a GO term (g) assigned to the SCOP domain

is calculated based on the number of InterPro domains that

have the function:

P2ðgÞ ¼
1

n

Xn

i¼1

IðgÞ;

where n is the number of InterPro domains owned by the

SCOP domain. If an InterPro domain has the function g,

I(g) is 1; otherwise 0.

GO annotations predicted using PSSM profiles

PSSM (29–32) is a highly informative representation of

protein sequences and is widely utilized in many applica-

tions. We use PSI-BLAST (33) to calculate PSSM profiles

based on the NCBI NR database (34). The auto-cross co-

variance (ACC) transformation (35) is used to transform

the PSSM profiles into fixed-length vectors. For a domain

sequence, auto covariance (AC) describes the average inter-

actions between residues, a certain distance (l) apart

throughout the whole sequence. For a descriptor (one of

the 20 basic residue types), the AC variable is calculated

as:

AC ¼ 1

DL� l

XDL�l

i¼1

ðXi � �XÞðXiþl � �XÞ;

where l denotes the distance between one residue and its

neighbor, DL is the length of domain sequence, Xi is the

PSSM score of the descriptor at position i, �X is the average

score for the descriptor along the whole sequence. We use

the AC variables to transform the numerical PSSM vectors

of SCOP domain sequences into uniform matrices with the

distance l¼10. Based on the PSSM vectors, we build SVM

classifiers for each GO term. The probability score of

a GO term (g) assigned to a SCOP domain is estimated

based on the output of the SVM classifier by a sigmoid

function:

P3ðgÞ �
1

1þ eAf ðgÞþB
;

where f(g) is the SVM output score, A and B are estimated

using the method of Lin et al. (36).

GO annotations predicted using sequence

homologs

We also used PSI-BLAST to search sequence homologs for

SCOP domains against the UniProt database. We only se-

lect the sequence homologs with alignment coverage

>60%. The GO annotations of sequence homologs are

obtained from the UniProt-GOA database (37). We use the

sequence homolog’s E-value (E) to estimate the weight of

its GO term assigned to the query SCOP domain. The

probability for a GO term (g) assigned to the query domain

is the sum of weights of sequence homologs that have the

GO annotation in UniProt-GOA:

P4 gð Þ ¼
Xn

i¼1

�log Eið Þ þ b
Pn

j¼1

�log Ej

� �
þ b � I gð Þ

�

where n is the number of sequence homologs, b is a con-

stant of log(10). If the sequence homolog has the function

g, I(g) is 1; otherwise 0.

Integration of the four component methods

We combine the output scores of the four component

approaches using a Bayesian network (38). The Bayesian

network represents the joint probability distribution of

multiple variables and is especially suitable for integrating
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Figure 2. A snapshot of the SDADB web interface. (A) The GO annotations of a query domain are listed. (B) The GO tree view shows the hierarchical

architecture of GO for the query domain.
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heterogeneous data sources. We split the probability scores

of the four component methods into individual bins. The

likelihood ratio (LR) (39) for any bin is calculated as the

ratio of the odds of a GO annotation to be true or false af-

ter and before knowing it is in this bin. The LR represents

the increase of the chance that a GO prediction method

with a particular set of scores corresponds to a positive

GO annotation, compared with a random GO assignment.

The final probability score is calculated by integrating the

LR of the four component methods:

LR ¼
YN

i

LR fið Þ;

where f is the component method.

The final predicted GOA-SCOP (GO annotation for

SCOP domains) data are stored in an MYSQL database.

The website is developed using Perl, JavaScript, jQuery

(AJAX), CSS and HTML5, and is deployed on an Apache

web server. The BioJava (40) and JSmol (41) provide visu-

als of the P2D alignment. D3 (D3.js) (42) is used for visual-

izing GO hierarchical tree.

Web server interface

The SDADB database can be queried through the protein/

domain accession number (e.g. 1te0/d1te0a2) or protein/

domain name (e.g. Stress sensor protease DegS). The server

will return a list of GO annotations with corresponding

confidence scores (Figure 2A). The detailed annotation in-

formation, including GO accession ID, GO type, GO name

and associated score, are shown in the table. The associ-

ated score denotes the probability of the SCOP domain

certain having the GO function. The higher the score is,

the more likely the SCOP domain has the function. The

default cut-off of the associated score is 0.5. The GO

annotations with scores over the cut-off are colored in red.

The users can change the threshold according to their

own needs. Also, users can search GO annotations in the

results and download the detailed results in Excel or CSV

file.

Users can view the annotations by clicking the ‘view

GO tree’ button, which shows the hierarchical architecture

of GO (Figure 2B). Users can expand or collapse the term

nodes. The red nodes in the tree are annotated GO terms

of the target SCOP domain. Users can view the GO name

by putting the mouse over the node. Another unique fea-

ture is the visualization of structure alignment for the

domain-protein mappings, which constitutes a major con-

tribution to the function prediction. Users can choose to

view the alignment between the target domain and its

structural neighbors in 3D view (Figure 3).

Results

To evaluate the accuracy of domain functional annota-

tions, we use the dataset obtained from GOA-PDB version

201010 in training and the independent test set from

GOA-PDB version 201311 excluding those in GOA-PDB

version 201010 for testing. Proteins of the test set that

have >90% sequence identity to the proteins in the train-

ing set are removed. We use the precision–recall curve and

maximum F-measure (Fmax) to measure the overall perfor-

mance. The precision–recall curve shows the trade-off be-

tween precision and recall for different thresholds. A high

area under the precision–recall curve denotes high overall

performance. F-measure considers both the precision and

the recall of the GO prediction results of SCOP domains. It

is calculated as the harmonic average of the precision and

recall. Maximum F-measure (Fmax) is the maximum value

of the F-measure over a varying threshold. The coverage is

computed by dividing the number of domains with pre-

dicted GO annotations by the total number of domains in

SCOPe 2.06. For detailed descriptions of the datasets and

performance measures, see Reference (25).

We compare our SDADB database with the four com-

ponent methods, including structure alignment-based

method (Str), Interpro domain-based method (IPR), PSSM

profile-based method (PSSM) and sequence homolog-

based approach (Seq). The results are summarized in

Table 1. We observe that the combined SDADB signifi-

cantly outperforms the four component methods, with a

maximum F-score of 0.833 for MF (molecular function), a

maximum F-score of 0.723 for BP (biological process) and

a maximum F-score of 0.809 for CC (cellular component).

For the coverage, SDADB has GO annotations for most

SCOP domains (92.3%). We also compare SDADB with

other state-of-the-art approaches on the independent test

Figure 3. The structure alignment view for the domain-protein

mappings.

Page 6 of 8 Database, Vol. 2018, Article ID bay064

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay064/5046758 by guest on 19 M

ay 2024

Deleted Text: ,
Deleted Text: protein-domain
Deleted Text: WEB SERVER INTERFACE
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: Gene Ontology
Deleted Text: &hx2009;
Deleted Text: RESULTS
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: please 
Deleted Text: alignment 
Deleted Text: domain 
Deleted Text: homolog 


dataset. As shown in Figure 4, it is clear that SDADB sig-

nificantly outperforms SDA and other methods for both

MF and BP.

Conclusion

The SDADB database provides large-scale detailed GO

annotations at the structural domain level. In contrast to

the approaches based on sequence and homology infor-

mation, an advantage of SDADB is that the method inte-

grates structural neighborhood features together with a

variety of heterogeneous information, including SCOP-

InterPro domain mapping information, PSSMs and se-

quence homolog features. The SDADB database now con-

tains 3 482 316 GO annotations for 211 282 SCOP

domains with a probability >0.1. Of these, 1 479 652

annotations for 204 948 domains have a probability

>0.5. Also, SDADB provides P2D mappings for over 191

060 PDB structures. The vast amount of P2D and

domain-function mapping data in the SDADB database

can help to investigate the functions of full-length pro-

teins since domains are functional units of proteins. The

database will also give valuable insights into protein do-

main evolution, which are not only likely to be fascinat-

ing but will also ultimately improve the power and

accuracy of protein function prediction approaches.

It is worth pointing out that some common and multifunc-

tional domains may be not well annotated since the presence

of a common domain in several proteins does not necessarily

imply that these proteins have the same function. Future

developments will focus on combining more informative

clues and analyzing tools. We also expect the interested user

will be able to use the resources provided in the SDADB data-

base as a basis for new efforts on expanding the functional

space for both domains and full-length proteins.

Availability

The SDADB database is freely available at http://sda.den

glab.org/.
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