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Abstract

In this paper, we explore the application of artificial neural network (‘deep learning’) meth-

ods to the problem of detecting chemical-protein interactions in PubMed abstracts. We

present here a system using multiple Long Short Term Memory layers to analyse candi-

date interactions, to determine whether there is a relation and which type. A particular fea-

ture of our system is the use of unlabelled data, both to pre-train word embeddings and

also pre-train LSTM layers in the neural network. On the BioCreative VI CHEMPROT test

corpus, our system achieves an F score of 61.51% (56.10% precision, 67.84% recall).

Introduction

The BioCreative VI CHEMPROT task (1) concerns the de-

tection of mentions of interactions between chemical com-

pounds/drugs and genes/proteins. Prior to BioCreative VI

there has been a limited amount of work on chemical-

protein interactions, which has been reviewed in depth by

Krallinger et al. 2017 (2). An early proposal was published

by Craven and Kumelien in 1999 (3), and an early working

system was published by Rindflesch et al. in 2000 (4).

Recent examples (5–8) have used a variety of techniques,

ranging from co-occurrence based approaches to parser-

based systems and applied them to the generation of

databases.

The neural network techniques known as ‘deep

learning’ (9) have recently attracted a lot of interest in nat-

ural language processing. For example, in the recent

BioCreative V.5 evaluation of chemical named entity rec-

ognition (NER) systems (10), the three highest-scoring sys-

tems all used deep learning approaches––in particular the

recurrent neural network (RNN) technique known as Long

Short Term Memory (LSTM; 11). RNNs have been ap-

plied to relationship extraction tasks––for example, Vu

et al. (12) have applied connectionist RNNs to the

SemEval-2010 relation classification task, Xiao and Lu

(13) have applied LSTMs to the same task and Kavuluru

et al. (14) have applied LSTMs to the task of detecting

drug-drug interactions.

The CHEMPROT corpus consists of PubMed abstracts

manually annotated with chemical compound mentions,

gene/protein mentions and chemical compound-protein

relations. Each relation annotation has one chemical

compound mention, one gene/protein mention and a
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relationship type. There are 22 relationship types, collected

into 10 groups, of which five groups are used in the

CHEMPROT task (relations from the other five groups are

discarded). The five relation groups are upregulator/activa-

tor (CPR: 3), downregulator/inhibitor (CPR: 4), agonist

(CPR: 5), antagonist (CPR: 6) and substrate/product (CPR:

9). The annotated abstracts are provided in three groups––

1020 training abstracts, 612 development abstracts and

800 test abstracts. During the BioCreative VI challenge,

the test abstracts were mixed in with a further 2599

abstracts annotated for entities but not relationships, to en-

sure that participating systems did scale and to avoid man-

ual corrections of the results.

We decided to examine the use of deep learning meth-

ods, in particular LSTM layers. One advantage of these

deep learning methods is that they provide methods for

exploiting unlabelled data, by means of transfer learning––

training a neural network on some task with just the use of

an unlabelled corpus and re-using trained components

from that network in the task of interest.

An early example of transfer learning in neural net-

works for natural language processing was Collobert

et al.’s SENNA system (15), which performed part-of-

speech (POS) tagging, chunking, NER and semantic role

labelling (SRL). To boost performance, the system was

trained on a language modelling task on a large (�852 mil-

lion words) unlabelled data set. A language model is

defined as a probability distribution over sequences of

words. Rather than directly attempting to estimate such a

probability distribution, Collobert et al. proposed a pair-

wise ranking approach, seeking a function that returns a

higher score when presented with a legal phrase -i.e. one

drawn from the corpus––rather than with an incorrect

one–i.e. one not drawn from the corpus, but prepared by

replacing one word with a different word. These artificial

incorrect phrases have come to be known as ‘negative

samples’, although that term was not used in the early liter-

ature on the technique.

The lowest layer of the Collobert et al. network is an

‘embedding’ layer, where each word is represented as a

lookup table feature vector, randomly initialized and

trained by backpropagation. The feature vector for each

word is known as its embedding. Training the system on

the language modelling task trained the embeddings. It was

found that once trained by this method, the embedding for

a given word was likely to be similar to the embeddings for

similar words––for example, the nearest neighbours (by

Euclidean distance) to ‘France’ were ‘Austria’ and

‘Belgium’. The trained embedding layer that had been gen-

erated by that procedure was then re-used in networks to

perform other tasks, e.g. POS tagging and it was found

that performance was boosted over and above using an

embedding layer than had not been pre-trained in such

a way.

Collobert et al. obtained further improvements by

multi-task learning––jointly training the system on the

POS, chunking, NER and SRL tasks was found to improve

performance on three of the four tasks over just training

the network for the task in question. Further knowledge

had been transferred from task to task.

Techniques for producing embeddings were further de-

veloped by Mikolov et al. (16), producing the word2vec

embeddings, and Pennington et al. (17), producing the

GloVe embeddings. One feature of these methods is the

use of a ‘skip-gram’ task, predicting a word’s context given

the word itself. In GloVe, backpropagation is not used––

instead an efficient procedure was designed specifically for

the task. Pennington et al. also made sets of embeddings

trained using GloVe available online. Some were trained

on a combination of Wikipedia and the Gigaword corpus.

Wikipedia contains a broad selection of content, including

much of relevance to protein-chemical interactions.

However, it is possible that embeddings trained on a more

specialized corpus could offer better results; in this paper,

we decided to investigate this.

These embedding methods enable transfer learning for

the first layers of networks, but the features in subsequent

layers may also be transferrable. Yosinski et al. (18) inves-

tigated transferability in image processing tasks, showing

that transferring multiple layers of a network can further

increase performance over and above the increase from

transferring the first layer. In SENNA, Collobert et al.

were able to show a benefit from jointly training a system

to perform POS, chunking, NER and SRL tasks over indi-

vidually training systems to perform each task. Given these

results, we decided to investigate transfer learning beyond

word embeddings, using a language modelling task to pre-

train LSTM layers for use in a network to recognize

chemical-protein interactions.

Materials and methods

Resources

We used various external components in our system. The

software components include the deep learning toolkit ker-

as–using tensorflow as the back end, python 3.6.1 and the

tokenizer chemtok, as implemented in the chemical NER

system ChemListem (19) (Chollet, F. (2015) “Keras”

https://github.com/fchollet/keras.).

To prepare specialized pre-trained word embeddings,

we used the Stanford GloVe software (17; as checked out

from version control 3 July 2017). GloVe offers both some

publicly available pre-trained embeddings, and also the
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software to compile your own––in previous work (19) we

had success with the public embeddings, whereas here we

compiled our own. To create these embeddings we pre-

pared three corpora––the full texts of patents, consisting of

patents with CPC codes A61K31 or A61P, from 2006 to

November 2016, the full text of chemistry journal papers,

consisting of papers published by the Royal Society of

Chemistry from 2000 to end of 2016, and the titles and

abstracts from PubMed records from 1809 to the end of

2015. As a comparison, we also tried using the public

emdeddings, described on the GloVe web site as

‘Wikipedia 2014þGigaword 5 (6B tokens, 400 K vocab,

uncased, 50d, 100d, 200d and 300d vectors, 822 MB

download)’––here, we used the 300 dimensional vectors.

To make the initial embeddings, we extracted the text

from the documents in the three corpora, tokenized it, out-

putting whitespace-separated tokens as one large text file.

The contents of one document were separated from the

next using lines consisting of a specialized repeated token.

This file contained 6.7 billion tokens, about the same size

as the corpus for the public embeddings.

We used the GloVe software to extract 300-dimensional

vectors from the file, using the window size¼ 15, xmax¼ 100.

These specialized embeddings go some way towards

ameliorating the out-of-vocab issue common in domains

such as biomedical text, but not completely. In the training

corpus, we were able to detect 21 378 distinct tokens that

occurred twice or more (our system treated tokens that

occurred only once in the training corpus as out-of-vocab),

of which 11 872 occurred in the specialized embeddings

and 6933 occurred in the public embeddings. Embeddings

for tokens in the training corpus but not in the GloVe

embeddings were initialized with zeroes.

We also prepared a file for transfer learning, taking the

titles and abstracts from PubMed as mentioned above.

The file consisted of one paragraph (usually a title or ab-

stract) per line, in a random order. The file had approxi-

mately 24 million lines.

Neural network

The neural network system consisted of two neural

networks––the ‘pre-training’ network and the ‘recognition’

network–with some components shared by both networks,

and other components being used by only one network or

the other. The ‘pre-training’ network performed a lan-

guage modelling task, and was trained using unlabelled

data, with the aim of using the trained weights in the

shared layers as a starting point for the ‘recognition’ net-

work, thus aiming to achieve transfer learning.

The training procedure consisted of a series of epochs,

the first five of which were divided into two phases––one

(phase 1) to train the ‘pre-training’ network, one (phase 2)

to train the ‘recognition’ network. All subsequent epochs af-

ter the fifth omitted phase 1 and ran phase 2 only. At the

end of each epoch, the system was evaluated using the devel-

opment abstracts and an answer file was produced using the

test abstracts. The epoch that gave the best F score in the

evaluation phase––in the run submitted to the BioCreative

challenge, the 33rd epoch––was selected and the answer file

from that was submitted for official evaluation.

Each epoch of phase 1 was divided into 25 sub-epochs.

In each sub-epoch, 12 000 lines of the PubMed file were

read in, tokenized, and sorted into batches of 32 lines each,

grouping the smallest 32 lines (by number of tokens) into

one batch, the next smallest 32 into another batch, etc.

Within each batch, lines that are shorter (in terms of num-

ber of tokens) than the maximum length were padded with

special padding tokens. The system was trained on the

batches in a random order.

For each line, a token sequence was generated, consist-

ing of an integer representing the index of each token in a

token dictionary, with a special value for unknown tokens.

From this a ‘substituted’ sequence––where each token has

a 0.5 chance of being replaced by a token randomly sam-

pled from the lines read in that sub-epoch––was generated.

These randomly sampled tokens act as ‘negative samples’,

and the network as a whole attempts to tell whether a to-

ken in the substituted sequence is a negative sample or not.

The inputs to the ‘pre-training’ network consisted of the

token sequence (input i1), the ‘substituted’ sequence

shifted one token to the right (input i2; starting with

padding) and the substituted sequence shifted one token to

the left (ending with padding; input i3). There were two

outputs (d2 and d4), one for each of the substituted shifted

sequences, consisting of a sequence of numbers––1 if the

token in the substituted sequence is from the original se-

quence, 0 if it was randomly selected (i.e. a negative

sample).

The network consisted of various layers, as shown in

Table 1 and Figure 1. In all cases the number of output

neurons is per token. The three embedding layers all shared

the same embedding tensor. All LSTM layers were trained

with a dropout and recurrent_dropout parameter of 0.5,

and with return_sequences set to True.

In this network, e1 represents the source sequence,

l1 represents the context to the left of a possible negative

sample (in e2) and l2 represents the context to the right.

Layers d1 and d2 compare the possible negative sample to

the leftward context, attempting to tell if the sample is

plausible in context or not––likewise d3 and d4 do the

same for the rightward context.

The ‘pre-training’ network was trained using RMSProp

optimizer, with the binary cross-entropy loss function.
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In the second phase, chemical-protein relations were

detected and classified. Each epoch consisted of a single

pass through the training corpus to train the network, a

single pass through the development corpus to evaluate the

current state of the system and a single pass through the

test corpus to generate an answer file for submission.

In each pass, for each abstract, all possible chemical-

protein pairs were found. Those pairs where the first token

of the first entity was 60 or fewer tokens from the last to-

ken of the last entity were selected. A subsequence of

tokens from the abstract was then taken, starting from

5 tokens before the first entity to 5 tokens after the last en-

tity. The tokens for the chemical entity were replaced with

‘$CHEMICAL’ and those for the protein entity were

replaced with ‘$PROTEIN’––those appearing in both enti-

ties were replaces with ‘$BOTH’. The token sequence was

then converted to an integer sequence, in the same manner

as the pre-training sequences were processed. Additional

input sequences for each pair were also generated, consist-

ing of an array of binary features for each token in the sub-

sequence. One input sequence (input i4) consists of

information about the entities in the abstract, regardless of

whether they participated in the relation in question––

these were features to say whether the token is in, at the

start of, at the end of, overlapping the start of or overlap-

ping the end of any chemical or protein entity. Another in-

put sequence (input i5) consists of binary features to say

whether the token is a part of the protein entity in

Table 1. Layers in pre-training network

Layer Type Input(s) Number of output neurons Notes

e1 Embedding i1 300

e2 Embedding i2 300

e3 Embedding i3 300

l1 LSTM e1 300

l2 LSTM e1 300 Reversed

c1 concatenate l1, e2 600

c2 concatenate l2, e3 600

d1 TimeDistributed Dense c1 300 Activation is relu

d2 TimeDistributed Dense d1 1 Activation is sigmoid.

d3 TimeDistributed Dense c2 300 Activation is relu

d4 TimeDistributed Dense d3 1 Activation is sigmoid.

Figure 1. Pre-training network.

Page 4 of 10 Database, Vol. 2018, Article ID bay066

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay066/5053190 by guest on 21 M

ay 2024

Deleted Text: ,
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: '' 
Deleted Text:  
Deleted Text: ``
Deleted Text: ''
Deleted Text: pretraining
Deleted Text:  &ndash; 


question, and whether the token is a part of the chemical

entity in question.

The output for the network (d5) was an array of 6 bi-

nary features, encoding whether and which relation exists

between the two entities. The argmax of these six outputs

was selected as the final output.

The network consisted of various layers, as shown in

Table 2 and Figure 2. The number of output layers is per

token, except for layers p1 and d5, where it is the total

number overall. The layers e1, l1 and l2 are shared with

the pre-training network. Again, all LSTM layers were

trained with a dropout and recurrent_dropout parameter

of 0.5, and with return_sequences set to True.

The network was trained using RMSProp, with the

mean squared error loss function. During training, the can-

didate relationships were grouped into batches by length, if

necessary padding the sequences to make the length of all

the sequences in a batch uniform. The batches were then

used for training in a random order.

None of the layers trained during the pre-training pro-

cedure were locked during training to the recognition net-

work; this training was allowed to fine-tune the whole

system.

On our hardware [Intel(R) Xeon(R) CPU E5-2698 v4 @

2.20 GHz, no GPU] the time to train one epoch of Phase I

pre-training was approximately 4 h, whereas an epoch

Phase II training typically took 17 min.

Additional experiments

Five batches of additional experiments were run to attempt

to gain further understanding of the system.

Table 2. Layers in recognition network

Layer Type Input(s) Number of output neurons Notes

e1 Embedding i1 300

l1 LSTM e1 300

l2 LSTM e1 300 Reversed

v1 Conv1D i4 48 Width¼3, activation is relu

v2 Conv1D i5 6 Width¼3, activation is relu

c3 concatenate l1, l2, v1, v2 652

l3 Bidirectional LSTM c3 128 per direction, total 256

p1 GlobalMaxPooling1D l3 256

d5 Dense p1 6 Activation is softmax

Figure 2. Recognition network.
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1. Different levels of pre-training (Table 6). The first experi-

ment of three runs worked by successively disabling parts

of the system, or replacing them with simpler alterna-

tives. One run (‘No Phase 1’) omitted the phase 1 from

training. The second (‘Public Embeddings’) also omitted

phase 1, and also used the publicly available pre-trained

GloVe embeddings instead of the specialized ones we

had compiled ourselves. The third (‘Random’) also omit-

ted phase 1, but using randomly-initialized embeddings

instead of pre-trained ones. On the No Phase 1 run, the

best epoch was the 15th epoch, on the Public

Embeddings run the best epoch was the 26th epoch and

on the Random run, the best epoch was the 17th epoch.

2. Network topologies (Table 7). A second experiment ex-

amined the importance or otherwise of using a bidirec-

tional LSTM as layer l3 followed by GlobalMaxPooling

layer p1. One (‘Unidirectional, 128 outputs, final state’)

used a unidirectional LSTM with 128 outputs (the same

as the number of outputs per direction in the original l3)

in place of l3, with the output from the final time step

going directly to d5, with p1 being removed. Another

(‘Unidirectional, 256 outputs, final state’) used 256 out-

puts––the same number of outputs as the total number

of outputs in the original l3. A third (‘Unidirectional,

128 outputs, via GlobalMaxPooling’) fed the output

from the unidirectional LSTM at each token to p1. A

fourth (‘Conv1D’) replaced l3 with a 1D convolutional

layer, with 128 outputs per token, a width of 3 and a

relu activation layer. All of these were run without Phase

I pre-training. A fifth (‘Conv1D with Phase I’) was as the

forth but with Phase I pre-traning.

3. Level of pre-training data (Table 8). A third experiment

used differing amounts of pre-training data. Whereas full

pre-training used 25 sub-epochs per epoch––i.e. 1.5 mil-

lion lines in total, the runs here used 5, 10, 15 and 20 sub-

epochs per epoch (i.e. 0.3, 0.6, 0.9 and 1.2 million lines).

4. Precision/Recall rebalancing (Table 9). A fourth experi-

ment repeated runs from the previous experiments. We

were not using a fixed seed for the random number gen-

erator, so these experiments explore the impact of using

different random initializations. Also, the experiments

explored methods of varying the balance between preci-

sion and recall. The previous approach was to select the

argmax of all six outputs, treating the five classes of pos-

itive outputs and the negative ‘NONE’ output the same.

In this approach, a candidate positive output is selected

as the argmax of the five positive outputs––we call this x

and the value of this output ox. The negative output we

call o0. We then calculate one of three values: either

a¼ ox, b¼ ox–o0, or c¼ ox/o0. If the value is above a

threshold, the candidate positive is accepted as a positive

result, otherwise it is rejected. For each epoch, the

threshold value and choice of a, b or c is determined by

finding the combination of threshold value and formula

that maximizes the F score on the development data.

5. Development vs test set (Table 10). The final experi-

ment used 15 sub-epochs of pre-training per epoch, and

was evaluated on the test as well as the development

corpus, with and without thresholding, in order to test

whether improvements made in previous experiments

carried over to the test set.

Results of these experiments are discussed in the next

section.

Results and discussion

Table 3 shows the results from the task:

The F of <63% indicates that there is considerable

room for improvement on this task. This is the first time

that BioCreative has tackled a chemical-protein interaction

task––however, in the past it has considered chemical-

disease relations (getting a maximum F score of 57.03%;

20) and protein–protein interactions (getting a maximum F

of 55%; 21). These relationship-mining tasks appear to be

harder than named entity extraction tasks, where F scores

in excess of 80% are routine and F scores above 90% are

not unknown (22). There appears to have been a slight loss

of performance between the development and test––it is

possible that this is because the gains from selecting the

best epoch did not generalize well.

The system with the highest F score, by Peng et al. (23)

reported an F of 64.10% (2.69 percentage points ahead of

ours), using an ensemble of three systems, including an

LSTM-based system. Our team was the second-placed

team on F score (1), achieved the highest recall and seventh

(out of 13) for precision.

Table 4 shows a confusion matrix for the development

data, and Table 5 shows a breakdown of the results on the

development data by relationship class.

The major source of error seems to be non-relations be-

ing mistaken for relations and vice versa. There is some-

thing of a problem with upregulation (CPR: 4) being

mistaken for downregulation (CPR: 3) but the bigger prob-

lem for these classes is confusion with NONE.

There is considerable variation in how well these enti-

ties are recognized––CPR: 4 (downregulator/inhibitor) and

CPR: 6 (antagonist) are well-recognized, CPR: 3

Table 3. Results

Corpus Precision (%) Recall (%) F (%)

Development 56.52 70.42 62.71

Test 56.10 67.84 61.41
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(upregulator) and CPR: 9 (substrate/product) are poorly

recognized. The F scores do not appear to be correlated

with the number of mentions in the corpus. Two other par-

ticipants in BioCreative VI also studied the variation in

how well the entities were recognized. Tripodi et al. (24)

found a different pattern in results to ours, whereas Liu

et al. (25) found a similar pattern (our highest-scoring en-

tity type was their highest scoring entity type, and so on

for the second and third highest scoring entity types). The

results of Tripodi et al. may not be directly comparable to

ours in this case, as they came from evaluation on 20% of

the training data, whereas Liu et al. and ourselves used the

development data.

Table 6 shows the results of re-running the system, pro-

gressively disabling parts of the system that make use of

unlabelled data. The Phase 1 training of the lower LSTMs

is shown to improve performance by 2.7 percentage points.

Using specialized embeddings improves performance by

0.7 percentage points over the off-the-shelf embeddings,

and the off-the-shelf embeddings give 11.5 percentage

points over random initialization.

Table 7 shows the effects of replacing the second bidi-

rectional LSTM layer (l3) with various alternatives, along

with the ‘Full’ and ‘No Phase I’ results for reference. The

GlobalMaxPooling layer appears to be important; collect-

ing the output at the end of a unidirectional LSTM gives

worse results. However, without Phase I pre-training, the

Bidirectional LSTM layer is not necessarily the best––we

obtained better results with a unidirectional LSTM layer,

and with a 1 D Convolutional layer. However the system

with the 1 D Convolutional layer did not appear to benefit

from Phase I pre-training, instead performing worse; recall

was improved, but at the expense of precision.

These experiments are not a comprehensive exploration

of all possible variations on the network architecture. The

results indicate that there is potentially some scope for im-

provement with further experimentation.

Table 8 shows the results of adjusting the amount of

data used in Phase I pre-training. As more data is added it

increases recall at the expense of precision, at first improv-

ing and then worsening the F score. It is not clear why the

Table 4. Confusion matrix for development data

Actual Predicted

NONE CPR: 3 CPR: 4 CPR: 5 CPR: 6 CPR: 9

NONE 26196 214 413 75 76 351

CPR: 3 163 287 82 4 4 9

CPR: 4 159 24 896 0 5 6

CPR: 5 23 0 0 89 4 0

CPR: 6 28 1 7 3 160 0

CPR: 9 166 4 16 0 2 258

Table 5. Development data results by relationship class

Class Precision (%) Recall (%) F (%)

CPR: 3 54.16 52.28 53.20

CPR: 4 63.37 82.20 71.57

CPR: 5 52.04 76.72 62.02

CPR: 6 63.75 80.40 71.11

CPR: 9 41.35 57.85 48.22

Table 6. Results on development

Run Precision (%) Recall (%) F (%)

Full 56.52 70.42 62.71

No Phase 1 62.97 57.25 59.97

PublicEmbeddings 61.69 56.96 59.23

Random 45.05 50.66 47.70

Table 7. Results on development

Run Precision (%) Recall (%) F (%) Best Epoch

Full 56.52 70.42 62.71 33

No Phase I 62.97 57.25 59.97 15

Unidirectional, 128 outputs, final state 56.49 58.96 57.69 10

Unidirectional, 256 outputs, final state 50.71 62.33 55.93 24

Unidirectional, 128 outputs, via Global MaxPooling 61.70 60.88 61.28 6

Conv1D 67.05 60.04 63.35 28

Conv1D with Phase I 56.39 64.13 60.01 48

Numbers in boldface represent best results.

Table 8. Results on development

Sub-Epochs Precision (%) Recall (%) F (%) Best Epoch

0 62.97 57.25 59.97 15

5 61.37 64.67 62.97 19

10 61.69 64.88 63.24 12

15 59.38 68.29 63.53 36

20 57.06 69.92 62.83 38

25 56.52 70.42 62.71 33

Numbers in boldface represent best results.
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transfer learning improves recall specifically, however this

effect may account for our system achieving the highest re-

call in the challenge.

We were surprised by this pattern of improvement then

worsening. With supervised learning, outside of the con-

text of transfer learning, using more training data than is

necessary may use more computer time than necessary, but

if all of the data is sampled evenly from the same source, it

is commonly believed that it is unlikely to substantially

negatively affect the quality of the results even if it does

not have a beneficial effect. With transfer learning, there is

the known phenomenon of ‘negative transfer’, where pre-

training on one task can negatively affect performance on

other tasks. Two recent reviews of transfer learning (26,

27) have both noted the area of negative transfer has not

been widely researched. They discuss various strategies for

preventing negative transfer. However, there appears to be

no mention of the phenomenon whereby a certain amount

of data achieves positive transfer and additional data be-

yond that removes some of the benefit of that positive

transfer, and no mention of a strategy of maximizing the

positive transfer merely by restricting the amount of trans-

fer learning data used.

Considering that this phenomenon is new to us, we

needed to rule out some of the ways this appearance of

worsening could be illusory. One concern is that we had

not used a fixed seed for the random number generator, so

there was some amount of run-to-run variability. A second

is that F scores tend to be higher when precision and recall

are roughly equal, and using large amounts of pre-training

data appears to emphasize recall. Re-running the key

experiments using a thresholding approach that balances

precision and recall allows us to address both questions.

Table 9 shows the results of these experiments.

Comparison with previous results shows some run-to-run

variability––the 25, 15 and 0 sub-epoch experiments

showed results improved by 1.35, 1.08 and 0.18 percentage

points, and the Conv1D experiment was worsened by 1.79.

This level of variability raises some questions about how

much information can be gathered using these experiments,

and also suggests a strategy for improving overall perform-

ance––run several runs with the same hyperparameters but

different random seeds, and select the best one. However,

the results in Table 9 for the 25, 15 and 0 sub-epochs do re-

produce the trend seen in Table 8, reinforcing the conclusion

that there is an optimal amount of data to use in Phase I and

using too much can be detrimental. The reduced perfor-

mance of the Conv1D experiment suggests that its earlier

good performance was at least somewhat fortuitous.

The use of thresholding techniques to boost F score

gave boosts of 1.96, 0.97, 1.12 and 0.96 percentage points

for the 25, 15 and 0 sub-epoch and Conv1D experiments,

respectively. The effect is more dramatic for 25 than for 15

sub-epochs, showing that some of the advantage of 15 over

25 came from 15 giving a more even precision/recall bal-

ance. It is also clear that the advantage of Phase I is not a

simple matter of finding a better precision/recall balance.

Of the six runs in Table 8, and the top three in Table 9, ev-

ery run that involved Phase I pre-training outperformed ev-

ery run that did not––regardless of whether thresholding

was used or not.

There is a final concern that the techniques of selecting

the best threshold may amount to overfitting to the devel-

opment data, and possibly that the use of 15 sub-epochs

rather than 25 might be similar. To make a final check, we

re-ran the system one final time, using 15 sub-epochs. For

each epoch, we found the threshold and thresholding

method that gave the maximum F score on the develop-

ment data. That epoch’s model, threshold and method

were then evaluated on the test set using the official evalua-

tion tool. We also tried not using thresholding (on the

same run), selecting the epoch that maximized the F score

on the development data and using the model from that ep-

och for evaluation with the test data.

The results in Table 10 show that the improvements

from reducing the number of sub-epochs of Phase I pre-

training can be reproduced in the test set. The gain in the

test set performance associated with thresholding appears

to be slight.

Table 9. Results on development

Run Precision (%) Recall (%) F (%) Best Epoch

25 Sub-Epochs 71.08 59.92 65.02 26

58.22 68.79 63.06 24

15 Sub-Epochs 68.87 62.58 65.58 15

63.05 66.25 64.61 15

No Phase I 63.20 59.45 61.27 22

56.26 64.63 60.15 18

Conv1D, No Phase I 65.86 59.50 62.52 19

55.94 68.42 61.56 19

For each run, the upper row is with thresholding, the lower is without.

Table 10. Results on development and test

Run Precision

(%)

Recall

(%)

F (%) Best

Epoch

Development,

no thresholding

63.33 65.42 64.36 19

Test, no thresholding 62.56 62.52 62.54

Development,

thresholding

63.87 67.17 64.91 34

Test, thresholding 62.97 62.20 62.58

Numbers in boldface represent best results.
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Figures 3 and 4 show that the procedure of selecting the

epoch that gives the best performance on the development

set gives good results when thresholding is not applied, but

not when thresholding is applied. It appears that some of

the epoch-to-epoch variability is due to the precision/recall

balance, that balance carries over from the development to

the test set and that thresholding removes that variability,

greatly reducing the usefulness of epoch selection.

Conclusion

Methods based on ‘deep learning’ RNNs can be used to de-

tect relationships between chemicals and protein, with

results comparable with those observed in other biomedi-

cal relationship extraction tasks. The deep learning struc-

ture allows the use of large amounts of unlabelled text to

boost performance, especially via the use of pre-trained

word embeddings. It is notable that our system makes min-

imal use of external natural language processing resources

beyond the unlabelled data––it does use a chemistry-aware

tokenizer, but makes no use of sentence splitters, POS tag-

gers, stemmers, parsers, ontologies or other such resources.

Transfer learning and specialized embeddings provide

methods for learning from large amounts of data that are

not directly linked to a specific task. We have found that

using transfer learning from PubMed gave a 2.7 percentage

point improvement, and specialized embeddings gave a 0.7

percentage point improvement. The techniques and results

discussed in this paper show that there is scope for consid-

erable more experimentation in applying transfer learning

and associated methods to improve the extraction of

knowledge about biological interactions from literature.

One odd aspect of the transfer learning is that the best

performance is not obtained by using as much transfer

learning data as possible, but by experimenting to find the

optimal amount––additional data beyond that amount

makes things worse. The reason for this is not yet clear to

us. Conceivably, finding and alleviating the cause of this

worsening could lead to further improvements on this task,

and provide insight into how transfer learning could be

best used in other natural language processing tasks. Other

potential areas for improvement include exploring varia-

tions in network architecture, and improving the handling

of out-of-vocabulary words, possibly by re-using

approaches from NER, POS tagging or similar tasks.

The source code for our system is available on-line, as a

part of the distribution for ChemListem, at https://bit

bucket.org/rscapplications/chemlistem.

Acknowledgements
The authors would like to thank Colin Batchelor, Aileen Day,

Nicholas Bailey and Jeff White for valuable discussions, and the

reviewers for suggesting additional experiments.

Conflict of interest. None declared.

References

1. Krallinger,M., Rabal, O. and Akhondi,S.A. (2017) Overview of

the BioCreative VI chemical-protein interaction Track. In:

Proceedings of the BioCreative VI Workshop. Bethesda, MD,

USA. pp. 141–146.

2. Krallinger,M., Rabal,O., Lourenço,A. et al. (2017) Information

retrieval and text mining technologies for chemistry. Chem.

Rev., 117, 7673–7761.

3. Craven,M. and Kumlien,J. (1999) Constructing biological

knowledge bases by extracting information from text sources.

In: ISMB. AAAI, Heidelberg, Germany. pp. 77–86.

4. Rindflesch,T.C., Tanabe,L., Weinstein,J.N. et al. (2000).

EDGAR: extraction of drugs, genes and relations from the bio-

medical literature. In: Pacific Symposium on Biocomputing.

World Scientific, Hawaii, USA. pp. 517.

5. Kuhn,M., Szklarczyk,D., Pletscher-Frankild,S. et al. (2014)

STITCH 4: integration of protein-chemical interactions with

user data. Nucleic Acids Res., 42, D401–D407.

6. Percha,B. and Altman,R.B. (2015) Learning the structure of bio-

medical relationships from unstructured text. PLoS Comput.

Biol., 11, e1004216.

Figure 3. F scores for development and test sets from epochs 12 to 50,

with thresholding.

Figure 4. F scores for development and test sets from epochs 12 to 50,

with thresholding.

Database, Vol. 2018, Article ID bay066 Page 9 of 10

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay066/5053190 by guest on 21 M

ay 2024

Deleted Text: [Figure III. F scores for development and test sets from epochs 12 to 50, without thresholding.][Figure IV. F scores for development and test sets from epochs 12 to 50, with thresholding.]Figs. III and IV
Deleted Text: ,
Deleted Text: IV. CONCLUSION
Deleted Text: ``
Deleted Text: learning'' recurrent neural networks
Deleted Text:  &ndash; 
Deleted Text: s
Deleted Text: s
Deleted Text:  &ndash; 
Deleted Text: named entity recognition, part-of-speech
https://bitbucket.org/rscapplications/chemlistem
https://bitbucket.org/rscapplications/chemlistem


7. Chan,W.K.B., Zhang,H., Yang,J. et al. (2015) GLASS: a com-

prehensive database for experimentally validated GPCR-ligand

associations. Bioinformatics, 31, 3035–3042.

8. Patumcharoenpol,P., Doungpan,N., Meechai,A. et al. (2016) An

integrated text mining framework for metabolic interaction net-

work reconstruction. Peer J., 4, e1811.

9. LeCun,Y., Bengio,Y. and Hinton,G. (2015) Deep learning.

Nature, 521, 436–444.
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