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Abstract

In this paper, we describe a hierarchical bi-directional attention-based Re-current

Neural Network (RNN) as a reusable sequence encoder architecture, which is used as

sentence and document encoder for document classification. The sequence encoder is

composed of two bi-directional RNN equipped with an attention mechanism that identi-

fies and captures the most important elements, words or sentences, in a document fol-

lowed by a dense layer for the classification task. Our approach utilizes the hierarchical

nature of documents which are composed of sequences of sentences and sentences

are composed of sequences of words. In our model, we use word embeddings to proj-

ect the words to a low-dimensional vector space. We leverage word embeddings

trained on PubMed for initializing the embedding layer of our network. We apply this

model to biomedical literature specifically, on paper abstracts published in PubMed.

We argue that the title of the paper itself usually contains important information more

salient than a typical sentence in the abstract. For this reason, we propose a shortcut

connection that integrates the title vector representation directly to the final feature rep-

resentation of the document. We concatenate the sentence vector that represents the ti-

tle and the vectors of the abstract to the document feature vector used as input to the

task classifier. With this system we participated in the Document Triage Task of the

BioCreative VI Precision Medicine Track and we achieved 0.6289 Precision, 0.7656
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Recall and 0.6906 F1-score with the Precision and F1-score be the highest ranking first

among the other systems.

Database URL: https://github.com/afergadis/BC6PM-HRNN

Introduction

Precision medicine (PM) is an emerging area for diseases

prevention and treatment that takes into account people’s

individual variations in genes, environment and lifestyle

(1). The PM Initiative intends to generate the scientific evi-

dence needed to move the concept of PM into clinical

practice (2). By extracting the ‘hidden’ knowledge in the

scientific literature, we can help health professionals and

researches in this PM challenge (3). Databases play a key

role in this process by acting as a reference for the research-

ers and professionals (4). We are currently facing an expo-

nentially increasing size of the biomedical literature which

combined with the limited ability of manual curators to

find the desired information, leads to delays in updated

those databases with current findings. Currently the high-

est quality databases require manual curation, often in

conjunction with support from automated systems (5).

Document classification attempts to automatically de-

termine if a document or part of a document has particular

characteristics of interest, usually based on whether the

document discusses a given topic or contains a certain type

of information. Accurate classification systems can be es-

pecially valuable to health professionals, researchers and

database curators (6).

The BioCreative VI Track 4 ‘Mining protein interac-

tions and mutations for PM’ provides a curated dataset

that aims to leverage the knowledge available in the scien-

tific published literature and extract useful information

that links genes, mutations and diseases to specialized

treatments (7). The PM tasks is a challenge consisting of

two sub-tasks, namely the Document Triage Task ‘identify

relevant PubMed citations describing genetic mutations af-

fecting protein–protein interactions (PPI)’ and Relation

Extraction Task ‘extract experimentally verified PPI af-

fected by the presence of a genetic mutation’ task.

The automated document triage task is not new to the

biomedical domain. In TREC 2004 Genomics Track one

sub-task required the triage of articles likely to have experi-

mental evidence warranting the assignment of Gene

Ontology terms (8). The goal of this triage process was to

limit the number of articles sent to human curators for

more exhaustive and specific analysis. Also, in BioCreative

II Task 2 (2007) the ‘Protein Interaction Article Sub-task 1’

is a document classification task for mining PPI from bio-

medical literature (9).

In this work, we present a deep learning system that

participated in the Document Triage Task which calls for

automatic methods capable of receiving a list of PMIDs

(biomedical abstracts) and return a relevance-ranked

judgement for triage purposes. The proposed system is a

hierarchical bi-directional attention-based Re-current

Neural Network (RNN) adapted to the biomedical do-

main. The results of our system on the above mentioned

task are very promising and shows that deep learning sys-

tems can be succesfully applied to the biomedical domain.

Related work

Machine learning algorithms have been widely and success-

fully used in order to extract knowledge from big data in

bioinformatics. Some well-known algorithms, e.g. Naive

Bayes, Support Vector Machines and Random Forests

among others, have been applied in biomedical literature tri-

age (10), genomics (11), genotypes-phenotypes relations (12)

and numerous other domains (13). Sparse lexical features

such as bag-of-words, n-grams, word frequencies (term-

frequency and/or inverse-document-frequency) and hand-

crafted features are used to train those algorithms (14).

Recently, deep-learning systems have become popular

in learning text representations, mostly two variants of

them, Convolutional Neural Networks (CNN) and RNNs.

Although CNNs have been successfully used in text classi-

fication (15–18), RNNs have produced excellent results

processing text (19–24), especially the variants Long

Short-Term Memory (LSTM) (25) and Gated Re-current

Units (GRU) (26). RNNs are designed to utilize sequential

information. This sequential nature is suitable to process

varying length input data such as speech and text.

However, there are many cases where both past and future

inputs affect output for the current input. For these cases,

Bi-directional Re-current Neural Networks (BRNNs) have

been designed and used widely (27).

Tang et al. (19) introduce a neural network that learns

vector-based document representations. In this hierarchical

model, the first level learns sentence representation using a

CNN or a LSTM network and the second level uses GRUs

to encode this sentence information into a document repre-

sentation. Yang et al. (20) use a hierarchical attention

LSTM network for document classification. The attention

layers applied at the word and sentence-level, capture the
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most important content leading to better document repre-

sentation. Zhou et al. (22) have exploited bi-directional

LSTM with attention layer for relation classification. Also

Zhou et al. (23), instead of using the attention mechanism

to produce the sentence and document vectors, they apply

a two-dimensional pooling operation over the two dimen-

sions of the network (time-step and feature vector) in order

to produce more meaningful features for sequence model-

ling tasks. Liu et al. (21), based on the same hierarchical

principle, use the multi-task learning framework to

improve the performance of their model in text classifica-

tion and other related tasks. Also, Zhang et al. (24)

propose a multi-task learning architecture with four types

of re-current neural layers for text classification. Baziotis

et al. (28), successfully applied a two-level bi-directional

LSTM with an attention mechanism for message-level sen-

timent analysis on Twitter messages at SemEval-2017

Track 4 (29).

Our work is mostly influenced by (20, 22) and is very

similar to (28). We employ a hierarchical bi-directional

GRU (HBGRU) network equipped with attention layers

which generates dense vector representations for each doc-

ument and uses those representations as features for classi-

fication. We adapt our model on the specific features of the

domain by proposing a shortcut connection that integrates

the title vector representation directly to the final feature

representation of the document. This shortcut connection

improves the performance of the model on the BioCreative

VI PM dataset.

System description

The model we propose is a hierarchical bi-directional

RNN network as shown in Figure 1. We equip the RNN

layers with an attention mechanism for identifying the

most informative words and sentences in each document.

The first level consists of an RNN that operates as a sen-

tence encoder reading the sequence of words in each sen-

tence and producing a fixed vector representation

(sentence vector). Then, a second level RNN operates as a

document encoder reading the sequence of sentence vectors

of the abstract and producing a vector representation (doc-

ument vector). We argue that the title of the citation itself

usually contains important information more salient than a

typical sentence in the abstract. For this reason, we pro-

pose a shortcut connection that integrates the title vector

representation directly into the document vector represen-

tation. This concatenated vector is used as a feature vector

for classification. We add a fully-connected layer with a

sigmoid activation function for performing binary

classification.

Text pre-processing

As a first pre-processing step we perform sentence segmen-

tation and tokenization splitting the document in constitu-

ent sentences and tokens. We use Punkt sentence and word

tokenizers of the Natural Language Toolkit as a sentence

splitter and word tokenizer, respectively (30).

Annotations

In order to incorporate domain knowledge in our system, we

annotate all biomedical named entities namely genes, species,

chemical, mutations and diseases. Each entity mention is sur-

round by its corresponding tags as in the following example:

Mutations in <species>human</species> <gene>

EYA1</gene> cause <disease>branchio-oto-renal (BOR)

syndrome</disease> . . .

The annotations are obtained using the provided

RESTful API of PubTator, a Web-based text mining tool

for assisting Biocuration (31–33).

Input layer

We represent each document as a matrix A 2 R
M�N, where

M is the maximum number of sentences that a document

may have and N is the maximum number of words a

Figure 1. Overview of our proposed system. Word Vectors is a matrix of word embeddings, where M is the maximum number of sentences and N the

maximum number of words in a sentence. t refers to the Sentence Encoder representation for the title vector and a(2), . . . , a(M) to the representations

of the abstract vectors.
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sentence may have. We embed the words w to a low-

dimensional vector space through an embedding layer of size

E; w 2 R
E. A sentence S consists of a sequence of N words

S ¼ ðw1;w2; . . . ;wNÞ; S 2 R
N�E. The embedding layer

weights are initialized with the pre-trained word embeddings

provided by (34). These word embeddings are trained on

PubMed articles and PMC full text papers using word2vec

(35) with the skip-gram model and a window size of 5. The

dimensionality of the word vectors is 200. Out of vocabulary

words, for which we do not have a word embedding, are

mapped to a common <unk> (unknown) token. Unknown

token along with named entities starting and closing tags, get

distinct word embeddings by sampling from a uniform distri-

bution with range ð�0:05; 0:05Þ.

Sentence encoder

After embedding the words to the low-dimensional seman-

tic space we use the sequence encoder in order to obtain a

vector representation for each sentence. The sequence en-

coder consists of a bi-directional GRU with an attention

layer that reads the sequence of word vectors of each sen-

tence and produces a sentence vector. The architecture of

the sequence encoder is shown in Figure 2.

A GRU takes as input the sequence of word vectors of a

sentence and produces a sequence of word annotations (out-

put), H ¼ ðh1;h2; . . . ;hNÞ, where hj; j 2 ½1::N� is the hidden

state of the GRU at time-step j, summarizing all the infor-

mation of the sentence up to wj word. We use bi-directional

GRU in order to capture the contextual information of the

words from both their left and their right context. A BGRU

consists of a forward GRU that reads the sentence from w1

to wN and a backward GRU that reads the sentence from

wN to w1. We obtain the final annotation for each word wj

by concatenating the annotations from both directions.

h
ið Þ

j ¼ h
ðiÞ
j

!

k h
ið Þ

j

 

; j 2 1 . . . N½ �; h
ið Þ

j 2 R
2S

where k denotes concatenation, h
ið Þ

j

!

and h
ið Þ

j

 

are the hid-

den states for the forward and backward GRU, respec-

tively, of i-th sentence at time-step j and S the size of the

sentence-level GRU layer.

We use an attention layer in order to identify the most

informative words in each sentence and enforce their con-

tribution to the final sentence vector. The attention layer

assigns a weight a ið Þ
j to each word annotation h

ið Þ
j . The sen-

tence vector v ið Þ, which is the vector representation of the

i-th sentence, is computed as the weighted sum of all the

word annotations h
ið Þ

j .

v ið Þ ¼
XN
j¼1

a ið Þ
j h

ið Þ
j ; i 2 ½1 . . . M�; v ið Þ 2 R

2S

a ið Þ
j ¼

exp e
ið Þ

j

� �

XN

t¼1

exp e
ið Þ

t

� � ; j 2 1 . . . N½ �

e
ið Þ

j ¼ tanh Wwh
ið Þ

j þ bw

� �

where Ww, bw are the attention layer weights and bias and

v ið Þ is the vector representation of the i-th sentence.

Moreover, we denote the sentence vector of the title

as t ¼ v 1ð Þ and the sentence vectors of the abstract as

a ið Þ ¼ v ið Þ; i 2 2 . . . M½ � as in Figure 1.

Document encoder

Having the vector representations for each sentence, we

feed them to the document encoder in order to obtain the fi-

nal vector representation for the whole document. Notably,

we do not feed the vector of the title t to the sentence en-

coder, but only the vectors of the abstract ai. Instead of feed-

ing the title vector t in the document encoder with the rest

of the sentence vectors (abstract), we create a shortcut con-

nection by integrating it directly to the final document fea-

ture vector d. We hypothesize that the title of a paper

contains concentrated information which will be diluted if

passed in the document encoder with the other sentences,

Figure 2. Architecture of our proposed sequence encoder. The same ar-

chitecture is used for encoding a sequence of word vectors to a sen-

tence vector (sentence encoder) and a sequence of sentence vectors to

a document vector (document encoder). When used as a sentence en-

coder x represent words, T takes values up to N and the output se-

quence vector is a sentence vector. When used as a document encoder

x represent sentences, T takes values up to M and the output is a docu-

ment vector.
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even with the addition of the attention mechanism. By inte-

grating title vector t directly into the document feature vec-

tor d we keep the title information intact. The remaining

sentence vectors are fed into the document encoder in order

to get the vector representation of the whole abstract a. The

architecture of the document encoder which is identical to

the sentence encoder is shown in Figure 2.

Similar to the sentence encoder, we use a BGRU in order

to get annotations for each abstract vector aj summarizing

the information form the sentences around sentence j.

hj ¼ hj

!
k hj

 
; j 2 1 . . . M½ �; hj 2 R

2D

where k denotes concatenation, hj

!
and hj

 
are the hidden

states for the forward and backward GRU, respectively, at

time-step j, M the number of abstract vectors and D the size

of the document-level GRU layer. We use an attention layer

in order to identify the most informative sentences of the ab-

stract and enforce their contribution to the final vector rep-

resentation a. The attention layer assigns a weight aj, to

each sentence annotation and we aggregate them by com-

puting the weighted sum of all the sentences annotations.

a ¼
XM
j¼1

ajhj; a 2 R
2D

aj ¼
exp ej

� �
XM

t¼1

exp etð Þ

ej ¼ tanh Wahj þ ba

� �

where Wa, ba are the layer weights and bias.

Output layer

The final document vector d is computed by concatenating

the representations of title and abstract vectors

d ¼ t k a; d 2 R
2Sþ2D

The output layer is a fully connected layer with single

neuron and a logistic (sigmoid) activation function that

performs the binary classification (logistic regression). It

uses the document vector representation d as feature vector

to predict the probability of the two classes.

Experiments and results

Dataset

We evaluate our system on the dataset provided by the

BioCreative VI (BC6) Precision Medicine Track (PM),

Document Triage Task (7). This training dataset consists

of 4082 training biomedical abstracts which are classified

as ‘relevant’/’no relevant’ when the article mentions or not

PPIs influenced by genetic mutations. The test dataset con-

sists of 1427 abstracts. The number of relevant abstracts is

1729 (42.36%) in the train set and 704 (49.33%) in the

test set (Table 1).

Text pre-processing

Our model, as described, is a sequence encoder which on

the first level reads a documents that we represent as matri-

ces A 2 R
M�N. To choose the values of M and N we ex-

plore the distribution of the sentences in the abstracts of

the train set. The maximum number of sentences is 23,

which we set as the value of M. In the test set 99.86% have

less or equal to 23 number of sentences. For comparison

reasons in Figure 3, we display the distribution for both

train and test sets. Also, as a pre-processing step we remove

stop words and punctuation when these tokens are not

part of a biomedical entity.

Examining the distribution of the number of words in

sentences (Figure 4) we choose 45 to be the maximum

words per sentence. 98.63% sentences of train and

97.51% of test abstracts have less or equal to 45 words per

sentence. At the end each document is represented as a ma-

trix A 2 R
23�45. We use zero padding, appended to the end

Table 1. Dataset of BC6-PM document triage task

Dataset Negative Positive Total

Train 2353 (57.64%) 1729 (42.36%) 4082

Test 723 (50.67%) 704 (43.33%) 1427

Figure 3. Distribution for the number of sentences in the abstracts of

the train and test sets.
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of a sequence, both in documents and sentences in order to

have the same number of sentences and words,

respectively.

Model training

Neural networks are notoriously prone to over-fitting (36).

For this reason, we adopt a series of measures in order to

regularize our model. First, we add Gaussian noise to the

input (embedding) layer to limit the amount of information

that can be stored in a network (37). This means that prac-

tically the network never sees the exact same sentence

more than once during training. Distortion of the training

data can be considered as a data augmentation technique.

We add noise by sampling from a zero-mean Gaussian dis-

tribution at each batch.

We use dropout to the layers of the network as another

over-fitting restricting technique. Dropout randomly dis-

ables a certain proportion of the neurons in a layer on each

training example (or batch). For each training example a

sub-part of the network is trained. Dropout improves the

network performance because it forces each neuron to

learn disentangled features. This way the network learns to

recognize the same patterns in multiple ways, which leads

to a better model (38). We apply dropout on the embed-

ding layer on the sentence and document encoders both on

their BGRU layers and their attention layers.

Many methods have been used to improve stochastic

gradient descent such as momentum, annealed learning

rates and L2 weight decay. As an optimizer, we use Adam

(39) with the standard deterministic cross-entropy objec-

tive function. We add L2 penalty to the objective function

to prevent large weights and we clip the norm of the gra-

dients at 5 to avoid exploding gradients (40).

As a last step, we perform early-stopping. We stop the

training of the network when the F1-score of the develop-

ment set stops increasing for a certain number of epochs

(41). We monitor the change of F1-score instead of the loss

of the development set because its the official evaluation

metric used and this way we directly optimize our model

for the task. If F1-score does not improve (increase) from

the last best value for 6 epochs, the training is stopped and

the last best model is kept.

Hyper-parameter tuning in neural networks is a very

challenging process. In addition to the time consuming

training of the neural network, usually we have to tune a

lot of hyper-parameters, which are highly correlated (e.g.

increasing the number of neurons changes the optimal

dropout rate). As it has been shown in (42), grid search is

very inefficient and random search finds consistently better

models. However, in our work we adopt the Bayesian opti-

mization approach (43) in order to perform a smart search

in the high-dimensional hyper-parameter space. This way

we obtain a set of reasonable hyper-parameters in a

very small number of trials. Table 2 shows the optimal

hyper-parameter values that we obtained. To choose the

hyper-parameters we split the training set to training, de-

velopment and evaluation, using 80%, 10% and 10% of

the dataset, respectively. For the training of the final

model, to get the predictions for the test set, we split the

training set to training and development, using this time

95% and 5% of the dataset.

Experimental setups

Our first experimental setup was to test the impact of the

shortcut connection. Testing with our training, develop-

ment and evaluation sets the model with the shortcut con-

nection gave better performance. Our hypothesis that the

model benefits from the shortcut connection is also sup-

ported by the official results described in the following

section.

Also, after the competition of the completion, we

wanted to investigate the impact of incorporating domain

knowledge to the model by annotating biomedical entities.

The fact that we can use word vectors either for entity

tokens or for entities as multi-word expressions (MWEs)

Figure 4. Distribution for the number of words per sentence for the train

and test sets.

Table 2. Hyper-parameter values of our model

Layer Size Dropout Noise (r)

Embedding 200 0.2 0.2

Sentence encoder GRU 150 (x2) 0.3 —

Attention 1 0.3 —

Document encoder GRU 150 (x2) 0.3 —

Attention 1 0.3 —
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lead as to investigate the impact of different tokenization

options. So, the parameters we tune for our new experi-

ments are the inclusion or not of the annotations of the

biomedical entities and the tokenization options as

explained below. The capitalization of the words is

retained and we remove stop words and punctuations.

Compared with the model that participated in the competi-

tion the pre-processing was different in that we kept the

stop words and converted words to lower case.

The tokenization described hereafter is applied to men-

tions of biomedical entities only. We investigate three

options. The first (Tokens) is to tokenize the entity as all

other tokens. This results in removing punctuation, if

any, used between entity tokens. As a second option we

choose to keep these mentions as MWEs and tokenize

then by spaces. In this way, we keep the punctuation be-

tween words. The third option (Both) is to tokenize the

entity and also insert the multi-word version of it. In

Table 3, we give a tokenization example for the disease

brancio-oto renal (BOR) syndrome with the three

options.

When we use the MWE of an entity we get one word

embedding for entities like autosomal-dominant and two

word embeddings when tokenized: autosomal, dominant.

We hypothesize that the MWE will have better semantics

captured by its word embedding. The third option covers

cases where the MWE has no word embeddings. For exam-

ple, the chemical p-Benzoyl-L-phenylalanine as a MWE

does not have an embedding in our word vectors, but all

its tokens: ‘p’, ‘Benzoyl’, ‘L’, ‘phenylalanine’, have. As a

last step, when we use the option to keep the tokens and

the MWE, when the two match we keep only the tokens

version. For instance, the disease Rieger Syndrome as a

MWE and as tokens give the same result: ‘Rieger’,

‘Syndrome’.

Results

We submitted three runs for the competition. The official

results are shown in Table 4. In this table, we also display

the baseline given by the organizers, as well as our own

baseline computed using a SVM model. For the first two

runs, we do not use the proposed shortcut connection

but we chance the RNN size keeping the other

hyper-parameters unchanged. The increase of the RNN

size gave an increase to the F1-score. For the third run, we

keep the larger RNN size and apply the shortcut connec-

tion. The results shows that the model benefits from the

proposed approach.

To study the affect of annotation and tokenization, we per-

form a 5-fold cross validation on the train dataset. We display

the F1-scores in Table 5. For the two options, to annotate or

not the biomedical entities we use the three aforementioned

tokenization options. We test the null hypothesis that there is

no statistical significant difference between the scores we per-

formed a two-way mixed factorial ANOVA test. In the present

case, the Mauchly’s test indicates that there is no evidence of

heterogeneity of covariance, x2 ¼ 2:463; p ¼ 0:292. The

ANOVA test showed that there is no statistical significant

difference within-subjects factors (tokenization options),

F 2;16ð Þ ¼ 1:953; p ¼ 0:174, nor between-subjects factors

(annotation), F 1;8ð Þ ¼ 0:10; p ¼ 0:925. Based on these

results we accept the null hypothesis.

Table 3. Tokenization options for biomedical entity mentions

[e.g. ‘brancio-oto-renal (BOR) syndrome’]

Option Result

Tokens ‘branchio’, ‘oto’, ‘renal’, ‘BOR’, ‘syndrome’

MWE ‘branchio-oto-renal’, ‘(BOR)’, ‘syndrome’

Both ‘branchio-oto-renal’, ‘(BOR)’, ‘syndrome’,

‘branchio’, ‘oto’, ‘renal’, ‘BOR’, ‘syndrome’

Table 4. Official results for the submitted runs along with the

organizer’s baseline and an SVM model

Model Run RNN

size

Shortcut

connection

Precision Recall F1-score

Baseline — — — 0.6122 0.6435 0.6274

SVM — — — 0.5850 0.7869 0.6711

HBGRU 1 100 No 0.6136 0.7670 0.6818

2 150 No 0.5944 0.8139 0.6871

3 150 Yes 0.6289 0.7656 0.6906

The hyper-parameters not mentioned remain unchanged.

Table 5. F1-scores of the 5-fold cross validation with options

to annotate or not biomedical entities and the three tokeniza-

tion options

Tokenization options

Fold Annotation Tokens MWE Both

1 Yes 0.6078 0.6097 0.6088

2 Yes 0.7493 0.7550 0.7399

3 Yes 0.8023 0.7883 0.8067

4 Yes 0.7834 0.7846 0.7581

5 Yes 0.6974 0.7019 0.7018

Average 0.7280 0.7279 0.7231

1 No 0.6257 0.6171 0.6178

2 No 0.7557 0.7516 0.7555

3 No 0.7988 0.7903 0.8012

4 No 0.7904 0.7682 0.7578

5 No 0.7145 0.7136 0.7037

Average 0.7370 0.7282 0.7272
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Conclusions and future work

One of the tasks that help PM Initiative to its goal is the

mining of biomedical literature mentioning PPIs changed

by genetic mutations. In this paper, we describe our pro-

posed system that participated in such a challenge orga-

nized by BioCreative and launched as ‘BioCreative VI

Track 4: Mining protein interactions and mutations for

PM. We participated in the Document Triage Task of the

competition building hierarchical bi-directional attention-

based RNNs. In our system, we modify the typical RNN

model by adding a shortcut connection between the

title vector and the final feature representation of the docu-

ment. The hypothesis we test is that the title of the paper it-

self usually contains important information more salient

than a typical sentence in the abstract. The shortcut con-

nection increased the performance of the model as shown

in Table 4 achieving 0.6289 Precision, 0.7656 Recall and

0.6906 F1-score with the Precision and F1-score be the

highest in the challenge’.

To further investigate options that might improve the

performance of our model, we choose to incorporate do-

main knowledge by annotating biomedical entities.

Annotations are very useful to tasks such as Named Entity

Recognition and Relation Extraction (22). The motivation

to add annotations to a document classification task was

that the attention layer would benefit from them. The

treatment of the named entities as MWE or tokens or

inserting both in a sentence lead us to different tokeniza-

tion options. Our results suggest that the RNN model is ca-

pable to capture contextual information from the text

without the need of the annotations and independently of

the tokenization options in the particular dataset.

The result of no statistical significant difference may be

due to two factors. One factor is the way we choose to an-

notate entities using positional indicators (tags) which

might not be suitable for this task. The other factor is re-

lated to the word embeddings we use to initialize the

embeddings layer. We hypothesize that the training data

for the word embeddings do not have enough mentions for

the MWEs of the named entities in order to capture the ap-

propriate syntactic and semantic informations and that the

embeddings of individual tokens of named entities might

not carry the desirable semantics.

In future work, we plan to train our word embeddings

on PubMed articles and to investigate other options to an-

notate named entities. Training our word embeddings will

allow us to align the pre-processing step on both the train-

ing corpus and dataset reducing out of vocabulary words.

About the annotation options one alternative is to use the

BIO tags. We can create vectors that will represent the

annotations O, B-disease, I-disease, B-gene, I-gene and so

forth. These vectors can be concatenated to the word

embeddings of all tokens according to their annotations.
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