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Abstract

Drug Target Commons (DTC) is a web platform (database with user interface) for

community-driven bioactivity data integration and standardization for comprehensive

mapping, reuse and analysis of compound–target interaction profiles. End users can

search, upload, edit, annotate and export expert-curated bioactivity data for further

analysis, using an application programmable interface, database dump or tab-delimited

text download options. To guide chemical biology and drug-repurposing applications,

DTC version 2.0 includes updated clinical development information for the compounds

and target gene–disease associations, as well as cancer-type indications for mutant

protein targets, which are critical for precision oncology developments.

Database URL: https://drugtargetcommons.fimm.fi/

Introduction

Accurate identification of interactions between ligands and
target proteins is a key prerequisite for understanding
the biological action of chemical tool compounds and
drugs. With the constant accumulation in the number
and diversity of biological and chemical assays, an ever-

increasing amount of quantitative data on compound–
target interactions is available in the primary literature
and public databases. This data can be used for discovery
of new indications for drugs, i.e. drug-repurposing (1)
or for selection of compounds targeting specific proteins
or pathways of interest (2). The drug–target interaction
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data are typically in the form of biochemical affinity
measurements but may also include quantitative structure–
activity relationships, which can be used for computational
models predicting compound–target interactions and
extended target spaces for drugs for which no target
interaction data are currently available, i.e. predictive drug
positioning (3, 4, 5). Integration with chemical proteomic
data can refine drug-affected pathways, identify response
markers and suggest novel combination treatments (6).
These data resources and models may also be useful for
predicting drug side-effects, in vivo absorption, distribution,
metabolism, excretion and toxicity properties (7). After
validation steps, the observed drug phenotypic effects can
also be used to improve the accuracy of computational
models (8).

Several databases have been implemented for providing
open access to compound/target information. These can
roughly be categorized based on the type of molecules
or assays covered and their end purpose. Below, we will
provide short overview of the related key databases. Exam-
ples of databases providing broad target and drug infor-
mation include ChEMBL (9) and PubChem (10), which
list bioactivities of drugs and drug-like small molecules
extracted either from the scientific literature or generated
through high-throughput screening experiments. DrugBank
(11) combines detailed drug information (i.e. chemical,
pharmacological and pharmaceutical) with comprehensive
target information (i.e. sequence, structure and pathway).
BindingDB (12) contains binding affinities for small drug-
like molecules, and GtopDB provides information about
structures for small molecules, peptides and antibodies with
their affinities for protein targets (13). Yet other databases
have been geared toward linking drug–target data to genetic
information, in one aspect for predicting phenotype based
on genotype. As an example, DGidb (14) uses a combina-
tion of expert curation and text mining integrated from
DrugBank, Therapeutic Target Database (15) and Phar-
mGKB (16) to document putative drug–gene interactions.

On the other hand, some databases function not only as
information repositories but also serve to facilitate research
by functioning as query portals or visualization tools for
biological questions. For example, Chemical Probes (17) is a
recent community-driven web application that recommends
appropriate chemical probes for biological targets, provides
guidance on their use and documents their limitations.
Probe Miner (18) implements Chemical Probes Objective
Assessment resource, capitalizing on the plethora of
public medicinal chemistry data to empower quantitative,
objective and data-driven evaluation of chemical probes.
STITCH (19) is a comprehensive resource to explore
and visualize experimentally tested and computationally
predicted interactions among chemicals and proteins,

which helps researchers identify and position their favorite
molecules in complex biological systems. LINCS (20) aims
to create network-based understanding by cataloguing
changes in gene expression and other cellular processes in
response to a variety of perturbing agents. DrumPID (21)
provides researchers with tailored information on drugs
and protein interactions and enables one to screen related
compounds for their effects on protein interaction networks
considering data also from other organisms. The iHOP
(22) web server provides up-to-date summary information
on biological molecules by automatically extracting key
sentences from millions of PubMed documents. Finally,
Open PHACTS integrates data from multiple publicly
available databases, such as ChEMBL, DrugBank, ChEBI,
UniProt and WikiPathways, to enable researchers to
build pipelines based on integrated pharmacological data
resources (23).

While the aforementioned resources have been useful
for phenotypic profiling and drug development efforts, they
provide only a limited assay annotation for the end users to
understand and sort out the variability in the bioactivity
data that are generated using various assays, resulting
in significant heterogeneity and potential discrepancy
between the databases (24). ChEMBL is currently the most
comprehensive, manually curated database, consisting of
compound–target bioactivity values for over 1.8 million
compounds. However, comprehensive extraction and anno-
tation of compound–target bioactivities is a tedious process,
beyond the capability of a single team or institution.
Toward this end, we recently introduced a community-
driven bioactivity collection and standardization platform,
named Drug Target Commons (DTC), which includes
a user-friendly web interface and a simplified bioassay
ontology (μBAO) (25). In the present report, we describe
the technical implementation and recent updates of the
DTC database and its web interface. Foremost, we have
vastly increased the number of annotated data points
(˜16 000 bioactivities) and integrated ˜0.5 million additional
published bioactivities from the BindingDB (12). The
extended DTC version also includes clinical development
information for the compounds as well as target gene–
disease associations and cancer-type indications for mutant
targets, which should be highly useful for translational
research and basic molecular understanding alike. Lastly,
we have made several updates to the web interface, which
should further lower the user threshold and improve the
attractiveness of DTC.

User interface

Key features for end users include options to search, filter,
sort, import, edit, export and manage bulk bioactivity data
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and associated information for compounds and targets in
a user-friendly manner. Drug lists are easy to filter and
users always have the option to download only parts of the
database or all of it. On the other hand, any new annota-
tions or modifications on existing data are first subjected
to review by the group of administrators before depositing
as entries in DTC. Log-in is easy via Google account and
mandatory for data curation and uploading of new data.
Since the review of annotations as a quality control is
critical for maintaining the accuracy and reliability of the
database, researchers may request to become administrators
to facilitate/accelerate data uptake into DTC. Approved
administrators are notified by email as soon as sufficient
amount of newly deposited data enters into the DTC system.

Data download options

The full bioactivity data in DTC are available for down-
loading in tab-delimited text format on the download tab
(http://drugtargetcommons.fimm.fi/static/Excell_files/DTC_
data.csv). There are currently ˜6.5 million bioactivity data
points (for protein targets), which are available for research
purposes under the Creative Commons license (CC BY-NC-
SA 3.0). Complete database dump as well as application
programming interface (API) is provided to facilitate
an easy access and integration of data with scripting
tools. Detailed description for API is available on the
download tab at DTC website. Entity relationship diagram
(see online supplementary material for Supplementary
Figure S1) provides users with a detailed understanding of
the database schema. Several search options are available
in the graphical user interface (GUI) to enable downloading
only selected sets of bioactivity data (see below).

Compound and target search options

Bioactivity data in DTC can be searched using a variety of
compound and target identifiers (see online supplementary
material for Supplementary file S1), PubMed ID (for
the publications) and somatic mutation information (e.g.
D835Y mutation in the FLT3 gene). DTC compounds are
cross-linked with 25 different databases (e.g. DrugBank,
PubChem, ChEMBL and PharmGKB) using compound ID-
mapping data and 94 different protein target databases
(e.g. UniProt, Ensembl, EMBL, PDBe, HGNC and Uniref)
using target ID-mapping data (see online supplementary
material for Supplementary file S1). Compound ID-
mappings were obtained from UniChem (https://www.ebi.
ac.uk/unichem/info/downloads), and target ID-mappings
from Uniprot (ftp://ftp.uniprot.org/pub/databases/uniprot/
current_release/knowledgebase/idmapping/). An autosug-
gest feature was implemented to facilitate end users in

selecting the appropriate search item. Help options for
search identifiers can be seen by clicking at ‘?’ next to the
‘search textbox’ (Figure 1A).

Search results may include any of the following cat-
egories: target, compound, publication or mutation (see
Figure 1A). Cross-references to other databases are shown
by clicking at the ‘info icon’ in front of respective search
category; these include, for instance, gene–disease associ-
ations from DisGeNet for target genes and clinical phase
development information for compounds (Figure 1B).

Editing and filtering options

Users may view or suggest edits on bioactivity data by
clicking on the ‘Bioactivities’ button. Sorting is done by
clicking at the column header and multiple columns can
be sorted (similar to Excel) by clicking the headers. Users
may filter each column of the table by clicking the filter icon
next to column header and then applying filter conditions
on column from the variety of available filter types. Filter
types for string data are Contains, Does not contain, Starts
with, Ends with, Empty and Not empty and for numeric
data Equal, Not equal, Less than, Greater than, Null and
Not null. Filtering conditions can be merged using ‘OR’
and ‘AND’ operators. Filtering options are case-insensitive
(i.e. GEFITINIB and gefitinib are the same). Users may also
remove filter condition by clicking on the ‘Clear’ button at
the bottom of filter options as shown in Figure 2.

Bioassay annotations and cross-linking

DTC is linked to over 25 other databases from which
the affinity, IC50 and other bioactivity values are being
obtained. For the annotation part, we adapted a so-called
μBAO protocol, which is a simplified version of the orig-
inal BAO (26) that standardizes the description of target-
profiling experiments in terms of the assay type, assay
format, endpoint type, detection technology and inhibitor
types. In μBAO, we included only those assay annotation
fields that we consider as minimum set of required informa-
tion to describe a bioactivity experiment and are likely to be
extractable from research publications, as explained in our
recent publication (25). Such a standardized bioassay anno-
tation should improve the understanding and consistency
of the bioactivity data in DTC, and therefore be critical for
data interpretation. Equally important for the community-
based aspect of DTC is that data annotation should be as
smooth and streamlined as possible for annotators, where
μBAO is a step toward simplifying the process. A user
feedback form available on the website and emailed ques-
tionnaires help to shape DTC into a user-friendly experience
as possible.
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Figure 1. Search results for compounds and targets. (A) Gene–disease associations and cross-referencing information for target EGFR. (B) Cross-

referencing and clinical trial information for compound gefitinib.

The DTC GUI provides hyperlinks to the reference
publications in order to cross-check bioactivity data
and to annotate assay information. The μBAO anno-
tations can be selected from the drop-down options
in the user interface. Explanation of each μBAO term
is provided in the ‘Glossary’ under the ‘Help’ tab. To
enable multi-record editing, ‘copy/paste’ in data tables is
permitted to speed-up editing. After making the relevant
modifications, users may click at ‘Send for review’ to
submit suggestion for review. Users can see (as well
as modify) their submissions at ‘My Submissions’ tab
(https://drugtargetcommons.fimm.fi/submissions/), which
holds a temporary copy of the submissions until ‘Approve
or decline’ decisions are made by administrators of DTC.
Administrators may further modify the submissions prior
to approval. Upon approval by the administrators, the
relevant submission is integrated into the DTC databases
and can be viewed in the next search queries. To avoid the

problem faced if administrators were approving duplicate
submissions, we wrote Cron-scripts to process duplicated or
unwanted data prior to administrator’s view. Cron-scripts
are automatic scripts scheduled to repeatedly execute after
a fixed period to assess the quality (pre-processing) and
remove redundancy from the newly submitted data.

Export and import in Excel

After sorting or filtering, bioactivity data can be exported
to Excel (by clicking on ‘Export to Excel’ button), as shown
in Figure 2. There may be missing information for some
of the columns, depending on the annotation status at the
time of exporting. On the other hand, bulk data can also be
curated in an offline mode in Excel and later uploaded back
to DTC (a template file is provided at ‘Bulk Import’ page).
Users may also view, modify, filter and sort newly uploaded
file through DTC interface, and once satisfied, submit their
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Figure 2. Bioactivity data values for target FLT3. Light blue background shows the annotated bioactivity values, whereas white background shows

unannotated bioactivity data.

Figure 3. (A) Protein targets associated with diseases extracted from DisGeNET (only top 10 diseases for the current DTC targets are shown here;

see online supplementary material for Supplementary File 3 for the full list). (B) Highest clinical phase for 3407 DTC small molecules that have

information in clinical trials database (http://clinicaltrials.gov/). The approved category includes 1406 compounds, which are also overlapping with

the Santos et al. drug list.

data for review. DTC administrators will be notified via
automatic emails to process the newly uploaded data (after
the quality control by Cron-scripts).

Disease–target associations

For the protein targets in DTC, curated gene–disease asso-
ciations are extracted from DisGeNET (27). There are
currently 1573 genes associated with 4123 diseases hav-
ing 331 514 associations supported by references (top 10
diseases are shown in Figure 3A). Cancer-type indications
for 185 mutant protein targets are extracted from Can-
cer Genome Interpreter (CGI) (28), supported by clinical
evidence. This information can be accessed through DTC
search page (by clicking ‘info’ icon).

Clinical development information

As a recent addition to the DTC system, we extracted up-to-
date clinical development information for 3532 compounds
(292 218 indications), including both approved drugs and
investigational compounds currently undergoing clinical
trials from https://clinicaltrials.gov/. Figure 3B shows the
distribution of DTC compounds across different clinical
phases. The clinical information in DTC includes the fol-
lowing: study details, compound name and development
phases, symptoms, mesh terms, adverse effects, participants’
information, eligibility criteria, reference publications, as
well as references for the clinical study. This information
can be accessed by clicking ‘info icon’ in front of a searched
compound (Figure 1B). We believe this information will
become highly useful for drug-repurposing applications,
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where the aim is to find novel uses of already-approved
drugs or those in the later stages of clinical development.

Crowd-sourced curation

As DTC is expected to attract a large amount of contribu-
tions submitted by variety of users, and later subjected
to the processing by an expert panel, there is a need
to systematically deal with different categories of users.
Crowdsourced curation in DTC is systematized by defining
four user groups: super administrators, administrators,
trusted curators and other users. Super administrators
(currently the developers of DTC) can approve the
status of administrator for any user (applied through
https://drugtargetcommons.fimm.fi/admin/ or by email).
The administrators and super administrators act like
reviewers and process the submitted bioactivity data as
well as to approve a user for ‘trusted curators’ group. Each
user group has certain permissions, which can be altered by
the super administrators. The rationale for distinguishing
‘trusted curators’ from ‘other users’ is to provide a flag
for the administrators to pay particular attention to the
submissions by the new and potentially unexperienced
‘other users’.

Curators can upload newly curated and annotated data
through bulk upload feature as explained in Section 2.5.
See online supplementary material for annotation and cura-
tion guidelines that are available in Supplementary File 4
and at the ‘Help’ tab (http://drugtargetcommons.fimm.fi/
annotation_guidlines/). These guidelines follow a curation
standard developed in-house, based on experience from
similar curation tasks (26, 29). Previous user feedbacks
are publicly available for the new users who can see the
comments by the previous users and our responses to those
comments. A curator can annotate data points for com-
pound(s), target(s) or publication(s), but we recommend
performing annotations publication-wise as this reduces
workload for the annotators (often the same assay type is
used for all data in a single publication). In addition, we
advise new curators to look at the ‘Take a Tour’ tab on the
DTC website, in order to quickly familiarize with the overall
DTC workflow.

Currently, DTC curation team is comprised of around
15 in-house researchers, including cell biologists and data
scientists, who are working as a core data curation and
annotation team, and are assigned to non-overlapping com-
pound to perform μBAO annotations in addition to the
curation of new compounds/targets. However, DTC effort
is open to anybody, who wants to be part of the DTC
annotation team. We are storing the annotator’s identity
that can also be publicly shown to others (upon annotator’s
request), along with the deposited bioactivity data points.

In addition, we give authorship in the new releases of
DTC to all the significant contributors (data curators and
annotators). Inconsistencies between curators are sorted
out by the administrators, and only after the administrator’s
approval, the curated and annotated data are systemat-
ically integrated back into DTC. The resulting resource
of annotated and curated data is freely available to the
DTC crowdsourcing team, as well as to the whole chemical
biology community.

Data sources

ChEMBL is currently the main source of bioactivity data
in DTC, which are further validated by DTC curation
team and annotated using the μBAO annotations. Addi-
tionally, we have ˜60 000 fully annotated bioactivity values,
which are not included in the current releases of ChEMBL
or BindingDB but were directly extracted from scientific
publications. We have so far completed the annotation
of 204 901 bioactivity data points among 4276 chemical
compounds and 1007 distinct protein targets. The current
annotation process has mainly focused on kinase inhibitors,
due to their importance in anticancer drug development;
however, the unannotated bioactivity data already stored
and searchable in the DTC database span a wide spec-
trum of compound and target classes. In addition to sev-
eral in-house annotation and test rounds, we have carried
out two user studies, one national (30) and another in
European-wide MedBioinformatics Horizon 2020 project
(http://www.medbioinformatics.eu), and have improved the
DTC platform based on the user feedback.

Data coverage

Although the community-based crowdsourcing and anno-
tation work have just initiated, there exist extensive bioac-
tivity data, across multiple bioactivity endpoints (Figure 4),
waiting to be annotated (1 746 997 million compounds,
13 023 targets and 14 820 874 million bioactivities). To
evaluate the DTC bioactivity data relevance for drug dis-
covery, we compared density plots for approved drugs
in terms of their efficacy targets (31) and other potent
targets as shown in Figure 5. For this analysis, we chose
a cutoff of 1000 nM for the median bioactivity value, but
similar results are obtained also with other potency cutoffs,
suggesting that there are also many off-target potencies
among the other targets beyond the known efficacy targets
of the 1406 approved drugs present in DTC. These could be
potential leads to novel drug-repurposing applications. Sim-
ilar analysis was performed for BindingDB and GtopDB,
as shown in Figure S2 and S3, respectively (see online
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Figure 4. Bioactivity endpoints for the compound–target pairs present in the current DTC version. Bioactivity types (e.g. EC50, XC50, AC50, etc.) with

relatively small proportions are grouped under ‘Other’ category.

supplementary material for both figures). For that purpose,
we downloaded data from BindingDB and GtopDB and
matched their compounds with the approved drugs using
standard InChiKeys. For the target comparisons, we used
UniProt ID as an identifier. There are 917 and 641 approved
drugs from Santos et al. (27) present in BindingDB and
GtopDB, respectively. For these drugs, at least 7% of the
off targets in BindingDB have concentration <1 nM, which
could provide possible candidates for drug-repurposing (see
online supplementary material for Figure S2). Similarly, a
fraction of off-target potencies present in GtopDB could
provide starting point for drug-repurposing applications
(see online supplementary material for Figure S3). Analysis
performed in Figures 5, S2 and S3 shows the significance of
off-target bioactivities included in these databases that store
quantitative bioactivity data. However, DTC has numerical
superiority both over BindingDB and GtopDB not only in
terms of relatively larger collection of approved drugs but
also in terms of their associated off-targets.

To give further insights into compounds and target cov-
erage and overlap, we compared DTC with other bioactivity
databases, such as BindingDB and GtopDB. BindingDB
and GtopDB contain only dose–response endpoints (Kd,
Ki, IC50 and EC50), and likewise in DTC we have con-
sidered this data more relevant for biological activity and
have therefore excluded from this comparison any single-
concentration measurements (activity %, inhibition % and
others), which are more prone to technical variation. Fur-
thermore, only the molecularly targeted agents were used in
these analyses. The comprehensiveness of the data present
in DTC can be seen in Figure 6, which shows significant
fraction of non-overlapping compounds and targets in com-
parison with BindingDB or GtopDB.

API to access to bioactivity data

API is a specific sub routine to provide programmatic data
access to the developers for building their own applications.
We implemented API for DTC users to access bioactivity
data queried using compound, target or publication infor-
mation. Output data are returned in XML/Json format and
users may apply certain filters to extract subsets of data. The
default limit for the output bioactivities is 20, but this can
be modified by the user. User can access maximum of 1000
bioactivities at a time, but it is also possible to extract all
the bioactivities in DTC by changing the ‘Offset’ parameter.
Table 1 lists some examples of the commands that can
be used to programmatically access DTC in Python (or
any other scripting language), using ‘Curl’ command (note:
there should not be space anywhere in URL). A detailed
documentation for the API is provided in Supplementary
File 2 (see online supplementary material for this file).

Technical implementation

The front end of DTC user interface is implemented in
JavaScript, JQuery-1.11 and Bootstrap3.0, whereas the
back end is implemented in Python3.5 using Django1.9
framework, which is an open-source framework for Python
that supports rapid web development and pragmatic design.
For data visualization, we have used JavaScript libraries,
such as Amcharts (https://www.amcharts.com/) and D3
(https://d3js.org/), whereas tabular data representation is
performed using jQWidgets (http://www.jqwidgets.com/)
and JQuery data tables (https://datatables.net/). The first
release of DTC was developed in C#.net, which was later
replaced with Python, as it is a more popular scripting
language for academic researchers.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay083/5096727 by guest on 21 M

ay 2024

https://academic.oup.com/databa/article-lookup/doi/10.1093/databa/bay083#supplementary-data
https://academic.oup.com/databa/article-lookup/doi/10.1093/databa/bay083#supplementary-data
https://academic.oup.com/databa/article-lookup/doi/10.1093/databa/bay083#supplementary-data
https://academic.oup.com/databa/article-lookup/doi/10.1093/databa/bay083#supplementary-data
https://academic.oup.com/databa/article-lookup/doi/10.1093/databa/bay083#supplementary-data


Page 8 of 13 Database, Vol. 2018, Article ID bay083

Figure 5. Kernel density plots comparing the DTC bioactivity levels of so-called efficacy target with other targets of 1406 approved drugs from Santos

et al. drug list (31). In case of multiple bioactivities measurements, the median was taken for a drug–target pair. Potency threshold of 1000 nM was

applied to the median bioactivity value and negative log was taken for bioactivity values in molar concentrations.

Figure 6. Overlapping compounds and targets between DTC, BindingDB and GtopDB among compound–target pairs for which dose–response

measurement (e.g. Kd, Ki and IC50) bioactivity data are present in the databases. (A) Overlapping compounds by comparing Standard InChiKeys.

(B) Overlapping targets by matching UniProt IDs.

The DTC database is developed in PostgreSQL 9.0.
DTC database is divided into five main categories: com-
pounds, proteins, diseases, assays and activities and others.
A detailed entity relationship diagram for the DTC schema
is shown in Supplementary Figure S1 (see online supplemen-
tary material for the figure). Entity relationship diagram and
DTC schema dump are available at the download tab on the
DTC website. Indexing is introduced in database tables to
reduce search time for Structured Query Language (SQL)
queries, and the underlying load on database was further
reduced by improved performance using custom caching-
based solution on the top of the standard Django cache.

Application use cases

Anticancer drug repositioning

DTC contains potent bioactivity data for many protein
mutations, which have been implicated in different
tumor types. Literature evidence for such protein–disease
associations for the mutant targets was extracted from
CGI (28). CGI identifies somatic mutations that are
known to affect the response of anticancer therapies
according to several levels of clinical or preclinical
evidence. Here, we present a selected set of DTC-based
findings for mutant targets having strong affinities with
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Table 1. Bioactivity data extraction through API

Web link Description

https://drugtargetcommons.fimm.fi/api/data/bioactivity/?
filter_field1=FILTER_VALUE1&filter_field2=FILTER_VALUE2

Field name can be compound ID, target ID, mutation
information, Pubmed ID, assay format, assay type, etc. Field
value is case-sensitive.

https://drugtargetcommons.fimm.fi/api/data/bioactivity/?
mutation_info=FLT3(D835Y)

Outputs bioactivity data associated with D835Y mutation in
FLT3 gene.

https://drugtargetcommons.fimm.fi/api/data/bioactivity/?
detection_technology=qPCR&molecule_chembl_id=CHEMBL939

Outputs bioactivity data associated with detection technology
qPCR and compound ID CHEMBL939.

https://drugtargetcommons.fimm.fi/api/data/bioactivity/?
assay_sub_type=enzyme_activity

Outputs bioactivity data associated with assay sub type
Enzyme activity.

https://drugtargetcommons.fimm.fi/api/data/bioactivity/?
molecule_chembl_id=CHEMBL939&limit=100

Outputs maximum of 100 bioactivity data points associated
with compound ID CHEMBL939.

Table 2. Examples of DTC-based potencies for mutant targets

Somatic
mutation

Drug name Tumour type∗ Median
bioactivity for
mutant target
(nM)

Median
bioactivity for
wild type target
(nM)

Min
bioactivity
(nM)

Max tested
bioactivity
(nM)

Evidence level
from CGI

Reference

FLT3
(D835Y)

Midostaurin AML 15 12 2 10 000 Phase II (32)

Sorafenib AML 82 30 0.021 50 000 Early trials (33), (34)
ABL1
(T315I)

Axitinib CML 2.55 60 0.1 10 000 Early trials (35)

Crizotinib ALL 11 103.5 0.55 22 840 Preclinical (36)
KIT
(L576P)

Dasatinib AML 0.57 3.85 0.016 715 000 Case report (37)

Imatinib GIST 14 219 0.7 15 × 109 FDA guidelines (38), (39), (40),
(41)

Nilotinib GIST 22 37.5 1.1 50 × 105 Early trials (42)

∗AML: Acute myeloid leukemia, GIST: Gastrointestinal stromal tumors, CML: Chronic myelogenous leukemia and ALL: Acute lymphoblastic leukemia
∗Min and Max indicate the minimum and maximum bioactivity for a compound across all the targets (wild type or mutant proteins) in DTC

compounds overlapping with CGI in various tumor types.
The syntax for mutant protein targets in DTC is ‘Gene-
name(mutation)’, whereas CGI accepts mutations in the
following format: ‘Gene-name:mutation’; for instance,
FLT3(D835Y) and FLT3:D835Y, respectively. Table 2 lists
representative examples of DTC-based potencies for mutant
targets that have strong (median) binding affinities with the
listed drugs as supported by clinical evidence. Especially
interesting are those cases where the bioactivity for the
mutant target is much lower (stronger) than for the wild-
type target, as these might provide targeted treatment
options for cancers driven by the specific mutation and
not severely toxic in the wild-type tissues.

Web tools that are built on DTC database

MediSyn. MediSyn (https://d4health.hiit.fi/) is a recently
introduced web tool that synthesizes multiple medical

datasets, including DTC, with the aim to support drug-

treatment selection (30). MediSyn uses a matrix-based
layout to visually link drugs, targets (including somatic
mutations) and tumor types across different datasets
using five levels of evidences as shown in Figure 7. Data
uncertainties are salient in MediSyn; for example, (i)
missing data are exposed in the matrix view of drug–
target relations and (ii) data credibility is conveyed
through links to data provenance. In the current version of

MediSyn, bioactivity data for ˜200 unique mutant proteins
are extracted from DTC using API in order to extend
options for drug-treatment selection. To the best of our
knowledge, DTC is the only data source in MediSyn that
is providing preclinical evidences (represented by single

bars in Figure 7), combined with μBAO and compound
clinical phase information. Moreover, based on DTC
bioactivity data, MediSyn also gives extra hits, especially

for the compounds that are not yet in clinical use. For
instance, AST-487 and fedratinib both target ABL1(T315I)
mutant and are currently undergoing clinical trials.
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Figure 7. Matrix-based visualization generated by MediSyn for mutants ABL1(T315I) and BRAF(C600E) and compounds AST-487, fedratinib,

pazopanib, sorafenib and dasatinib. Compounds are placed at rows, whereas columns contain the associated mutant targets. Green bars represent

the responsive compounds, whereas the red bars represent resistant compounds. The number of bars represents different categories of evidences

as shown in the legend (bottom left corner). Singleton bars show the preclinical data integrated from DTC.

Similarly, pazopanib is a tyrosine kinase inhibitor that
targets ABL1(T315I), as supported only by the preclinical
evidence provided by DTC (Figure 7).

C-SPADE. C-SPADE (http://cspade.fimm.fi/) is an exploratory
web application that provides interactive visualization of
drug-profiling assays based on compound-centric similarity
clustering (43). C-SPADE can visualize both cell/sample-
specific compound sensitivity bioactivity data as well as
protein/target-specific compound–target bioactivity data,
such as those extracted from DTC. It allows the users
to adjust multiple parameters in the clustering procedure,
including fingerprints that are used to compute structural
similarities between the compounds (default is ECFP4
fingerprint). Users can, for instance, export bioactivity
data from DTC and obtain high-quality compound
clustering-based visualizations through C-SPADE, as shown
in Figure 8, with the aim to highlight new compound
candidates for drug-repurposing applications. For instance,
both TAK-733 (investigational compound) and trametinib
(approved for thyroid cancer) are clustered together in
Figure 8. Based on their bioactivity profiles from DTC,
both are potent against mitogen-activated protein kinases.

TAK-733 shows sensitivity in melanoma cancer cell lines,
and trametinib has also been tested for melanoma in late
trials, suggesting a potential efficacy of trametinib also in
melanoma.

Conclusions and future perspectives

In the recent years, multiple resources have been developed
based on diverse compound collections to define primary
targets for small molecules and identify potent molecu-
lar probes for specific molecular targets (17). While these
resources have been useful for phenotypic profiling and
drug-development efforts, they provide only a limited assay
annotation for the end users to understand and sort out
the variability in the bioactivity data that are typically
generated using phenotypic assays. Moreover, the existing
data curation is largely being done in a closed manner,
lacking an open and transparent platform that would allow
community-level participation. To address this issue, we
recently launched DTC, a crowdsourcing web platform that
aims to standardize the collection, management, curation
and annotation of the notoriously heterogeneous com-
pound–target bioactivity data to facilitate drug discovery,
target identification and drug repurposing (25).
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Figure 8. Compound similarity-based clustering in an example bioactivity dataset with C-SPADE. The dataset contains 75 compounds across three

types of cell lines, with a subset of compounds annotated by the inhibitor type using different color codes as shown in the legend. Bubble size

represents five potency classes in terms of IC50, which are color coded for different activity classes.

Since its original release, the number of assay annota-
tions has vastly increased, and we have made significant
improvements to extend the utility of the DTC database
even further. Firstly, a comprehensive, new bioactivity
dataset is now integrated from BindingDB. Similar to DTC,
BindingDB is a frontend user portal to list drug–target
interactions, but unlike DTC, it does not support crowd-
sourcing nor provides the assay information necessary
for biologically meaningful and mechanistically relevant
drug classification, ranking and clustering. Secondly, in the
current release of DTC (version 2.0), we have integrated
clinical trial information and disease–gene associations
to support especially drug-repositioning applications.
Users can, for the first time, extract target and μBAO
assay data and combine it with diseases and/or mutant-
specific information for oncology application. This new
level of information is useful in identifying, clustering
and ranking compounds based on translational potential,
potentially facilitating clinical decision-making. Lastly, we
also anticipate that the availability of full database dump
and comprehensive API will increase the reusability of DTC
data in many clinical and biological applications. These
features highlight the open-access concept of DTC, which

promotes drug discovery and extends the utility of drug
annotations for new applications, as demonstrated with
the two use cases and two built-on application tools.

We hope that the integration of new data resources
and improvements in the DTC platform will further attract
the community to join this crowdsourcing effort. With
computational biology finally demonstrating a potential for
guiding researcher-driven validation in the laboratory for
translational applications (44), we fully expect that creative
end users can find new and clinically meaningful ways of
harnessing the compound–target data collected in DTC to
come up with novel approaches how small molecules can
be used in both research and clinics.

Supplementary data

Supplementary data are available at Database Online.
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