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Abstract

In the era of data explosion, the increasing frequency of published articles presents

unorthodox challenges to fulfill specific curation requirements for bio-literature

databases. Recognizing these demands, we designed a document triage system with

automatic methods that can improve efficiency to retrieve the most relevant articles

in curation workflows and reduce workloads for biocurators. Since the BioCreative VI

(2017), we have implemented texting mining processing in our system in hopes of

providing higher effectiveness for curating articles related to human kinase proteins.

We tested several machine learning methods together with state-of-the-art concept

extraction tools. For features, we extracted rich co-occurrence and linguistic information

to model the curation process of human kinome articles by the neXtProt database. As

shown in the official evaluation on the human kinome curation task in BioCreative VI,

our system can effectively retrieve 5.2 and 6.5 kinase articles with the relevant disease

(DIS) and biological process (BP) information, respectively, among the top 100 returned

results. Comparing to neXtA5, our system demonstrates significant improvements in

prioritizing kinome-related articles as follows: our system achieves 0.458 and 0.109 for

the DIS axis whereas the neXtA5’s best-reported mean average precision (MAP) and

maximum precision observed are 0.41 and 0.04. Our system also outperforms the neXtA5

in retrieving BP axis with 0.195 for MAP and the neXtA5’s reported value was 0.11. These

results suggest that our system may be able to assist neXtProt biocurators in practice.

Introduction

Document triage typically refers to the process of scan-
ning all query-related papers and finding relevant ones
for further curation. For example, in the development of
biological databases such as BioGRID and UniProtKB,
human curators typically first examine the results of their

PubMed searches and select curatable articles based on the
specific task. Given the ever-growing biomedical literature
and high cost of manual curation, there is an increas-
ing need of leveraging automatic text-mining methods to
identify and prioritize the documents for manual cura-
tion. For this purpose, Critical Assessment of Information
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Extraction Systems in Biology (BioCreative) has recently
organized several document triage challenge tasks for pro-
tein–protein interaction and Comparative Toxicogenomics
Database (CTD) curation (1, 2). These efforts have resulted
in several successful integration and deployment of text
mining systems into production curation pipelines such as
the use of PubTator and eGenPub in the UniProt protein
curation (3, 4).

The ability to annotate various bioconcepts in a
manually curated literature database, such as the CTD,
grows to be an urgent need for retrieving entities with
the highest relevance. Given the complex nature of named
entities, a relevance ranking strategy for articles containing
target bioconcepts to any given queries takes crucial role
in building efficient search engines. Many projects in the
field had adopted different tools and methods to enhance
the processing of biomedical text mining. To name a few of
the leading research efforts, Kim et al. (5) used a machine
learning (ML) approach to triage CTD-relevant articles
based on their prior system for the protein–protein inter-
action article classification task in BioCreative III. Another
document triage task in BioCreative VI is the precision
medicine track that aims to identify relevant PubMed
citations describing mutations affecting protein–protein
interactions. Fergadis et al. (6) proposed a bidirectional
recurrent neural network, equipped with an attention
mechanism and reusable sequence/document encoder
architecture. The proposed system retrieves the most
important elements in a sequence (6). The neXtA5 is
a curation service and interface that employs different
ontologies and embeds into a curation platform (7).
The system assists Swiss Institute of Bioinformatics (SIB)
curators to curate a given protein and axis by prioritizing
relevant articles. By using various ontologies, the neXtA5
provides a better ranking of MEDLINE articles for building
an advanced search engine.

Over the years, the BioCreative community has orga-
nized several tasks, aiming to bridge the gap between
human curators and text-mining groups. In 2012, by exam-
ining the curation workflow of multiple databases, three
important and common curation stages were identified:
source collection, document triage and full curation (8).
In 2017, the BioCreative VI human kinome curation track
was designed specifically for providing a private data set
annotated by the neXtProt team to assist both triage and
annotation tasks (9). The challenge was formulated as a
literature triage task that requires systems to classify and
retrieve relevant articles for mentioning kinome-related
biological processes (BPs) or diseases (DISs). For instance,
there is a relationship between ‘Serum/glucocorticoid-
regulated kinase 1 (SGK1)’ and ‘myeloma’ in Figure 1 that
would be noted as <SGK1, myeloma, 21478911> relation

Figure 1. An example of positive instances in the training set. For

PubMed Unique Identifier (PMID) 21478911, the extracted sentence in

the abstract displays the relationship between SGK1 and myeloma as

highlighted in red and blue.

in the task. The task organizers provided the task data based
on the results of neXtProt biocurators’ routine curation
processes. The human kinome curation track includes three
subtasks: (i) abstract triage, (ii) full text triage and (iii)
snippet selection. The task organizers (which included the
neXtProt team) provided an as yet unpublished data set for
the task (10).

In this work, we propose an ML approach to identify
articles that describe a specific kinase and its relation
to DISs or BPs in the abstract. We designed informative
features to specifically capture such relationships. For
instance, we compute the entity frequency and position
between the kinase and related DIS/BP. Additional features
are computed to further analyze the semantic relatedness
of different bioconcepts. For instance, the parsing tree
path can reveal a mechanism linking various bioconcepts.
Finally, we designed three features to model the processes
of human curation: using frequency and location features
to detect the co-occurrence relation between bioconcepts
and using natural language processing (NLP) features to
capture the semantic information surrounding bioconcepts.
Based on our evaluation, we find that our system can
effectively reduce the workloads of biocurators and
improve productivity.

Methods

Data preprocessing

BioCreative VI organizers provided two training data sets
for a total of 100 proteins, including 1615 and 1844 pairs
(<kinase, PMID>) and its associated axis, which can either
be a BP or DIS. However, the data sets do not include which
specific BP or DS associated with the annotated kinase. In
this study, we combined the two sets (1615 + 1844 = 3459)
and generated triples <kinase, axis, PMID>. First, we used
our named entity recognizer (NER) taggers (11, 12) to
recognize all kinase, DIS and BP mentions. We filtered out
the articles without kinase mentions and narrowed down
our results to 2775 triples. In order to evaluate our method,
we kept 225 triples as a development set, leaving 2550
triples for training (Table 1). We also selected articles for
100 target proteins from 5.3 million citations, therefore
creating 894 312 triples. Since there are no negative train-
ing instances provided, we generated pseudo-negatives by
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Table 1. Statistics of the training set. After processing, there were 3018 records in the

official training set that produced 3459 triples. We further omitted articles without

kinase mentions that left us 2775 triples. From this set, 2550 triples were used as

training positives, and 225 triples were used as a development set

Official Utilized positives

Training set
(positive instances)

Training set Development set

# Triple 3459 2550 225
# PMID 3018 2282 221

Figure 2. The workflow of our human kinome curation system including three steps: NER, feature extractor and training/testing.

using the following process: first, we used a support vector
machine (SVM) one-class classifier to train on the 2550
triples and tested on the 894 312 triples and then selected
the lowest 2500 scores as our negative training instances
(13). Note that we now have a positive set (2550 triples)
and a negative set (2500 triples).

System architecture

Our system consists of three main components: NER,
feature extractor and ML classifiers. For the NER
component, we annotated kinase, DIS and BP names in
ML-based and dictionary approaches. After the NER
component performs the document annotation, the feature
extractor component would generate the following features
for bioconcept entities: frequency, location and NLP fea-
tures to prioritize the documents by their relevance. The ML
classifiers then trained Elastic-Net Regularized Generalized
Linear Models (Glmnet), SVM and Convolutional Neural
Network (CNN) models to distinguish between relevant
and irreverent articles. We then trained our models using
different ML classifiers described in the methods section
on both the 2550 positive set and 2500 negative set.
After the models were built, we used the 225 triples in
the development set to evaluate the ranking scores of
each classifier. Figure 2 shows the overall workflow of our

proposed document classification system for human kinome
curation using ML.

ML classifiers

Our submission to the abstract triage task utilizes several
ML methods including Glmnet (14), SVM (15) and CNN
(16). The input data for the ML-based models include only
the title, abstract and bioconcept annotations of the taggers.
Additionally, our methods did not distinguish between the
data for DIS and BP mentions. The texts of the two types
were trained together by using the same features.

Glmnet

The features of large data sets suffer from the curse of
dimensionality, and they usually generate large sparse data
matrices. To reduce high-dimensional features, Glmnet is a
widely used algorithm for fitting various probability distri-
butions in statistical computing and ML. When analyzing
high-dimensional data, Glmnet uses the lasso or the elastic
net to interpret and fetch important features with efficient
computation. Therefore, Glmnet increases in stability and
makes predictions with a path of penalty parameters.

SVM

An SVM is a robust ML algorithm for classification anal-
ysis. It has been applied to many classification problems
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related to supervised learning with multidimensional data.
After the SVM classifier is built, the model can correctly
determine the hyperplane that separates the data into dif-
ferent classes. We also tested one-class classification, and
this model aims to find the support vectors of the one-
class training set and allows for outlier/novelty detection
(17). The goal is to distinguish new data as either similar or
different from the normal training set. Binary classification:
the original SVM is designed for determining the optimal
separating hyperplane between the two groups. In practice,
the SVM projects samples on a higher dimensional space
to approach the optimal hyperplane with less empirical
classification errors.

CNN

A CNN is derived from deep artificial neural networks that
consist of receptive fields, local connectivity and shared
weights (16). The CNN has been well known for its excel-
lent performance on image recognition. We then designed
and aligned the CNN with different parameters including
an input layer, convolution layer, pooling layer, fully con-
nected layer and output layer. We carefully followed the sys-
tem framework established by Kim to build the CNN model
(18). In our model, each word in a sentence is represented
by concatenating embeddings of its words, named entities,
frequency, location, dependencies relatively to the kinase
and related DIS/BP. We then applied a pre-trained model
using two domain-related collections (PubMed abstracts
and PMC articles) with domain-independent Wikipedia
articles (19). Note that we use the following parameters for
our CNN model: categorical cross-entropy; filter window
sizes of 3, 4 and 5 with 300 feature maps; embedding
dimensionality of 200; dropout rate of 0.5; and mini-batch
size of 50.

Features

As mentioned, we focus on three feature types concerning
the processes of biocuration: using frequency and location
features to detect the co-occurrence relation among biocon-
cepts and NLP features to capture the semantic informa-
tion surrounding bioconcepts. The categorized features are
shown in Table 2: (i) frequency features (features 1–2), we
calculated the number of kinase and axis mentions in each
abstract; (ii) location features (features 3–7), the location
of kinase and axis is detected; and (iii) NLP features (fea-
tures 8–11), a list of related keywords shown in Table 3.
Each group includes manually generated keywords of the
genetic DIS field. Furthermore, we applied tmVar (20, 21)
to recognize mutation mentions in the text as an addi-
tional variation keyword group. The bag-of-words feature
includes the lemma form of words around kinase, DIS and

Table 2. Statistical and linguistic features for training clas-

sifiers include the frequency of target kinase, target kinase

locations and NLP information

Feature Type

1 Number of target kinase Numeric
2 Number of target axis Numeric
3 Target kinase in 1st sentence Boolean
4 Target axis in 1st sentence Boolean
5 Target kinase in last sentence Boolean
6 Target axis in last sentence Boolean
7 The same sentence Boolean
8 Kinase keywords String
9 Bag of words String
10 Parsing tree path String
11 Parsing tree path w/o ancestors String

BP mentions in the abstracts. Parsing tree path features use
the dependency relation of dependency grammars to record
the syntactic structure of kinase, DIS and BP mentions (22).
All features are transformed to document-term matrices.

Result

Before submitting official runs, we used the following evalu-
ation metrics to assess each of our classifiers: mean average
precision (MAP) is the mean of the precision scores for
various queries, and it evaluates the retrieval results that
represent the average of the precisions (denoted as AP) for
the set of queries. Using the MAP calculations, an article
was ranked as curatable if it associated with kinome-related
information. In an information retrieval system, precision
(P) is the fraction of retrieved documents that are relevant
to the query:

P =
∣
∣
{

relevant documents
} ∩ {

retrieved documents
}∣
∣

∣
∣
{

retrived documents
}∣
∣

(1)

Table 3. The keyword groups include related terms that are

often employed in the articles to describe kinases, DIS and

BP, such as verb, patient, genetic and scale

Group Keywords

Verb involve, enhance, inhibit, regulate, increase,
associate, phosphorylate

Patient patient, men, women
Genetic detectable, survival, genetic, tumorigenesis,

overexpression, mutation, translate, transcript,
change, lymphangiogenic, neurotrophic

Scale mg, kg
Period day(s), during
Examine examine, experiment, screen, role, risk, significant
Variation recognized by tmVar
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When we consider only the top k documents returned,
the precision value can be evaluated at fixed levels of
retrieved results, known as P@K. AP is the average of
precision values after relevant documents are retrieved. A
precision score of zero would be designated to those where
relevant documents are not retrieved. AP can be defined as
the following equation:

AP =
∑k

i=1 P@i × rel(i)
∣
∣
{

relevant documents
}∣
∣

(2)

where i is the rank, rel () is an indicator function on the
relevance of a given rank, and P@i is the precision at a top
i documents. Note that the value of rel(i) equals to 1 when
the item at rank i is a relevant document; otherwise, the
value would be 0. We first calculated the sum of AP for
individual query q. MAP score is the mean of APs on the
set of queries Q. MAP is defined as follows:

MAP =
∑Q

q=1 APq

|Q | (3)

We also defined an estimated score (Escore; see below)
for measuring the ranking result of a triple (t) including
a kinase, an axis and a PMID. We trained the model with
the training set (positives: 2550 triples and negatives: 2500
triples), and then we added the development set (225 triples)
to all the triples derived from the 100 target proteins.
Note that γt is the rank of a triple after we combined the
triples of the training and development set (|Dt|). We then
summarized the score γt

|Dt| of all 225 triples where | tD|
represents the total number of triples in the development set.
For example, if we assume there are 10 PMIDs mentioned
for a target kinase and the rank of one specific PMID is the
top one among all 10 PMIDs, then γt

|Dt| is 0.1. Therefore,
the lower Escoret represents a better performance.

Escoret =
∑

|tD|

γt

|Dt| (4)

For official results, the organizers used the following
evaluation metrics. P10 is the precision at rank 10: it is
calculated using the number of documents that are relevant
among the top 10 documents returned by a system. If a
system returns 10 documents and only 5 documents are
relevant, the P10 is 0.5. Similarly, P30 and P100 are the
precision at rank 30 and 100, respectively. R30 is the recall
at rank 30: it is calculated using the number of relevant
documents retrieved in the top 30 documents returned by
a system. For instance, let us say for each query, there
are only 20 relevant documents. If a system returns five
of these relevant documents in its top 30 results, then the
R30 score is 0.25. Similarly, R100 is the recall at rank 100.
P at R0 is the maximum precision observed at all ranks.

Table 4. Combinations of different methods and features

used in the training phase to obtain models for specific

classifiers

Method Features Positives of training set Classifier

1 9 2550 Glmnet
2 1–9 2550 Glmnet
3 1–10 2550 Glmnet
4 1–9, 11 2550 Glmnet
5 1–10 2550 SVM (binary)
6 1–9, 11 2550 SVM (binary)
7 1–9, 11 2550 SVM (one class)
8 1–9, 11 2550 CNN

That is, the recall with the highest precision is R0. R-Prec
is the precision observed at rank r, where r is the number
of relevant documents in the collection. If a given query
contains 20 relevant documents, R-Prec is the precision at
rank 20.

As shown in Table 4, we trained different models with
features described in Table 2. For the Glmnet classifier, both
BP and DIS triples are included in the training set. An SVM
(binary) is the model in which we applied both positives
and negatives as a binary classifier, while an SVM (one
class) uses only the positives to train a one-class classifier.
For the CNN classifiers, we constructed multiple hidden
layers between the input and output layers and modeled
complex nonlinear relationships. The evaluations of differ-
ent methods on training sets (including DIS and BP sets)
are reported in Table 5. Overall, the performance of the
Glmnet classifiers is superior compared to the other two
classifiers. After reviewing and optimizing the parameters
in the training set, we then used the following methods and
features in Table 4 as our 10 submitted runs.

Tables 6 and 7 demonstrate the official results of our
submitted runs (provided by the task organizers). Note that
KinDER is the other participating team (23) and neXtA5 (7)

Table 5. Evaluation of training set. We adopted the afore-

mentioned development set to assess the outcomes after

applying the training set to eight separate models

Method Escore MAP

1 58.09 0.0401
2 49.84 0.0535
3 46.46 0.0593
4 49.85 0.0598
5 52.88 0.0460
6 57.32 0.0470
7 82.20 0.0227
8 83.68 0.0204
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Table 6. Official results of kinases/DIS for the 10 submitted runs. Comparing with Kinder and neXtA5, method 3 (Glmnet)

outperformed in the categories of MAP and P at R0

Method MAP R-Prec P at R0 P10 P30 P100 R30 R100

3 (Glmnet) 0.109 0.147 0.458 0.152 0.098 0.052 0.222 0.327
9 (Glmnet) 0.109 0.145 0.453 0.148 0.097 0.052 0.223 0.327
4 (Glmnet) 0.108 0.142 0.455 0.151 0.098 0.052 0.225 0.326
5 (SVMBinary) 0.088 0.125 0.351 0.119 0.081 0.044 0.203 0.304
6 (SVMBinary) 0.088 0.125 0.351 0.117 0.081 0.044 0.201 0.304
1 (Glmnet) 0.081 0.098 0.370 0.103 0.075 0.042 0.184 0.286
7 (SVMOne class) 0.079 0.099 0.338 0.103 0.075 0.042 0.182 0.288
2 (Glmnet) 0.073 0.084 0.338 0.094 0.064 0.038 0.166 0.269
8 (CNN) 0.062 0.079 0.224 0.075 0.054 0.036 0.150 0.265
10 (CNN) 0.060 0.079 0.227 0.065 0.057 0.034 0.154 0.259
KinDER 0.098 0.134 0.370 0.138 0.087 0.047 0.196 0.304
neXtA5 0.040 – 0.410 – – – – –

Table 7. Official results of kinases/BP for the 10 submitted runs. Method 3 (Glmnet) performed better than neXtA5 in MAP,

whereas KinDER performed slightly better than Method 3 in the categories of MAP and P at R0

Method MAP R-Prec P at R0 P10 P30 P100 R30 R100

3 (Glmnet) 0.195 0.182 0.450 0.176 0.121 0.065 0.399 0.563
9 (Glmnet) 0.192 0.184 0.430 0.171 0.122 0.064 0.397 0.563
4 (Glmnet) 0.191 0.178 0.437 0.171 0.122 0.064 0.396 0.561
5 (SVMBinary) 0.172 0.168 0.379 0.143 0.107 0.057 0.361 0.526
6 (SVMBinary) 0.170 0.169 0.378 0.140 0.107 0.057 0.361 0.524
1 (Glmnet) 0.159 0.150 0.379 0.138 0.105 0.057 0.362 0.535
2 (Glmnet) 0.155 0.141 0.373 0.137 0.104 0.056 0.346 0.529
8 (CNN) 0.127 0.109 0.251 0.086 0.074 0.045 0.292 0.468
7 (SVMOne class) 0.119 0.109 0.242 0.101 0.077 0.046 0.285 0.457
10 (CNN) 0.109 0.078 0.219 0.075 0.064 0.044 0.266 0.455
KinDER 0.201 0.210 0.466 0.184 0.111 0.056 0.360 0.492
neXtA5 0.110 – 0.450 – – – – –

is the benchmark system. In addition to the eight models
in Table 5, we built two new models using the entire 2775
training pairs with Glmnet (#9) and CNN (#10). Both
tables show that Glmnet classifiers have higher perfor-
mance in MAP than that of SVM and CNN classifiers,
which is consistent with our observation in the training
and development phases. When considering our own Escore
metrics, Glmnet classifiers are also consistent with the best
performance compared to all classifiers.

Discussion and conclusion

We applied various statistical and linguistic features to
prioritize the abstracts with relationships between target
kinase and DIS/BP mentions. However, this task is, by
nature, very challenging. First, there are no gold-standard
‘non-curatable’ or negative documents provided in the
training set. Without such negative data, most classification
methods have difficulty identifying truly curatable articles.
Second, the relationships between DIS/BP mentions and the

target kinases are not clearly curated in the training set. For
example, one abstract may have multiple DIS/BP mentions.
Therefore, it is difficult to find the correct triples for feature
extraction in our method. Third, the low-recognition rate
of GNormPlus missed ∼20–40% of the kinases (60%
of the missed kinases are not in the abstracts). Finally,
according to the official results, our best performance
reached a P100 = 0.052, R100 = 0.327 in kinases/DIS and
P100 = 0.065, R100 = 0.563 in kinases/BPs that compares
favorably to the other participating team. This also means
that for each target kinase, the average numbers of curatable
articles are 15.90 and 11.55, respectively, that are extremely
low concerning the millions of articles in PubMed. Thus, we
suspect that human curators may only include articles with
strong evidence within the experimental results section.
Therefore, those negative articles discarded by human
curators cannot be filtered by our methods as they currently
use only information from titles and abstracts. For these
reasons, this task is much more difficult than many other
traditional document classification tasks.
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In summary, we used several ML methods with
frequency, location and NLP features for the neXtProt
triage task that aims to specifically retrieve PubMed articles
with biomedical relations among kinases, DIS and BPs. The
average number of curatable articles in the testing set is low
(15.90 of target kinases/DISs articles and 11.55 of target
kinases/BPs articles). Thus, the biocurators using our system
can retrieve 32.7% (5.2 articles) and 56.3% (6.5 articles) of
curatable articles among all PubMed articles after reviewing
only 100 articles returned by our system. Therefore, we
believe our system can effectively accelerate the manual
curation efforts. In future work, we plan to examine the
triage task based on full texts as well as investigate a robust
ML approach that is capable of using curatable labeled
data only.

Supplementary data

Supplementary data are available at Database Online.
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