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Abstract

PubMed, a repository and search engine for biomedical literature, now indexes >1

million articles each year. This exceeds the processing capacity of human domain

experts, limiting our ability to truly understand many diseases. We present Reach,

a system for automated, large-scale machine reading of biomedical papers that can

extract mechanistic descriptions of biological processes with relatively high precision

at high throughput. We demonstrate that combining the extracted pathway fragments

with existing biological data analysis algorithms that rely on curated models helps

identify and explain a large number of previously unidentified mutually exclusive altered

signaling pathways in seven different cancer types. This work shows that combining

human-curated ‘big mechanisms’ with extracted ‘big data’ can lead to a causal, predictive

understanding of cellular processes and unlock important downstream applications.

Database URL: https://github.com/clulab/reach/wiki/Datasets

Introduction

In the past 7 years, >1 million publications were added
to PubMed each year (43) (see Figure 1). At the same
time, a typical large-scale patient profiling effort now pro-
duces petabyte of data and is expected to reach exabytes
within the near future (38). Combining these large data
sets with mechanistic biological information can lead to a
causal, predictive understanding of cellular processes and

can unlock important downstream applications in medicine
and biology.

Unfortunately, most of the mechanistic knowledge in
the literature is not in a computable form and mostly
remains hidden. Existing biocuration efforts are extremely
valuable for solving this problem, but, unfortunately, they
are out-scaled by the explosive growth of the literature. For
example, we estimate that public pathway databases such
as Pathway Commons (PCs; www.pathwaycommons.org)
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Figure 1. The annual rate of publications in the biomedical domain, as

indexed by PubMed. The darker blue highlights that publications have

exceeded 1 million per year starting in 2011.

capture only 1–3% of the literature and the gap widens
everyday (internal analysis of the PCs team).

This gap severely limits the value of big data in biology.
As a concrete example, consider the detection of ‘driver’
mutations in cancer. One widely recognized observation is
that, given a cohort of patients, some driver alterations will
exhibit a mutually exclusive (or mutex) pattern. That is,
the number of patients that have both alterations will be
smaller than what is expected by chance. This often happens
because these alterations unlock the same cancer driving
pathways and the positive selection of one diminishes
substantially when the other is present. In other words,
‘one is enough.’ Prior pathway knowledge can be used
to improve the accuracy of these methods by limiting the
search space and reducing the loss of statistical power due
to multiple hypothesis testing correction. It also provides
mechanistic explanations of the observed correlations (5).
Recall, however, can be low because of the aforementioned
database coverage issues. Researchers are thus faced with a
choice between no-prior, high-coverage methods that do not
provide mechanistic explanations or low-coverage, prior-
based methods that may overlook some key events.

To fully answer such complex biological questions, we
propose a natural language processing (NLP) approach that
captures a system-scale, mechanistic understanding of cellu-
lar processes through automated, large-scale reading of sci-
entific literature and demonstrate that this approach leads
to the discovery of novel biological hypotheses for multiple
cancers. We call our approach Reach (REading and Assem-
bling Contextual and Holistic mechanisms from text).

Our approach has two important contributions. The first
contribution is the demonstration that the combination of
‘big data’ that are produced by machines and ‘big mecha-
nisms’ that were manually curated yields novel knowledge
that is otherwise missed. In particular, we show that Reach
can substantially improve the inference capacity of existing

biological data analysis algorithms that previously relied
solely on manually curated pathway databases such as PCs.
Here, we extended the PCs human-curated pathways with
>1 million biochemical interactions extracted by Reach
from all papers in the Open Access subset of PubMed
(as of June 2015). Using this combined prior network we
were able to identify a large number of previously unidenti-
fied but highly statistically significant mutually exclusively
altered signaling modules in TCGA (The Cancer Genome
Atlas; https://cancergenome.nih.gov/) cancer data sets using
the Mutex algorithm (5). A manual evaluation of these
modules reveals that between 65 and 80% of the pathway
fragments discovered by Reach are correct, and they indeed
help elucidate novel biological hypotheses within the corre-
sponding cancer context.

Our second contribution is the machine reading
approach itself. The core of Reach is a cascade of automata
that relies on compact and interpretable grammars that
extract entities (e.g. proteins) and events (e.g. biochemical
interactions) of interest. This guarantees that the reading
model can be understood, modified and extended by
domain experts. This compact grammar is efficiently
applied at runtime, an important benefit in our ‘big data’
setup. On average, we process a single paper in 4.5 seconds,
though our software can be easily parallelized to take
advantage of cluster computing and multi-core hardware.
Additionally, Reach captures complex natural language
phenomena such as coreference and can interpret event
polarity in statements with nested contrasts (for example,
‘a reduction of increased phosphorylation led to . . .’).
An independently administered evaluation found that
Reach extracts cancer signaling pathways at relatively high
precision and at a throughput capable of reading the whole
biological literature in short order.

The inherent inter-disciplinarity of this work has yielded
an unorthodox paper structure. We dedicate the first half
of the paper to the introduction of our machine reading
approach and its intrinsic evaluation (2 and 3). The second
half of the paper then provides a brief summary of the
biological data analysis algorithm used in this work (4),
followed by an extrinsic evaluation of machine reading,
which measures the contribution of machine reading to the
detection of novel biological hypotheses (5).

Machine reading approach

At a high level, Reach uses a cascade of rule-based and sta-
tistical techniques to read the content of a paper and iden-
tify mentions of molecular events that describe fragments
of a signaling pathway.The steps of this sequence, as shown
in Figure 2, proceed from low- to high-complexity represen-
tations, each building on the output of the previous steps.
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Figure 2. Architecture of the Reach system together with a walk-through example.

The representation of these mentions is constructed
internally in a format inspired by the BioPAX standard
language (16). Notably, Reach can represent detailed
biochemical conversions where entities go through ‘state’
changes, such as becoming phosphorylated or changing
their sub-cellular location. Reach also represents controllers
or catalysts of these conversions when they are mentioned
in text. Similar to BioPAX, these mentions are represented
using a composite structure where events can have other
events as their participants, allowing for arbitrarily complex
logic. An important extension of BioPAX that Reach
implements is the extraction of higher-level control relations
between entities (e.g. ‘KRAS activates p53’). Although
such relations are biologically ambiguous relative to a
mechanistic conversion representation (e.g. the above
example summarizes the biological mechanism ‘KRAS
promotes phosphorylation of p53 on Ser37’), they provide
valuable information to domain experts.

In the following sections we describe details of the Reach
architecture components in Figure 2 that are responsible for
the extraction of these mechanism fragments.

Preprocessing

Reach first preprocesses the text with NLP tools specifically
modified for the biomedical domain. Preprocessing includes
sentence and word segmentation, part-of-speech (POS) tag-
ging and syntactic parsing.

The sentence and word segmentation step detects both
sentence and word boundaries in the input text. There are

subtle but important differences between the tokenization
of open-domain text and biomedical content. For example,
dashes that occur within a word are not considered sepa-
rators when segmenting open-domain text, but they tend
to function as word separators in biomedical texts. For
example, segmenting the text ‘GAP-mediated’ at the dash
is crucial for the downstream components to understand
that this text contains a catalysis driven by GAP. Similarly,
not considering the dash as a separator would prohibit
the downstream components from recognizing members of
protein complexes, which typically appear as dash sepa-
rated in text. To handle these phenomena, a custom seg-
menter was developed in-house, following the tokenization
specification of the GENIA corpus (21).

For POS tagging and syntactic parsing, Reach uses Stan-
ford’s CoreNLP toolkit (28), which has been trained using
a combination of two corpora: the Penn Treebank, a corpus
that merges several non-biomedical genres such as IBM
computer manuals and Wall Street Journal articles (29, 39),
and the GENIA corpus, which is a manually annotated
corpus of 2000 MEDLINE abstracts (21). Including the
GENIA-annotated documents as part of the parser’s train-
ing corpus makes the parser more robust to syntactic struc-
tures often found in biomedical literature.

Entity extraction

Next, a custom named entity recognizer (NER) component
is used to recognize mentions of relevant physical entities
by type, such as protein family, cellular component, simple
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Figure 3. Taxonomy of the entities and events recognized by Reach. Though abbreviated, the Removal events mirror those listed under Addition.

chemical, site and gene or gene product (this last category
includes genes and proteins). The complete list of entities
recognized by Reach, as well as the biochemical events
described later, is listed in the taxonomy in Figure 3.

The custom NER uses a hybrid approach that combines
a rule-based component with a statistical one. The rule-
based component recognizes all mentions of known entity
names (and their synonyms) from the knowledge bases
(KBs) shown in Table 1. Additional grammar rules were
written to capture entities that are not adequately covered
by these KBs, such as cellular components or sites of bio-
chemical reactions. The statistical model is implemented
using CoreNLP’s conditional random field (CRF) sequence
classifier, trained on the BioCreative corpus (19). This data
set supports only mentions of gene or gene products. The
hybrid NER combines the output of the two components,
prioritizing the rule-based component when overlaps are
detected.

Table 1. KBs used by the rule-based NER, as well as for

grounding

Entity Type Database URL

Protein UniProt www.uniprot.org/
Protein families InterPro www.ebi.ac.uk/interpro/
Simple chemicals HMDB www.hmdb.ca/
Simple chemicals ChEBI www.ebi.ac.uk/chebi/
Sites InterPro www.ebi.ac.uk/interpro/

Next, Reach ‘grounds’ the biochemical entities discov-
ered by linking the textual mentions to IDs of actual entities
in the KBs shown in Table 1. For example, the protein
mention ‘MEK1’ can be linked to the ID Q02750 in the
Uniprot KB.

Lastly, Reach detects mentions of gene mutations
and protein post-translational modifications (PTMs) and
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attaches them to the corresponding textual mentions of
these biochemical entities. This is implemented with a
subsequent grammar that focuses on detecting changes of
states in the previously extracted entity mentions, e.g. from
the text ‘wild type EHR’ Reach extracts the state Wild
Type (i.e. non mutated) and attached it to the previously
extracted entity mention ‘EHR’. (We will extend this
component in future work to include binding sites and
fragments.)

Event extraction

Once Reach has determined which entities are mentioned in
the text, it extracts the biochemical processes in which they
participate. We use a two-step bottom-up strategy for event
extraction, following biochemical semantics inspired by
BioPAX. First, we identify biochemical reactions that oper-
ate directly on entities, temporarily ignoring their catalysts
and other controllers (e.g. phosphorylation of a protein).
Following NLP terminology, we call these events ‘simple’.
Second, we find the processes that control these conversions
(e.g. the catalysis of this phosphorylation by a kinase). We
call these events ‘nested’, because of the fact that they have
other events as their targets (e.g. the above catalysis operates
on a phosphorylation simple event).

One notable contribution of this work is the small num-
ber of rules used for event extraction. This is achieved by
first identifying several general syntactic variations shared

among event mentions and then reusing the same syntactic
structures for all event types. Table 2 describes 10 syntactic
variations used in this work, together with examples for
each.

We implement the above intuition using templates
expressed in the Odin information extraction rule language
(40, 42). Odin templates enable expression of rules rep-
resenting parameterized patterns. For example, we used
one template to describe the declarative syntactic pattern
in Table 2, but left the actual verb as a parameter to be
instantiated later. The particular verb to be used at runtime
is initialized with specific values for the different event types
(e.g. ‘phosphorylate’ for phosphorylation events).

In all, we support 12 different types of simple events,
as highlighted in Figure 3. Nine of these are biochemical
reactions: phosphorylation, ubiquitination, hydroxylation,
sumoylation, glycosylation, acetylation, farnesylation, ribo-
sylation and methylation. All of these reactions involve the
covalent modification of a protein. The difference between
these events and the PTMs extracted in the previous step
is that these events refer to the actual act of modifying
the protein by attaching a functional group to it, and the
PTMs described in the previous step refer to proteins that
have already been modified (potentially as a result of simple
events mentioned previously in the paper).

The three remaining simple events are translocation,
which refers to the act of transporting an entity between
two cellular locations; binding, which is the process of

Table 2. Common syntactic variations shared among event types. Combinations of these syntactic variations are also

considered. For example, an appositive subject relative plus passivization: ‘Pde2, which has been found to hydrolyze Ras,

activates MEK’

Name Description Example

Declarative The theme (the thing acted on by the verb) is the
direct object of a verb.

‘Smurf1 and Smurf2 degrade and ubiquitinate RhoA.’

Passive The theme is the syntactic subject of a verb
phrase.

‘RhoA is ubiquitinated and degraded by Smurf1 and
Smurf2.’

Prepositional
nominalization

The trigger is in noun form and entities are in
prepositional phrases.

‘The ubiquitination and degradation of RhoA by Smurf1
and Smurf2 increased.’

Object nominalization The trigger is in noun form and with the theme
forms a noun-noun compound.

‘RhoA ubiquitination and degradation by Smurf1 and
Smurf2 increased.’

Subject nominalization The trigger is in noun form and with the cause
forms a noun-noun compound.

‘Smurf1 ubiquitination and degradation of RhoA
increased.’

Subject relative clause
(+ optional apposition)

The trigger and theme are located in a relative
clause which modifies the cause.

‘Its many abnormal phenotypes can be rescued via Pde2,
which specifically hydrolyzes cAMP.’

Object relative clause
(+ optional apposition)

The trigger and cause are located in a relative
clause which modifies the theme.

‘We measured transcription activation in the presence of
cAMP, which is hydrolyzed by CRP.’

Subject apposition The cause is in an appositive phrase. ‘Via yeast two-hybrid screening, we found that a novel
protein, A20, binds to ABIN.’

Object apposition The theme is in an appositive phrase. ‘Via yeast two-hybrid screening, we found that A20 binds
to a novel protein, ABIN’

Paraphrastic causative The trigger is separated from an entity by a verb. ‘Smurf1 causes the degradation of RhoA.’
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assembling a complex from two or more proteins; and
hydrolysis, the separation of chemical bonds by the addition
of water. Hydrolysis captures activities like cleavage and
degradation.

Nested events are processes that control other events,
such as catalysis and inhibition. Reach recognizes both pos-
itive (e.g. ‘promotes’) and negative (e.g. ‘inhibits’) controls.
It is also possible to chain the control logic, e.g. the co-
modulation of a catalysis. Following BioNLP terminology
(22), we collectively call these types of events ‘regulations’
for simplicity.

Reach also recognizes mentions of ‘activations’, i.e.
higher-level interactions that describe the direct control of
an entity’s activity (e.g. ‘A activates B’, where A and B are
proteins). These are structurally very similar to regulations
with the exception that the ‘controlled’ participant is an
implied downstream activity of a biochemical entity. These
are not supported in BioPAX by design because of the
inherent semantic ambiguity: proteins can have multiple,
overlapping ‘activities’. Reach supports them because they
are abstractions frequently used to summarize the result of a
sequence of steps in a signaling pathway. These activations
are not as useful as regulations when considered in
isolation, but they provide valuable information, including
the author’s high-level interpretation of the discussed
mechanism and indirect dependencies between proteins.
In the next section, we demonstrate how to use this
information to discover latent explanations for cancer
drivers.

Similar to simple events, nested events conform to the
syntactic patterns shown in Table 2. Capitalizing on these
patterns, the extraction system was implemented in Odin
using 154 unique rule templates, as shown in Table 3.

Table 3. Number of rule templates in Reach’s grammars

Type Syntax Surface Total

Entities 0 15 15
Generic entities 0 2 2
Modifications 0 6 6
Mutants 0 9 9
Total 0 32 32
Simple events 15 11 26
Binding 30 7 37
Hydrolysis 8 2 10
Translocation 12 0 12
Positive
regulation/activation

16 4 20

Negative
regulation/activation

14 3 17

Total events 95 27 122
Total 95 59 154

Complex natural language phenomena

In addition to the event and entity extraction grammars
described previously, Reach also recognizes complex phe-
nomena that are difficult to detect with rules alone, namely
polarity and coreference.
Polarity. Special treatment is needed for statements that
involve nested controls with different polarities. For exam-
ple, in the text from Figure 2, ‘decreased PTPN13 expres-
sion enhances EphrinB1 phosphorylation’, the predicate
‘enhances’ seems to indicate that PTPN13 up-regulates the
phosphorylation of EphrinB1. A careful inspection of the
context reveals that it is the ‘decrease’ of PTPN13 that
enhances the phosphorylation. This is interpreted by Reach
as a polarity flip for the regulation of the phosphorylation
(from positive to negative).

We handle polarity correction by traversing the syn-
tactic dependency path that connects the trigger of the
corresponding event and all its arguments in the syntac-
tic dependency graph, keeping track of polarity-reversal
words. Adjectival modifiers that connect to the path at
any point are also considered. For example, in the regu-
lation event depicted in Figure 2, the adjectival modifier
‘decreased’ signals the polarity reversal.
Coreference resolution. Coreference, the ability for different
mentions in text to refer to the same real-world entity
or event, is common in the biomedical domain. Resolving
these coreference links leads to greater recall in informa-
tion extraction, but it is rarely pursued in the biomedical
domain. Coreference applies to both entities and events
and often reaches across sentence boundaries, as in the
following examples, in which the bold text refers back to
the italicized text. The correct coreference resolution in each
case allows a further event to be extracted.

• ‘In the current study, we describe the phosphorylation,
localization and genome-wide regulatory functions
of HP1γ in gonadal tissue, gametes, and the pre-
implantation embryo. We demonstrate that phospho-
rylation of this protein at S83, which occurs in response
to Aurora A, is necessary for supporting proper mitotic
cell division in cells from the sperm lineage.’

• ‘When Wnt signaling or Cdc42 activity was blocked,
the induced, but not the basal level of this interac-
tion, was lost, suggesting both Wnt and Cdc42 activi-
ties are required to promote a Dvl2/aPKC interaction
after scratching. In contrast, aPKC inhibitors did not
block this interaction, suggesting aPKC activity was not
required for Dvl2/aPKC complex formation.’

Inspired by Lee et al. (27), we adopted an architecture for
resolving coreference in which deterministic resolution rules
(or ‘sieves’) are ordered from highest to lowest precision

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay098/5107029 by guest on 18 M

ay 2024



Database, Vol. 2018, Article ID bay098 Page 7 of 14

and from lowest to highest recall. The advantages of this
approach are similar to those of the previously introduced
rule-based architecture for entity and event extraction,
including stability, human interpretability and high overall
performance.

However, though successful in the open domain, we
discovered that the system proposed by Lee et al. (27)
is not well suited to the biomedical domain, producing
low-precision results due to over-clustering. To account for
this, we adapted the sieves to the biomedical domain by
eliminating sieves that are redundant, uninformative in this
domain or insufficiently restrictive, as well as by creat-
ing new, domain-specific sieves that capitalize on domain
knowledge.

For example, recognizing mutants (though the word
mutant may not appear) will allow linking in sentences
such as ‘. . .we prepared recombinant H2AX-K134A. . .The
intensity of the band corresponding to histone H2AX
methylation was significantly diminished in the K134A
mutant compared with that of wild-type H2AX (H2AX-
WT). . ..’. Similarly, recognizing specific protein reactions
allows otherwise difficult resolution, as in linking two
dissimilar mentions of a single binding reaction in ‘LL-
37 forms a complex together with the IGF-1R . . .and this
binding results in IGF-1R activation . . ..’ We described this
approach in detail in (8).

Intrinsic evaluation: machine reading

performance

Comparison with other reading systems

In an independently administered evaluation (36) [con-
ducted by MITRE in the DARPA Big Mechanism program
(www.darpa.mil/program/big-mechanism)], Reach was
found to extract signaling pathways at relatively high
precision, at a throughput capable of reading the entire
open source biomedical literature within days. Participating
systems extracted mechanistic information from 1000
papers about the Ras signaling pathway over the course of
a week. Two metrics were used to evaluate the participating
systems: (i) precision, calculated as the proportion of
interactions that were considered ‘largely correct’, i.e. (a)
the interaction had to match the text evidence, (b) both
participants (if present in the interaction) as well as the
interaction type had to be correct and (c) the negative
information indicator (was the interaction negated or not in
text?), had to be correct; and (2) throughput, the estimated
number of ‘largely correct’ interactions produced from
the 1000 publications per day. Note that the correctness
of entity grounding (i.e. linking the textual mentions of
interaction participants to ids of actual entities in KBs) was

not a factor in calculating this precision measure. Further,
in this evaluation, throughput was used as a proxy for recall
because true recall would be expensive to compute on such
a large data set.

Four other teams participated in the evaluation. The
participating teams followed different approaches. For
anonymity, we do not identify the participating consortia
by name, but briefly describe their approaches. Team 1
implemented a pipeline of machine learning components
that addressed various aspects of the task, such as identify-
ing interaction types, interaction participants etc. Teams
2 and 3 implemented a hybrid approach, where they
used machine learning to construct semantic represen-
tations of the text (2, 7) and a rule-based component
to extract domain-specific information from this open-
domain semantic representation. Team 4 used a rule-
based approach, with rules that focused solely on surface
patterns. In this evaluation, Reach and Team 4 were
part of the same consortium and evaluated jointly. The
results are summarized in Table 4. (Please note that the
precision scores in the table are based on a slightly different
composition of papers for each team. The reason MITRE
did this is that the number of interactions generated
varied greatly among teams; the evaluation team had to
score interactions from more papers to get reasonable
precision numbers for submissions with fewer extractions.
In particular, all participants were scored on outputs from
the same eight papers; but Team 1, Team 3 and Reach +
Team 4 were evaluated on two additional publications, and
Team 3 was further evaluated on three more.)

The table shows that the Reach + Team 4 consortium
obtains the best balance of precision and throughput, with
the highest throughput and relatively high precision. Team
2 had the next highest throughput, but both its throughput
and precision were more than twice as low as Reach +
Team 4’s scores. Teams 1 and 3 had higher precision scores,
but their throughputs were considerably smaller: 11.2 and
6.3 times smaller than Reach + Team 4’s throughput,
respectively.

While this evaluation reports results for Reach and Team
4 jointly, we aimed to tease out Reach’s contribution in

Table 4. Machine reading results in the Big Mechanism

evaluation

Team Throughput Precision (%)

Team 1 62 59
Team 2 342 23
Team 3 110 63
Reach + Team 4 695 49
Reach 486 62
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this consortium. To this end, we performed a post-hoc
internal analysis of the data generated for this submission,
separating the extractions produced by Reach from the
extractions produced by Team 4. This analysis showed that
Reach alone has a precision of 62% and is responsible for
∼70% of the consortium throughput. These results, shown
in the last row of Table 4, support the same observations:
Reach has a throughput considerably higher than all the
other teams, at precision approaching the highest precision
value observed in the evaluation.

The high throughput observed for Reach has two causes.
First, the approach implemented in Reach, which includes
Odin grammars that cover both syntax and surface pat-
terns, coreference resolution, polarity handling etc. (see
previous section), guarantees good coverage of the various
linguistic phenomena encountered in this data. Second, the
Reach grammar runtime system is fast: on average Reach
processes a publication in <5 seconds. This allowed the
team to easily process the entire data set of 1000 papers
in the time allotted for this evaluation. In fact, the Reach
submission was completed in the first few hours of the first
of the 7 days reserved for the evaluation.

All in all, this analysis demonstrates that Reach manages
to maintain comparatively high precision without consid-
erably sacrificing throughput. As we show in 5, this high
throughput can be leveraged to increase precision by taking
advantage of redundancy, i.e. the more times an interaction
is extracted, the more likely it is to be correct.

Other biomedical tasks

Note that, while other efforts on extracting biomedical
structures from free text certainly exist (22–24, inter alia),
they are not directly comparable to this work, for several
reasons:

1. There are differences in task definitions between
Big Mechanism and other existing efforts. For
example, the events covered in the BioNLP data sets
(22–24) include gene expression and transcription
interactions, whereas Reach focuses strictly on post-
translational modification (PTM) events. On the other
hand, the BioNLP data sets focus on molecular-level
regulation events, whereas Reach additionally extracts
activation events that describe interactions at a higher
abstraction level. Furthermore, there are differences
in how interactions were defined in BioNLP vs.
Big Mechanism. For example, Binding (i.e. complex
assembly) events in BioNLP can have an arbitrary
number of arguments, whereas in Big Mechanism
Binding events are binary (n-ary complex assembly
interactions are represented as a sequence of binary
Binding events).

2. There are considerable tokenization differences
between BioNLP annotations and Reach. Specifically,
BioNLP extracts subword events, e.g. where both
the predicate and the corresponding argument are
included in the same token, and subword arguments,
e.g. where only part of a word is the argument of a
predicate. For example, ‘phospho-p38’ is labeled as
an event in which the p38 protein is phosphorylated.
Reach generally does not extract such subword events.

3. Most BioNLP data sets contain only text from pub-
lication abstracts (22), or a mixture of abstracts and
full publications, heavily biased toward abstracts (23).
The BioNLP 2013 data set (24) is the only one that
contains solely text from full publications, but it is
small (only 10 publications), which introduces a bias
risk. In contrast, Reach was designed to robustly parse
the full content of any biomedical paper.

Nevertheless, in order to put this work in a larger
context, we implemented a simple comparative analysis in
which we evaluated Reach on Phosphorylation events in the
BioNLP 2013 data set. Phosphorylation interactions are the
most frequent PTM simple event in the BioNLP 2013 data
set, and they generally align well with the Reach definition.
On the BioNLP 2013 development partition, Reach obtains
a precision of 92.9%, a recall of 56.0% and an F1 score of
69.9% (using the approximate span and recursive criteria
scorer, the standard scorer configuration in the BioNLP
challenge). In contrast, the Turku Event Extraction System
(TEES) (9), the second best system in the BioNLP 2013
evaluation, obtained 83.9% precision and 83.5% recall on
the development data set. We find Reach’s high precision
encouraging, especially considering that Reach was never
exposed to this data set before this exercise, whereas all
the other BioNLP participants used supervised learning and
tuned hyper parameters to maximize performance on this
development partition.

To understand the lower recall, we inspected the false
negatives (FNs), i.e. phosphorylation events missed by
Reach on the development partition of the BioNLP 2013
data set. Our analysis confirms that these were caused by
differences in task definition. In particular, 58% of the FNs
were caused by subword events such as the one shown
above in this subsection. Assuming Reach were modified
to handle such subword events, its ceiling performance
on phosphorylation events would be 92.9% precision
and 81.9% recall, for an F1 of 87.1% on the develop-
ment partition, demonstrating the possibility of a score
considerably higher than the one reported by the TEES
system (83.9% precision and 83.5% recall). The other FNs
were caused by faulty syntactic parsing (10%), misiden-
tifying causes (7%), unhandled errors in the input such as
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‘phosphorlyation’ (6%), latent arguments that are only
supplied by domain knowledge (3%) and missing rule
coverage (16%).

Lastly, please note that this difference in task definitions
works both ways: Team 1 in Table 4 trained and tuned their
components using the BioNLP data sets. As the table shows,
this yielded low throughput compared to Reach in the Big
Mechanism evaluation.

Identification of mutex alterations of cancer

drivers

We applied this NLP framework to multiple biological data
analysis algorithms. The biological data analysis algorithm
we focus on in this work identifies mutex alterations of
‘driver’ mutations in cancer. We observe that across a cohort
of cancer patients, some mutations co-occur within the
same patient less than expected by random chance. This
often happens because these alterations unlock the same
cancer-driving pathways and the positive selection of one
diminishes substantially when the other is present. A simple
analogy for this problem is the following: consider a burglar
that aims to enter a building to reach valuable property.
The burglar may break in either through a window or a
door to enter, but likely not both, because one entry point
is enough to get inside the building. Across a sufficiently
large set of burglary cases, broken windows and doors
will overlap less than expected. In other words, ‘one is
enough.’

One brute-force, no-prior approach to detect mutex
relationships is simply to test all pairs of genes using a
hypergeometric test. However, we often see that three or
more genes within a same pathway exhibit a mutex pattern.
In these cases, the basic approach is less useful, simply
because the number of hypotheses increases exponentially
as a function of the module size, decreasing statistical power
because of corrections for multiple comparisons (Here, a
module is a group of signaling pathways that impact the
same downstream protein.). For larger modules, it also
becomes more important to explain why a particular mod-
ule is mutex mechanistically, as there are more confounding
factors.

To address this problem, we previously introduced the
Mutex algorithm (5), which combines large-scale omic pro-
files with prior knowledge of pathway mechanisms. Given
a set of omic profiles, Mutex performs a graph search
on the prior networks derived from pathway information,
testing at each step for a network module that is mutually
exclusively altered and can explain, by the merit of the
underlying pathway structure, the observed pattern. Prior
pathway knowledge improves the accuracy of Mutex by
limiting the search space and reducing the loss of statistical
power. Such knowledge also provides mechanistic expla-

nations of the observed correlations. However, when these
pathways come from human-curated databases such as PCs,
recall is low due to the aforementioned database coverage
issues. Alternatively, Mutex can operate over a fully con-
nected network to produce a no-prior model. This ability
provides a basis to study the trade-offs between no-prior,
high-coverage methods that do not provide mechanistic
explanations and prior-based, lower-coverage methods that
may overlook some key events.

In this work, we evaluate whether we can improve
the prior-based approach by expanding the knowledge of
prior pathways with information extracted by Reach. We
compare the results both with the prior-based approach and
the no-prior approach.

Figure 4. The Reach output is ∼12 times larger than the size of PCs. We

conjecture that the small overlap is caused by the fact that the Reach

interactions are extracted from open-access publications, whereas PCs

pathways come mostly from other, paywalled publications. The high-

confidence subset is of relations that were found in more than one

paper.

Figure 5. Reach allows Mutex to detect seven new candidate ‘driver’

genes for breast cancer which are not detected otherwise, when using

PCs alone, or without using any network. We observed similar results

for six other cancers in the TCGA data set.
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Figure 6. Mutex groups for TCGA breast cancer. This graph shows the interactions of the genes in each Mutex group and their targets. The highlighted

relations exist in Reach data but not in PCs. Highlighted genes are not detectable without using Reach data.

Extrinsic evaluation: discovery of biological

hypotheses

This evaluation demonstrates that Reach-extracted path-
way fragments improve the inference capacity of the Mutex
algorithm, even when it already benefits from large curated
models (‘big mechanisms’). Specifically, we extended the
PCs (http://www.pathwaycommons.org/) human-curated
pathways, which were used by the previously published
instance of Mutex, with fragments extracted by Reach from
all papers in the Open Access subset of PubMed (1 046 662
papers as of June 2015) (Figure 4).

Using this combined prior network we were able to
identify previously unidentified but highly statistically
significant mutually exclusively altered signaling modules
in TCGA cancer data sets using the Mutex algorithm
described above. Figures 5 and 6 show Mutex groups for
TCGA breast cancer, and Table 5 summarizes the findings
for all enhanced cancer studies in TCGA. R represents the
Mutex configuration using the combined Reach + PCs
network, P denotes the Mutex configuration using only
the PCs network and W marks the Mutex configuration

Table 5. Mutex + Reach analysis of TCGA. The R−P−W and

RW−P ablation experiments indicate that Reach extractions

are responsible for the discovery of new hypotheses in seven

cancers

Cancer study R P W R-P-W RW-P

BLCA 2 2 6 0 0

BRCA 30 17 40 7 12

CESC 5 6 7 0 0

DLBC 0 5 0 0 0

GBM 23 14 40 3 7

HNSC 26 23 25 3 2

KICH 0 0 6 0 0

LAML 2 2 2 0 0

LGG 26 12 51 0 14

LIHC 12 17 16 0 0

LUAD 14 16 11 1 0

OV 7 11 7 2 0

PAAD 22 7 17 10 5

SARC 15 22 25 0 0

THCA 9 11 12 0 0
UVM 2 3 34 0 0
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Table 6. Correctness of the hypotheses generated by Mutex

+ Reach. The ‘With direction’ column considers strict, direc-

tional hypotheses, e.g. GATA3 activates PTEN. The ‘Ignoring

direction’ column considers non-directional hypotheses, e.g.

either GATA3 activates PTEN or PTEN activates GATA3

Hypotheses
generated

With
direction

Ignoring
direction

Seen at least once 51 65% 71%
Seen at least twice 21 80% 80%

uninformed by any supporting network. In Table 5 we also
include ablation results, e.g. R−P−W is the output of the
R configuration without hypotheses discovered by either
the P or W approaches. All in all, Table 5 highlights that
machine reading is responsible for the discovery of new
hypotheses in seven cancers.

A manual evaluation of these modules by an external
cancer researcher (Table 6) reveals that, despite the inherent
noise in machine reading, 65% of the hypotheses proposed
by the Mutex algorithm that had access to signaling path-
ways extracted by Reach are indeed correct according to
the literature. Further, a simple redundancy filter that keeps
Reach extractions only if they are seen at least twice in
the literature increased this accuracy to 80%. This demon-
strates that our approach systematically and incrementally
increases coverage of prior, curated networks using NLP
strategies, and, we believe, is valuable for molecular tumor
boards and other cases where one needs to combine system-
scale data with the knowledge in the literature.

However, a post-hoc error analysis of the incorrect
hypotheses proposed by this approach (Table 7) indicates
that machine reading is not a solved problem: 39% of
the error are generated by incorrect syntactic analyses,
22% by incorrect entity recognition or grounding (e.g.

in the example in the table ‘BPA’ refers to the chemical
Bysphenol A not the protein with the same name) and 22%
are caused by hedged statements that were not supported
by experimental results.

Related work

Reach builds upon the tremendous body of work in lan-
guage technology applied to bioinformatics that was devel-
oped in the past two decades. We summarize the major
trends that influenced our work below, but for a more
comprehensive background we recommend reviews of the
field such as (14).

Because of the above-mentioned information explosion
in biomedical research, it is imperative to develop reli-
able, automated methods to extract information from this
literature and make it available in a structured fashion.
The BioNLP shared tasks and associated workshops were
organized to advance research in this area (22, 23, 35).
Many systems have participated in this shared task, broadly
representing two directions: rule-based and machine learn-
ing methods.

Rule-based information extraction systems have been
successful in the biomedical domain. Rule-based systems
took off with the advent of Finite State Automaton Text
Understanding System (FASTUS) (3), which was imple-
mented as a cascade of finite state automata (FSA), where
each FSA captured a ‘layer’ in the task to be addressed
(e.g. entities, events), and was defined through a grammar
that aggregated multiple rules. Systems such as FASTUS
tend to rely on shallow linguistic structure for efficiency.
Inspired by the ideas promoted by FASTUS, one of the
first rule-based information extraction systems to target
the biomedical domain was Blaschke et al. (11), which
focused on extracting protein–protein interactions. Devised
by biologists, the system searches for mentions of proteins

Table 7. Error analysis of the incorrect hypotheses generated by Mutex+Reach

Error
type Frequency Example Incorrect output

Complex
syntax

39% (7) ‘In mouse models of leukemia and melanoma, IDH
mutants accelerated cell cycle transition by activation
of the MAPK and ERK pathway and repression of
tumor suppressors CDKN2A and CDKN2B
(Chaturvedi et al., Shibata et al.)’

CDKN2A controls IDH. The correct
interaction to be extracted from this
statement is: IDH controls CDKN2A.

NER 22% (4) ‘At PND100, BPA significantly increased expression
of EGFR (p = 0.0132), phospho-IGF-1R
(p = 0.007), . . .’

BPA is-a Protein. In this paper, BPA refers to
the corresponding chemical not the protein
with the same name.

Hedging 22% (4) ‘Therefore, we next investigated whether CIC
promotes mutant p53 GOF.’

CIC activates p53, which is unsupported by
the hedged statement.

Other 17% (3) —
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separated by a term known to signal their interaction. The
extracted protein–protein interactions were then assem-
bled into a small interaction graph with a high degree of
accuracy.

While Blaschke et al. (11) demonstrated the effectiveness
of lexicalized patterns, deeper linguistic analysis affords
certain advantages such as better generalization. Kilicoglu
and Bergler (20) used a concise set of rules over deep
linguistic structure (dependency parses) to detect nine
types of biochemical events. This system was one of the
top performers in the BioNLP 2009 shared task on event
extraction.

An important trend in information extraction is, of
course, the use of machine learning. These approaches
can be classified in two sub-classes: supervised learning,
where the machine learns from data manually annotated
by domain experts, and distant supervision, where training
data are automatically generated by aligning a database
of known facts (e.g. protein–protein interactions) with rel-
evant texts [e.g. biomedical publications discussing such
interactions (31)]. The first approach that applied machine
learning to biomedical information extraction was pro-
posed by Craven and Kumlien (15). Notably, this is also the
first work to use distant supervision for information extrac-
tion. Björne et al. (10) proposed a supervised machine learn-
ing approach for biomedical information extraction, which
obtained the best results at the BioNLP 2009 shared task on
event extraction. Since then, several efforts have improved
upon its performance (13, 30, 33, 34, 44). Notably, the top
performers at the more recent editions of the BioNLP shared
task rely on machine learning (9, 32).

Reach builds upon this previous work in several ways.
First, we propose a declarative rule-based approach that is
inspired by and improves upon this body of work, using a
framework designed to build grammars that are concise and
interpretable and which can mix deep and shallow syntactic
analysis. Second, this work addresses additional important
phenomena that are generally ignored in previous work
(e.g. coreference resolution and event polarity). And third,
our approach can be combined with machine learning
approaches to discover relevant grammars automatically.
Our experiments indicate that such hybrid approaches can
be constructed at minimal cost and are successful (41).

We and other groups have previously integrated curated
priors into omic analysis and have shown that it improves
the accuracy and interpretability of the inferences for a wide
range of tasks (1, 4, 6, 12, 17, 26, 45). Of particular note
is the DREAM network inference challenge where prior-
based methods took the top two positions in an independent
evaluation (18). Others have looked at the overlap between
curated models and literature-derived networks (25, 37).
Our work is the first to carefully examine whether the

biochemical pathways extracted by the machine can be
successfully combined with human-curated models in the
context of a specific analytical task.

Conclusions

This work showed that the large-scale automated reading of
cancer literature ushers in novel cancer research that com-
bines ‘big data’ automatically extracted from the literature
with ‘big mechanisms’, i.e. large protein signaling pathways
curated by domain experts.

We introduced Reach, a machine reading system that
processes statements in the biomedical literature into mech-
anistic information. An independently administered evalu-
ation demonstrated that the proposed system outperforms
other systems under a metric that combines precision and
throughput. All in all, Reach achieved a relatively high
precision at high throughput, capable of processing one
paper in 4.5 seconds. The system is available as open-source
software at github.com/clulab/reach.

We used Reach to process a large number of PubMed
Central articles containing mechanistic information and
demonstrated that this information improves biological
data analysis algorithms. Using a combination of infor-
mation produced by Reach and PCs, we discovered new
cancer-driving mechanisms for seven cancers in the TCGA
data set. An external biologist who analyzed the hypotheses
proposed by the algorithm found out that 65% of these
are correct (i.e. they are supported by the literature). If
we consider only interactions seen at least twice in the
literature, 80% of the resulting hypotheses are correct.

Beyond the use case discussed in this paper, this approach
proposes a pipeline for information analysis in the biomed-
ical domain that we believe generalizes beyond the domain
addressed here. In this pipeline, machine reading is used to
process a very large number of publications. This has the
advantage of scalability beyond human capacity, but the
drawback that it introduces noise. To mitigate the latter
issue, biological data analysis algorithms (Mutex in this
work) filter out the noise by identifying strong associations
between machine data and patient data and synthesize
the information produced through machine reading into
a small number of strong hypotheses. This approach, we
believe, is valuable for molecular tumor boards or other
cases where one needs to combine system-scale data with
the knowledge in the literature.
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