
© The Author(s) 2018. Published by Oxford University Press. Page 1 of 11
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2018, 1–11

doi: 10.1093/database/bay099
Database tool

Database tool

Tripal Developer Toolkit

Bradford Condon1, Abdullah Almsaeed1, Ming Chen1,2, Joe West1 and

Margaret Staton1,*

1Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, 2505
E.J. Chapman Blvd, 370 Plant Biotechnology Building, Knoxville, TN 37996 and 2Graduate School of
Genome Science and Technology, University of Tennessee, Knoxville, M411 Walters Life Science,
Knoxville, TN 37996-0840
∗Corresponding author: Phone: (865)974-7135; Fax: (865)974-4744; Email: mstaton1@utk.edu

Citation details: Condon,B., Almsaeed,A., Chen,M. et al. Tripal Developer Toolkit. Database (2018) Vol. 2018: article ID
bay099; doi:10.1093/database/bay099

Received 5 June 2018; Revised 6 August 2018; Accepted 27 August 2018

Abstract

Tripal community database construction toolkit utilizing the content management system

Drupal. Tripal is used to make biological, genetic and genomic data more discoverable,

shareable, searchable and standardized. As funding for community-level genomics

databases declines, Tripal’s open-source codebase provides a means for sites to be

built and maintained with a minimal investment in staff and new development. Tripal

is ultimately as strong as the community of sites and developers that use it. We present

a set of developer tools that will make building and maintaining Tripal 3 sites easier for

new and returning users. These tools break down barriers to entry such as setting up

developer and testing environments, acquiring and loading test datasets, working with

controlled vocabulary terms and writing new Drupal classes.

Software URL: https://github.com/topics/tripal-developer-tools

Introduction

The rapid advancement in sequencing technology has
resulted in a proliferation of genomic data. General, all-
purpose databases such as NCBI capture some of this data,
but additional support is needed for manual annotation,
specialized analyses and data integration, particularly for
groups not specializing in bioinformatics. Community-level
genomics databases fill this role, hosting a curated set of
data from a species or multiple species of interest.

In recent years, however, funding for these resources
has been significantly reduced, even for large-scale model

organism databases (1). To continue the critical role
they play connecting researchers to tailored bioinformatic
resources, community databases must formulate a plan to
not only keep sites available but also continue to add new
data and services.

The biological community database construction toolkit
Tripal was created as a multifaceted solution to many of
these problems (2). Tripal marries the content management
system Drupal (http://www.drupal.org) to the standard bio-
logical relational database storage backend Chado (3). Tri-
pal utilizes the same system of modular code units that have

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
https://github.com/topics/tripal-developer-tools
http://www.drupal.org

Page 2 of 11 Database, Vol. 2018, Article ID bay099

Table 1. Key Drupal vocabulary and concepts

Drupal concept introduced in
Tripal 3 (see http://tripal.info/
node/347)

Definition Example Corresponding Tripal 2 concept

Entity types (Tripal entity type) A generic container that defines a
type of content. All Tripal content is
of the TripalEntity type.

TripalEntity type, Page Node

Bundle (Tripal content type) An implementation of an entity type
to which fields can be attached.

Organism Node content type

Field A piece of content that can be used
in multiple bundles.

Common name, Genus, Species

Entity A particular instance of a Tripal
Content Type.

A specific entry, such as the
organism F. excelsior

Node

An entity type is essentially a generic container that defines a type of content, while a bundle is a more specific subtype that includes fields. For example, Drupal has a page entity type, with
bundles for more specific types of pages, for example, a blog post or an article. These bundles include fields that define a smaller unit of content associated with a bundle. In the case of the
blog post, fields would include a title, the author, the date it was posted and the body of the article. An entity is a piece of specific content, such as a specific blog post. In Tripal, examples of
bundles would include units of content such as gene or organism. Fields would include gene name or genus and species. A single species, such as Fraxinus excelsior, would be an entity

made Drupal so successful. Tripal core provides a basic set
of common functionality, including content types such as
organisms, sequence features and controlled vocabularies.
Extension modules can then be developed by any group
to extend the core and provide additional functionality.
Examples of extension modules include a BLAST tool for
users (4), natural diversity genotype data loader and display
(5, 6) and elasticsearch to provide fast sitewide search-
ing (7). Tripal websites can reuse and share Tripal exten-
sion modules, meaning each website is not coding its own
solution to shared biological problems. These advantages
make Tripal an attractive option for community database
platforms aiming to do more with fewer resources while
remaining sustainable.

Tripal was first released in 2009 and has since had
numerous improvements (8), the latest of which, Tripal 3
(9), includes improvements to interoperability, data loading
and display and semantic web integration. In particular,
usage of ontology-derived Controlled Vocabulary terms
(CVterms) for all Tripal content will better position Tripal
for semantic discovery and processing of biological data
(10). Tripal 3 also upgrades many of the Drupal concepts, a
necessary task as Drupal’s release cycle marches forward.
In particular, nodes are replaced with Bundles, Entities
and Fields to allow more lightweight, flexible content type
solutions (Table 1).

Developer challenges

The Drupal website lists 121 sites using Tripal as of this
writing (https://www.drupal.org/project/usage/tripal), a
number which continues to grow. As more communities
rally behind Tripal, we hope the developer community,
which has grown from two to thirteen contributors since

its inception, will continue to grow alongside it. While it
is advantageous that Tripal sites can be created with a
smaller staff, this also introduces its own set of challenges.
Creating custom Tripal modules often requires some
understanding of biology, as well as significant expertise
in computer science and web development. Maintaining
the site (collecting, curating and uploading data) requires
skills in web development, biocuration and bioinformatics.
Development teams may not have the personnel to fulfill
all these roles.

Tools that lighten the workload and ease the learning
curve should be very welcome for new and veteran Tripal
module developers alike. Drupal developer modules exist:
the Devel module, for example, adds many helpful develop-
ment features to your site (11). Generic Drupal tools exist to
provide a Developer instance (12), PHPUnit testing (13) and
CI (14), Entity management (15, 16) and Field Generation
(17). However, because all Tripal content is a custom Tripal
content type, few of the features these tools offer would be
functional for Tripal and Chado.

Prior to this publication, no such Tripal-specific tools
were available. We recognize that the skillset of a given
development team may be lacking in biological or computer
science expertise. Given that Tripal lives at the union of
these disciplines, we identify challenges that a small devel-
opment team is likely to face deploying a Tripal site and
present a suite of developer tools to facilitate their resolu-
tion (Table 2), which we have developed in the course of our
own work on the Tripal-based site Hardwood Genomics
Project (18).

Developer instance. Developers should set up a developer ins-
tance to test code before deployment. Building, maintaining
and rebuilding developer sites are time consuming and
require system administrator knowledge that may be

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

http://tripal.info/node/347
https://www.drupal.org/project/usage/tripal

Database, Vol. 2018, Article ID bay099 Page 3 of 11

Table 2. Tools presented in this paper

Name GitHub repository DOI Description

Tripal Alchemist https://github.com/statonlab/
tripal alchemist

DOI: 10.5281/zenodo.1187120 Convert Tripal Chado entities from
one bundle to another.

TripalDock https://github.com/statonlab/
tripaldock

DOI: 10.5281/zenodo.1187125 Build, deploy and manage Tripal
docker sites.

Tripal DevSeed https://github.com/statonlab/
tripal dev seed

DOI: 10.5281/zenodo.1205522 Lightweight dataset for module and
site testing.

Docker images https://github.com/statonlab/
docker-containers

DOI: 10.5281/zenodo.1238033 Rapidly deploy single container
pre-built Tripal sites.

TFG https://github.com/statonlab/
fields generator

DOI: 10.5281/zenodo.1200661 Easily write custom fields with
CVterms.

Tripal Test suite https://github.com/statonlab/
TripalTestSuite

DOI: 10.5281/zenodo.1204508 Add PHPUnit and CI testing with a
single command

beyond developers with primarily biology backgrounds.
A development environment preserves the functionality of
your live site for your users, protects your data from acci-
dental corruption and, if configured well, can greatly speed
up your development time. For a Tripal site, a developer
instance must consist of a webserver [apache (19) and nginx
(20)] and database [PostgreSQL (21)] with Tripal’s base
dependencies installed (PHP, Drupal and PHP extensions)
and configured correctly, as well as any additional services
[phppgadmin (22) or elasticsearch (23)]. While the Tripal
user’s guide provides manual installation instructions
(available at http://tripal.info/tutorials/v3.x/installation),
this can be an overwhelming experience for new Tripal
developers without prior web development experience.
Docker containers help developers quickly and easily create
shareable development environments, and using them is a
developer’s best practice (24). TripalDock automates and
optimizes these tasks.

Data acquisition. Ideally, development sites are lightweight,
but they still require biological data to test loading, display
and manipulation of real data. Computer-science-focused
developers may have difficulty understanding how to gen-
erate, format and load Chado with complicated intercon-
nected bioinformatics datasets. Without test data loaded,
however, they cannot reliably develop and test their code.
Mirroring the dataset available on their live website may be
impossible due to the size of genomic datasets, which can
result in extremely large databases that take up too much
storage space and run too slowly for the rigors of devel-
opment. Scientific computing packages are sometimes dis-
tributed with small example datasets [for example, the Iris
dataset in R (25, 26)]. Tripal DevSeed is a curated, miniature
dataset in one place, covering all core Tripal functionality.

Testing and continuous integration. Code testing is widely appre-
ciated by professional software developers for the many

benefits it provides (27). Tests ensure that software pro-

duces the intended result given by various inputs, and their
use can help discover errors or bugs in the code. Tests
also ensure that previously written code is not broken
by new additions, and they allow safe code refactoring.
The most common testing framework for PHP, the coding
language of Drupal and Tripal, is PHPUnit (28). As with
most testing frameworks, it uses ‘assertions’ to verify that
code behaves as expected. Consider a method that renames
a gene feature. A suite of tests might verify that the given
input features are correctly renamed and that the method
can gracefully deal with problematic cases such as when
the gene does not exist in the database or the new name
is already in use. If the rename method is updated with
new code, tests are rerun to ensure no new bugs have
been inadvertently created by the new additions. Tests
are so helpful that some development practices prescribe
writing tests before writing the intended code (Test Driven
Development), which can increase test coverage and coding
efficiency (10).

Despite their importance, a novice Tripal developer
may be intimidated by the overhead required for writing
reproducible, platform independent tests that interact with
Chado, Drupal and Tripal. Continuous integration (CI)
is the practice of frequently merging new code during
development, then automatically building and testing the
new codebase to verify the integrity software. Adding
CI testing to software allows projects to release updates
more often (29) and to include more code from non-
core developers without diminishing code quality (30).
One good solution for Tripal developers to leverage is
Travis CI, a free service to build and test code hosted at
GitHub (31). Testing and CI are a huge topic, and biology-
focused developers may not be familiar with it or why it is
important to learn and use. The Tripal Test Suite encourages
developers to learn about these software development

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

https://github.com/statonlab/tripal_alchemist
https://10.5281/zenodo.1187120
https://github.com/statonlab/tripaldock
https://10.5281/zenodo.1187125
https://github.com/statonlab/tripal_dev_seed
https://10.5281/zenodo.1205522
https://github.com/statonlab/docker-containers
https://10.5281/zenodo.1238033
https://github.com/statonlab/fields_generator
https://10.5281/zenodo.1200661
https://github.com/statonlab/TripalTestSuite
https://10.5281/zenodo.1204508
http://tripal.info/tutorials/v3.x/installation

Page 4 of 11 Database, Vol. 2018, Article ID bay099

practices and eases their initial set up by automatically
adding the framework for PHPUnit and Travis CI to a
Tripal module.

Entity management. Tripal code developers need to contend
with new Drupal content-type concepts, including bundles,
entities and fields. Tripal ships with a migration function
to convert core node types (an earlier Drupal content type)
to entities, but there is no tool to convert entities from one
type to another. Additionally, in Tripal 2, many extensions
provided custom node types. For example, analysis subtype
modules defined BLAST and Interproscan analyses. The
Tripal 3 migration process cannot support all custom nodes,
so they migrate as analysis entities, and must be converted
to custom entities to preserve unique functionality. As site
administrators build their sites, they will likely want to
further customize content types. Tripal Alchemist is an easy-
to-use tool for this task.

Coding fields. Fields are an integral component of the new
entity system. In simple cases, new fields can be easily cre-
ated through the Drupal administrative web pages. How-
ever, defining fields programmatically require an under-
standing of Chado, Controlled Vocabularies and the Tripal
field structure. Furthermore, multiple, interconnected files
with strictly defined function naming are required, leading
to simple mistakes that are difficult to troubleshoot. The
Tripal Fields Generator (TFG) automates the field creation
process.

The tools we have developed to facilitate our own Tripal
development are open source and freely available, and we
hope they will accelerate the development and sharing of
new Tripal modules for others as well.

Materials and methods

Code standards and accessibility

All projects and tools are available on GitHub under an
open-source license (GPLv3, located in the project root of
each repository), included in each project’s repository. Each
individual project includes documentation for installation
and use, as well as guidelines for contribution.

Tripal DevSeed sequences and annotations

Two hundred coding sequences (CDS) and their corre-
sponding predicted amino acid sequences of the F. excelsior
genome assembly were selected using the DevSeed minify.sh
script and used to seed the developer dataset (32). All
scripts used to download, minify and annotate the data are
included in the devSeed project repo. The Kyoto Encyclope-

dia of Genes and Genomes (KEGG) database and software
is proprietary, and therefore was annotated using the online
webtool (see below).

The dataset was then annotated using the annotate.sh
pipeline. CDS sequences were annotated using BLAST+
v2.7.1 (33) against UniProtKB/TrEMBL (downloaded
July 2018) and the plant portion of UniProtKB/SwissProt
(downloaded July 2018) (34). Amino acid sequences were
annotated using InterproScan 5.30-69.0 (35) using with the
iprlookup, goterms and pathways flags. Biosamples were
randomly generated using the generate biomaterials.py
script, which randomly generates unique and shared
key/value pairs and outputs NCBI biosample formatted
XML files (36). Expression data was randomly generated
for each Biomaterial and CDS pair using the DevSeed
generate expression.py script. The Newick format tree file
was generated by aligning CDS sequences using MAFFT
v7.402 (37). KEGG annotations were generated using the
online KEGG Orthology And Links Annotation (KOALA)
tool v2.0 (38).

Results

Developer instance tools

As described in the challenges, developer instance section,
the first barrier to creating a Tripal module is configuring
the developer environment. We present two platforms for
rapid developer instance deployment. The first is a self-
contained Docker image, with webserver and database.
Docker provides a way to ‘containerize’ a software program
or set of software programs, allowing them to be quickly
and easily transferred among computing systems and re-
deployed without any new configuration or installation
effort. We have created Docker images for base Drupal (no
Tripal installed), Tripal 2 and Tripal 3. The Tripal 3 image is
also provided pre-loaded with a miniature dataset stored in
Chado (described below). These images are designed specif-
ically for Tripal module development. The Drupal image
has customization in module locations, and as a result,
TripalDock can keep the Tripal submodules in a mapped
image separate from the Drupal modules. The Tripal
images automatically download and use the latest version
of the master branch of the Tripal GitHub account, ensuring
the newest version is used when the container is deployed.

For those experienced with Docker, the provided images
allow single-command deployment of a functional Tripal
site. Because they are already initialized, deployment is
extremely fast, taking seconds rather than minutes. For
developers that need to build more customized and perma-
nent containers and/or without prior knowledge of Docker,
we provide a second solution, TripalDock. As opposed to

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

Database, Vol. 2018, Article ID bay099 Page 5 of 11

Table 3. Commands provided by Tripaldock

Command Description

new Create a new container.
up Start the Tripaldock container.
down Stop the Tripaldock container.
rm Remove and destroy the Tripaldock container.
ssh Interactive shell access to the container.
logs Access the logs of various services running inside the container.
install Equivalent to drush pm-enable tripal module. Allows users to install modules from outside the container.

(Drush is a command line shell for Drupal)
drush Run drush commands from outside the container.

the Tripal images already built and described above, Tri-
palDock is a command line tool that enables developers to
create and interact with their own custom Docker con-
tainers. It provides simple commands to perform cumber-
some Docker tasks and handles the mapping of files, cre-
ation of containers, execution of admin commands, depen-
dency management and volume cleanup (Table 3). This tool
allows new developers to get started immediately, avoiding
the pitfalls of setup and configuration that can stump novice
programmers.

Developer dataset

As described in the challenges, data acquisition section,
acquiring and loading biological test data for development
can be difficult and time consuming. We therefore generated
a truncated dataset of 200 genes from the genome assembly
of F. excelsior (32). Data types appropriate for all of the core
and many common extension Tripal modules are available
(Table 4) as a set, called Tripal DevSeed. Docker images can
be downloaded with the data pre-loaded or developers can

opt to download clean images and upload only the data
relevant for their work. Detailed guides for loading data are
included in the GitHub repository. Developers can also use
Tripal TestSuite (see below) to run the DevSeed database
seeder, which will automatically load the Tripal DevSeed
dataset into their site.

Tripal DevSeed is accompanied by helper scripts to
miniaturize and annotate an input dataset. The user need
only provide three files: a set of CDS in FASTA format, a
set of polypeptides in FASTA format and a GFF annota-
tion file. The user can also specify a number of features,
and the scripts will filter the input data to this number
of records. The scripts will trim the input sequences and
perform BLAST and InterProScan annotations. The only
step that has not been automated is the KEGG KOALA,
which must be performed by submitting the sequences
through the KEGG website. The result is that developers
can easily create their own miniature seed datasets that will
be appropriate for their use case. Alternatively, developers
can also create small datasets for data types that we do not
include. These datasets can, in turn, be easily and granularly
loaded using test suite’s database seeders.

Table 4. Developer dataset contents

Name Corresponding module Format Description

sequences Core FASTA 200 CDS sequences and their corresponding polypeptide sequences.
gff Core GFF GFF3 describing gene, mRNA, exon, CDS and five/three prime

UTR regions for landmarks containing the above 200 CDS
sequences.

blast tripal analysis blast XML BLAST annotations for CDS sequences against Swiss-Prot and
TrEMBL database.

interproscan tripal analysis interpro XML Interproscan annotations of polypeptide sequences.
kegg tripal analysis kegg TSV KEGG annotations generated by the KEGG KOALA tool.
biosamples tripal analysis expression ncbi xml Randomly generated NCBI XML formatted biosamples.
expression tripal analysis expression TSV Randomly generated expression data for the above biosamples.
database backups NA SQL PostgreSQL database dump of all loaded biomaterials, facilitating

one-step loading of a database.
tree Core Newick Newick format tree generated from MAFFT-aligned CDS

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

Page 6 of 11 Database, Vol. 2018, Article ID bay099

Testing and CI

Testing is an essential step in software development and
particularly important for shared community code develop-
ment, yet many projects do not adopt a formal testing struc-
ture, typically because developers are pressured to provide
results and feel they cannot afford the time spent learning
a framework and writing tests. Tripal Test Suite lowers
the barrier to entry for writing PHPUnit tests for Tripal:
installing the package allows single-command set up of the
necessary directory structure, environmental variables and
database connection (see Table 5 for a full list of command
line utilities and testing features). Command line utilities are
used to set up the initial Travis and testing environment,
create new seeders and tests and run database seeders.
The listed features are for inclusion in tests and seeds,
greatly simplifying interacting with Chado and Drupal
within your tests. For example, test classes can wrap all tests
in a database transaction and be rolled back automatically,
preserving your database. Data factories allow users to
easily add biological data into Chado that can be altered
in the test and rolled back after it finishes. Database seeders
are provided to allow developers to quickly load datasets

into their Tripal site for long-term use. A database seeder
comes pre-installed to load the Tripal DevSeed dataset,
allowing developers to populate their sites with data with
a single command, rather than manually submitting forms
and loading each file. Additionally, by having a generic
set of db seeder functions in Test Suite, any developer
wishing to provide a new set of seed data for other data
types (phenotypes, genotypes, etc.) could create their own
small files and db seeder functions, mimicking the current
DevSeed functionality for any type of data.

The package also automates the configuration of Con-
tinuous Integration with Travis CI: the user need only to
push their code to GitHub and integrate their repository on
Travis CI. Out of the box CI will ensure the module can
be installed on a Tripal 3 site and that all PHPUnit tests
pass. Tripal Test Suite also provides support to automate
the process of inserting and removing test data into the
database using database seeders, which make test data
available only during the testing process (Note that ‘auto
increment’ columns are not reset to their previous state).
This concept is useful because it allows tests to manipulate
the database without causing side effects by automatically

Table 5. Tripal Test suite Features

Command line

Shell command Description

init Generates folders and files for PHPUnit testing and Travis CI. The PHPUnit environment bootstraps your Drupal site,
tests and provides access to the TripalTestCase class. The .travis.yml file bootstraps a Tripal site in the Travis
environment, enables the module and runs tests.

make:test Creates a new namespaced Tripal Test in /tests/
make:seeder Creates a new database seeder class. Seeders allow a new site to be quickly populated with a consistent dataset.
Db:seed [seeder] Seeds the database with example data defined by seeder classes. If no seeder argument is specified, all seeds will run.

Test helper methods

Feature Usage (PHP) Description

Transactions use DBTransaction; A PHP trait that wraps each test in the class in a transaction, undoing
all changes to the database. This ensures that each test has a ‘known’
database state and that the developer’s site is not modified when
testing.

Factories $features = factory(’chado.feature’,
100)->create(); $this->publish(’feature’);

Creates Chado records. Arguments can be passed to specify the values
of specific columns, or how many records to create. Combined with
transactions, developers can easily define transient Chado data for
their tests. The publish method generates entities for the specified
records.

HTTP Requests $response = $this->get(’/’);$response-
>assertStatus(200)->assertSee(’My
Site’);

Tripal Test Suite’s HTTP methods allow you to call site URLs and
confirm that the response and page content is as expected. Supported
methods are GET, POST, PUT, PATCH and DELETE.

Silencing console $output = silent(function()
{drupal json output([’key’ => ’value’]);
return true;}); $output->assertSee(’value’)-
>assertJsonStructure([’key’])-
>assertReturnEquals(true);

Tripal commands often output status messages to the console. When
running large suites of tests, it is desirable to silence these messages so
that test failures are not lost in status messages from passing tests.
The silence method allows developers to prevent console messages,
while providing methods to verify the messages are output.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

Database, Vol. 2018, Article ID bay099 Page 7 of 11

rolling back the database state upon the completion of
tests or if a fatal error occurs during the testing runtime.
By secluding data providers from tests, database seeders
also make it possible to share code that populates the
database with mock data with other modules that depend
on the same data.

The Tripal Test Suite is now used within the Tripal Core
repository itself. Using the same tool for modules and core
makes it easier to write and structure tests.

Entities, bundles and fields

Tripal 3 introduces the concepts of entities, bundles and
fields. The resulting content is more flexible, and, because
bundles and fields are associated with CVterms, more dis-
coverable and interoperable. This is another concept to
master to successful development in Tripal 3 and choosing
CVterms can be difficult, especially for non-biologists. We
present Tripal Alchemist and Tripal Fields Generator as
essential tools to help developers work with bundles/entities
and fields, respectively.

Tripal Alchemist. Tripal Alchemist is an administrative tool
that facilitates converting Tripal entities representing
Chado records from one bundle type to another (Figure 1).
The module provides three avenues for converting entities.
‘Automatic’ conversion will identify records whose type
matches a different bundle. Analysis records, for example,
migrate during the Tripal 2 to Tripal 3 upgrade process
as a generic analysis bundle type, but they may have a
specific type property. When the site administrator creates
an appropriate bundle (BLAST annotation analysis type
for example), matching entities will automatically be
converted. ‘Manual’ conversion provides a table for users
to select entities to convert, overwriting their type. This
is useful when creating a new bundle type that applies to
existing records, which do not have the matching property.
‘Collection’ conversion functions similarly to ‘manual’ but
acts on a collection of entities that the administrator can
define elsewhere. This method is ideal for converting large
subset of entities. For example, we wished to convert the
mRNA records for some (but not all) species to messenger
ribonucleic acid (mRNA) contigs, allowing us to customize
the fields displayed for these records.

Figure 1. The Tripal Alchemist administrator tool. The Tripal Alchemist administrator interface. To convert entities, the administrator must first

select a transformation method (top). In this example, choosing the manual method allows conversion of selected entities from a source type to a

destination type (middle). The available source entities are then presented in a table (bottom), which the user can select from and submit.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

Page 8 of 11 Database, Vol. 2018, Article ID bay099

Any information a developer wants displayed on the
website must correspond to a field. A properly coded field
should handle querying and retrieving the data from the
storage backend (Chado, if a Tripal Chado field), providing
an interface for the user to enter data into the field when
creating or ending the bundle it is attached to, as well as
formatting the data for both web services and end user
consumption. Furthermore, fields are CV-centric: each field
must correspond uniquely to a CVterm.

Tripal Fields Generator. We created the Tripal Fields Generator
tool to make coding fields significantly faster and easier.
TFG is a command line PHP package easily installed with
the PHP dependency manager Composer. It asks a series
of questions about the CVterm usage of your field and
generates stub files with base class methods and instructions
for both TripalFields and ChadoFields (Figure 2). Three

Figure 2. Input and output for TFG. The command line program prompts

the user to provide a series of inputs (A) and checks the database to

determine if the specified controlled vocabulary term exists. If it does,

the software produces a set of files in the correct directory structure

to generate the field (B). An example is given using the ‘Geographic

location’ term from the Gazetteer vocabulary for a mock module named

Tripal Biosample (C). This demonstrates how the user’s inputs are

structured into the file names. These inputs are also used to build all

the necessary code variables and functions in each file, leaving only the

essential custom coding for the function bodies for the developer to

finish.

files are generated to properly define the field, with standard
functions already named and left empty for the developer
to add code: the class file, the formatter file and the widget
file. Additionally, a stub file is generated demonstrating how
to declare instances of the new field within the module.
Because the cross-file references are generated automati-
cally, this significantly reduces errors that are difficult to
debug. Furthermore, TFG will connect to your Drupal site’s
database automatically and verify that the CVterm exists in
your database.

Use cases

To illustrate how a Tripal developer might utilize these
tools in their own work, we have developed a set of three
use cases, each of which highlights how one or more of
the dev tools can be used. Each use case is derived from
our actual experience developing Tripal modules for use on
our website, HardwoodGenomics (18), and can be used for
other Tripal sites as well.

Upgrading from Tripal v2 to Tripal v3. A developer is tasked with
upgrading an existing Tripal 2 site to Tripal 3. The site
includes BLAST and InterProScan annotations for millions
of genes and differential expression data tied to NCBI
Biological Samples. After performing the built-in migra-
tion, all analyses are now using the same generic analysis
bundle, and all analyses are displayed the same way. The
developer wishes to customize certain analyses by adding
unique fields for each. For example, the developer wants
the BLAST and InterProScan analyses to list the number
of genes annotated. However, this wouldn’t make sense
for a differential gene expression analysis. For that type
of analysis, the developer wants to display the number of
significantly differentially expressed genes. The developer
will accomplish this in Tripal by defining new bundles for
these three types of analyses. Each bundle will be defined
by using a CVterm for the analysis type [such as BLAST
evidence (eco:0000206), Match to InterPro member signa-
ture evidence (eco:0000029) and Gene expression profiling
(operation:0314)]. For each unique bundle, the developer
can then add the unique fields that make sense for that
particular analysis. At this point the developer is still left
with the generic analyses that need to be converted to the
new specific analyses. Tripal Alchemist provides a way to
do this conversion automatically. The developer can use the
module to take all analyses with the CVterm for BLAST
evidence (eco:0000206) and automatically convert them to
their new BLAST-specific analysis bundle.

Next, the developer wants to bring their Tripal 2 custom
functionality to Tripal 3. They are working with a custom
module called Tripal Sample, and they want to include
a custom pane that displays the geographic location of

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

Database, Vol. 2018, Article ID bay099 Page 9 of 11

a sample on a map. They use Tripal Fields Generator to
define a new field, picking a CVterm for their field that
exists in an ontology on their site. They pick the EDAM
term ‘Geographic Location’, but forget that the accession is
data:3720, using EDAM:3720 instead. Without Fields Gen-
erator, they would have struggled getting their field to work
or inserted a bad term into their site. However, Tripal Fields
Generator checked the database and informed them of their
mistake before it was made. The tool creates the three field
stub files for them (data geographic location.inc, data
geographic location.formatter.inc and data geographic
location widget.inc) and the code to declare the new field
(tripal sample module.fields.inc), greatly reducing the pos-
sibility of making a very-difficult-to-troubleshoot mistake
(Figure 2).

Developing a new module. A developer is tasked with adding
new functionality to their site: a genetic cross viewer to
display F1 and F2 progeny phenotypes and genotypes. The
first thing they might do is use TripalDock to create a
new development site, so that they can work locally and
not accidentally bring down their development site as they
work. The developer is interested in displaying their cross
data in the context of other data: phenotypes might link
to genes and expression data. They therefore use DevSeed
to quickly load in an organism complete with a miniature
genome, biomaterials and expression data.

The developer begins in earnest on their module. They
use Tripal Test Suite’s init method to automatically set up
a PHPUnit testing environment and CI. As the developer
starts to work on an importer for cross data, they write unit
tests for functionality in the importer. The developer might
work with a biologist at this stage to define the expected
constraints on the data, such as ‘Can an individual appear in
the same cross multiple times?’, ‘Do all progeny always have
both a phenotype and a genotype?’. These constraints can
be included in tests to ensure the biologist and the developer
both achieve consistent and expected functionality. Each
test can be wrapped in a database transaction, so new meth-
ods being tested don’t alter the database for older, working
tests. When the importer is completed, the developer can
easily refactor their code, simply re-running the unit tests
after each refactor to ensure functionality.

The developer starts coding a field to display the
cross data. They use Tripal Fields Generator to identify
a meaningful CVterm (for example, Genetic Mapping-
operation:0282) and to create the base field class, widget
and formatter.

Training a new developer. A new developer has joined the team
with some experience in bioinformatics, but no knowledge
of Drupal, Chado or Tripal.

The junior developer’s first task is to install a personal
site using TripalDock. The site serves as a sandbox that
can be easily destroyed and rebuilt, allowing them to learn
and make mistakes without disrupting the deployed live
site. It also allows them to begin learning Tripal quickly,
without wrestling with system administration tasks (creat-
ing a virtual machine, webserver, etc.). Next, they would
practice loading data into their Tripal site using DevSeed.
The fully documented dataset will teach them how Tripal
imports different types of data and how Chado stores it
as well as how to navigate the administrative pages of a
Tripal website. Once they are familiar with how to load
data manually into Tripal, they will switch to the automatic
loading provided by data seeders in Tripal Test Suite.

Once their site is set up, the new developer is tasked with
creating a simple module to learn the Tripal framework.
They use the Tripal Test Suite setup command to give their
project a functional PHPUnit testing and Travis CI environ-
ment on GitHub, without spending weeks understanding
how to structure their tests, access their Drupal site within
the tests or create a Travis build with a functional Drupal.
When they contribute code to other modules or to Tripal
core, the test structure will match their learning module.
Their learning module would use Tripal Fields Generator to
build their first fields, automatically creating the necessary
files in the correct location, with the required methods to
fill out.

As the developer learns, they may load data into the
development or production site as the wrong subtype.
Developers with a computer science background might
be overwhelmed with the number of chado feature types to
keep track of: mRNA, mRNA contig, polypeptide, CDS,
5′ UTR, 3′ UTR, exon, intron and gene. Tripal Alchemist
makes correcting these mistakes trivial: any entities using
the same base table can be easily converted, saving the team
from deleting the offending entries and reloading.

When attempting to fix a problem on an existing Tripal
module the team maintains, they introduce a crippling bug
on the release branch. The CI that the team set up with
Tripal Test Suite’s notifies the team that the module no
longer installs and tests do not pass, and the team is able
to revert the change. They instruct the new member on
using GitHub best practices [branches, pull requests, (39)]
to contribute, and CI tests on branches and pull requests
allow the developer to submit functional code. Their own
learning module used the same structure and framework for
tests, so they will be able to write their own tests for their
contribution.

Conclusion

The release of Tripal 3 has unlocked new possibilities
for community genomics websites. As with many projects,

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

Page 10 of 11 Database, Vol. 2018, Article ID bay099

the limiting factor for a Tripal site is funding and, relat-
edly, personnel. With smaller development teams, tools
that bridge skill set gaps, either in the biological or com-
puter sciences, can greatly enhance productivity. We have
introduced a suite of utilities that will facilitate working
on Tripal 3 sites and developing Tripal 3 modules. These
tools encourage best programming practices for module
and site development and ease the Tripal and Chado learn-
ing curves. The tools and use cases serve as a model for
other open-source bioinformatics software communities for
implementing best programming practices for developers
with both biological and computational backgrounds.

Acknowledgements

We acknowledge the entire Tripal software developers community,
particularly Stephen Ficklin (Washington State University) and
Lacey-Anne Sanderson (University of Saskatchewan) for their
leadership of the core Tripal infrastructure and the community of
Tripal software developers.

Funding
National Science Foundation (#1443040 and #1444573).

Conflict of interest. None declared.

References

1. Kaiser,J. (2016) Funding for key data resources in jeopardy.
Science, 351, 14.

2. Ficklin,S.P., Sanderson,L.-A., Cheng,C.-H. et al. (2011) Tripal:
a construction toolkit for online genome databases. Database,
2011, bar044. https://doi.org/10.1093/database/bar044.

3. Mungall,C.J., Emmert,D.B. and FlyBase Consortium (2007) A
Chado case study: an ontology-based modular schema for repre-
senting genome-associated biological information. Bioinformat-
ics, 23, i337–i346.

4. tripal blast.https://github.com/tripal/tripal blast (14May2018,
date last accessed).

5. nd genotypes. https://github.com/UofS-Pulse-Binfo/nd geno
types (29 May 2018, date last accessed).

6. tripal analysis unigene. https://github.com/tripal/tripal analy-
sis unigene (14 May 2018, date last accessed).

7. Chen,M., Henry,N., Almsaeed,A. et al. (2017) New extension
software modules to enhance searching and display of tran-
scriptome data in Tripal databases. Database, 2017, bax52. doi:
10.1093/database/bax052.

8. Sanderson,L.-A., Ficklin,S.P., Cheng,C.-H. et al. (2013) Tripal
v1.1: a standards-based toolkit for construction of online genetic
and genomic databases. Database, 2013, bat075–bat075.

9. Tripal 3. https://github.com/tripal/tripal (doi:10.5281/zenodo.
1302070) 2018.

10. Hancock,J.M. (2014) Editorial: biological ontologies and
semantic biology. Front. Genet., 5, 18.

11. Devel. https://www.drupal.org/project/devel (30 July 2018, date
last accessed).

12. ddev. https://github.com/drud/ddev (30 July 2018, date last
accessed).

13. PHPUnit.https://www.drupal.org/project/phpunit (30July2018,
date last accessed).

14. Drupal - Travis Integration. https://www.drupal.org/project/
drupal ti (30 July 2018, date last accessed).

15. Node Convert. https://www.drupal.org/project/node convert
(30 July 2018, date last accessed).

16. Entity Type Clone. https://www.drupal.org/project/entity type
clone (30 July 2018, date last accessed).

17. Field Type Generator. https://www.drupal.org/project/ftg
(30 July 2018, date last accessed).

18. Almsaeed,A., Condon,B., Chen,M. et al. FAIRsharing.org:
HWG; Hardwood Genomics Project. https://fairsharing.
org/FAIRsharing.srgkaf (14 March 2018, date last accessed).

19. The Apache HTTP Server Project. https://httpd.apache.org
(27 July 2018, date last accessed).

20. NGINX | High Performance Load Balancer, Web Server, &
Reverse Proxy. https://www.nginx.com/ (27 July 2018, date last
accessed).

21. PostgreSQL. https://www.postgresql.org/ (27 July 2018, date
last accessed).

22. phpPgAdmin. http://phppgadmin.sourceforge.net/doku.php
(27 July 2018, date last accessed).

23. Open Source Search & Analytics Elasticsearch. https://www.
elastic.co/ (27 July 2018, date last accessed).

24. Boettiger,C. (2015) An introduction to Docker for reproducible
research. Oper. Syst. Rev., 49, 71–79.

25. Fisher,R.A. (1936) The use of multiple measurements in taxo-
nomic problems. Ann. Eugen., 7, 179–188.

26. R-core. Rdocumentation: Edgar Anderson’s Iris Data. https://
www.rdocumentation.org/packages/datasets/versions/3.5.1/to-
pics/iris (5 August 2018, date last accessed).

27. Pan, J. Software Testing. http://users.ece.cmu.edu/˜koopman/
des s99/sw testing/ (26 July 2018, date last accessed).

28. PHPUnit – The PHP Testing Framework. https://phpunit.de/
(14 May 2018, date last accessed).

29. Hilton,M., Tunnell,T., Huang,K. et al. (2016) Usage, costs, and
benefits of continuous integration. In: Open-source Projects,
Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. ACM, New York, NY, USA.
pp. 426–437.

30. Vasilescu,B., Yu,Y., Wang,H. et al. (2015) Quality and produc-
tivity outcomes relating to continuous integration in GitHub. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering; ESEC/FSE 2015. ACM, New York, NY,
USA. pp. 805–816.

31. Travis CI - Test and Deploy Your Code with Confidence. https://
travis-ci.org/ (14 May 2018, date last accessed).

32. Sollars,E.S.A., Harper,A.L., Kelly,L.J. et al. (2017) Genome
sequence and genetic diversity of European ash trees. Nature,
541, 212–216.

33. Altschul,S.F., Madden,T.L., Schäffer,A.A. et al. (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res., 25, 3389–3402.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

https://doi.org/10.1093/database/bar044
https://github.com/tripal/tripal_blast
https://github.com/UofS-Pulse-Binfo/nd_genotypes
https://github.com/tripal/tripal_analysis_unigene
https://academic.oup.com/database/article/doi/10.1093/database/bax052/4049442
https://github.com/tripal/tripal
https://dx.doi.org/10.5281/zenodo.1302070
https://www.drupal.org/project/devel
https://github.com/drud/ddev
https://www.drupal.org/project/phpunit
https://www.drupal.org/project/drupal_ti
https://www.drupal.org/project/node_convert
https://www.drupal.org/project/entity_type_clone
https://www.drupal.org/project/ftg
https://fairsharing.org/FAIRsharing.srgkaf
https://httpd.apache.org
https://www.nginx.com/
https://www.postgresql.org/
http://phppgadmin.sourceforge.net/doku.php
https://www.elastic.co
https://www.rdocumentation.org/packages/datasets/versions/3.5.1/topics/iris
http://users.ece.cmu.edu/\ koopman/des_s99/sw_testing
https://phpunit.de
https://travis-ci.org

Database, Vol. 2018, Article ID bay099 Page 11 of 11

34. Schneider,M., Lane,L., Boutet,E. et al. (2009) The UniProtKB/
Swiss-Prot knowledgebase and its plant proteome annotation
program. J. Proteomics, 72, 567–573.

35. Quevillon,E., Silventoinen,V., Pillai,S. et al. (2005) InterProScan:
protein domains identifier. Nucleic Acids Res., 33, W116–W120.

36. Barrett,T., Clark,K., Gevorgyan,R. et al. (2012) BioProject and
BioSample databases at NCBI: facilitating capture and organi-
zation of metadata. Nucleic Acids Res., 40, D57–D63.

37. Katoh,K. and Standley,D.M. (2013) MAFFT multiple sequence
alignment software version 7: improvements in performance and
usability. Mol. Biol. Evol., 30, 772–780.

38. Kanehisa,M., Goto,S., Sato,Y. et al. (2012) KEGG for integration
and interpretation of large-scale molecular data sets. Nucleic
Acids Res., 40, D109–D114.

39. GitHub best practices. https://resources.github.com/videos/
github-best-practices/ (27 July 2018, date last accessed).

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay099/5103920 by guest on 04 M

ay 2024

https://resources.github.com/videos/github-best-practices

	Tripal Developer Toolkit
	Introduction
	Developer challenges

	Materials and methods
	Code standards and accessibility
	Tripal DevSeed sequences and annotations

	Results
	Developer instance tools
	Developer dataset
	Testing and CI
	Entities, bundles and fields

	Use cases
	Conclusion
	Funding

