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Abstract

Data generated by scientific research enables further advancement in science through

reanalyses and pooling of data for novel analyses. With the increasing amounts of

scientific data generated by biomedical research providing researchers with more

data than they have ever had access to, finding the data matching the researchers’

requirements continues to be a major challenge and will only grow more challenging

as more data is produced and shared. In this paper, we introduce a horizontally scalable

distributed extract-transform-load system to tackle scientific data aggregation, transfor-

mation and enhancement for scientific data discovery and retrieval. We also introduce

a data transformation language for biomedical curators allowing for the transformation

and combination of data/metadata from heterogeneous data sources. Applicability of the

system for scientific data is illustrated in biomedical and earth science domains.

Github URL: https://github.com/biocaddie/Foundry-ES

Introduction

Modern biomedical science involves the accrual of
increasingly larger data sets in many forms. SciCrunch
(https://scicrunch.org) lists >2800 databases in its resource
registry, spanning biological systems from the level of genes
to behavior. We know that the amount of data that is
easily discoverable and accessible relative to the amount
produced or that which is required to comprehensively
cover a domain is limited. Therefore, calls to add to public
data must also be accompanied by platforms for making
these data available, searchable and useful (FAIR, a set
of guiding principles to make data Findable, Accessible,

Interoperable, and Reusable) (1). These challenges are
not unique to specific disciplines but echo the needs of
science in general (2). Individual communities are also
not unique in wanting to determine the most effective
means to maximize the utility of existing resources created
to support and spur their researchers. Our experience in
Neuroscience Information Framework (NIF) and dkNET
(3–7) suggests that researchers are largely unaware of the
many resources that are available to them, not just targeted
resources such as the Mouse Metabolic Phenotyping Center
but also databases such as the National Institutes of
Health (NIH) Reporter. The current funding situation
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requires that we take full advantage of the available
resources to create effective platforms for data generation,
sharing and analysis. Most recently, as part of the NIH
Big Data to Knowledge initiative, the biomedical and
healthCAre Data Discovery Index Ecosystem (bioCADDIE,
RRID:SCR 004018) (8, 9) was launched to build a pro-
totype (DataMed, http://datamed.org) for data discovery
analogous to PubMed. In order to support these discovery
needs, there is a need to develop and deploy technologies to
make the large collection of data and information resources
collectively searchable.

Development of the Foundry indexing infrastructure
was informed by the following three distinct user com-
munities: (i) biomedical data set discovery (bioCADDIE),
(ii) biomedical information and discovery portals (NIF,
RRID:SCR 002894 and dkNET, RRID:SCR 001606) and
(iii) Earth science resource discovery [EarthCube Commu-
nity Inventory of EarthCube Resources for Geosciences
Interoperability (CINERGI), RRID:SCR 002188] (10).
The umbrella system was designed to interoperate with
the current ecosystem of indices and repositories and not
to replace them. The overall infrastructure consists of the
following components:

• A data and metadata extraction system that is able to
connect to various repositories and data aggregators/in-
tegrators using parameterized ingestors and a domain-
specific language (DSL) to specify complex data extrac-
tion/ingestion scenarios. Incoming metadata information
is converted to JavaScript Object Notation (JSON) for
each data set being described and is stored in MongoDB.

• A loosely coupled distributed data processing pipeline
management system using a message-oriented middle-
ware (MoM) architecture, utilizing Apache ActiveMQ
(http://activemq.apache.org/), to manage a set of enhance-
ments and transformations on the ingested data for data
integration.

• A generic transformation language to align heterogeneous
data from multiple sources with a data/metadata model
[e.g. bioCADDIE Data Tag Suite (DATS) (9)] enabling a
broader community of curators to create and manage the
transformation of data and metadata.

• Export mechanisms for the enhanced/transformed data
to Elasticsearch search engine endpoints or to local file
structures.

Related work

With the availability of large-scale data, the importance of
extract-transform-load (ETL) systems to prepare data for
analytics have increased. Processing of big data requires
usage of new programming models such as MapReduce
(11) on a cluster of machines. Hadoop is the most popular

open-source implementation of MapReduce model acting
as a generic ETL framework allowing programmers to write
code for their specific ETL task. Apache Spark addresses
some of the shortcomings of Hadoop for iterative large-
scale data processing and interactive data analytics. How-
ever, Apache Spark is also a low-level ETL framework
designed for programmers. Foundry, on the other hand,
is a distributed ETL system specifically designed for sci-
entific data with declarative ingestion and transformation
languages for data curators.

Foundry is most similar to the Discovery (DISCO)
system (12, 13) (RRID:SCR 004586) currently used by
SciCrunch.org for data ingestion and integration. While
Foundry has a similar end goal as DISCO of being an
ETL system for scientific data harvesting and integration,
Foundry differs from DISCO in many aspects. Foundry is
designed to be a loosely coupled non-monolithic cloud-
based ETL system that can scale with additional data load
horizontally by adding new consumer containers running
on additional machines to distribute the processing load.
It uses streaming iterators for handling very large data sets
and has an ingestion language for complex data ingestion
pipeline construction. It also has a generic transformation
language for transforming, cleaning and normalizing data
records. Another major difference from DISCO is workflow
management for executing a configured set of discrete
processes to enhance the data records.

Materials and methods

System design

MoM systems such as Apache ActiveMQ allow design-
ing loosely coupled distributed systems that can run in
heterogeneous distributed computer environments. Use of
MoM in Foundry allows horizontal scaling of the system by
adding new consumer nodes on demand for increased load.
It allows for event-driven, reactive workflow management
orchestrated by messages sent/received from consumers that
are self-contained processing units (microservices) to/from
a message dispatcher component. The persistent message
queues also make the system resilient to computer crashes
and outages, as unfinished messages resulting from a com-
puter failure on a consumer node remain in the message
queue and are either picked up by another consumer node
(if any are running) or reprocessed when the consumer node
restarts.

The overall system consists of a dispatcher, one or
more consumer container(s) and a command-line manager
interface. The dispatcher listens to the dispatcher message
queue for incoming messages from consumer container
instance(s). Using its configured workflow, it dispatches
messages to the message queue for the listening consumer
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Figure 1. Foundry dispatcher and consumer container unified modeling language activity diagram.

container(s). The consumer container coordinates a set of
configured consumers that perform predefined operation(s)
of a document indicated by the message they receive from
the dispatcher and ingestors. The harvesters/ingestors are
specialized consumers that are responsible for the retrieval
of the original data as configured by a harvest descriptor
JSON file of the corresponding source. They are triggered
by the manager application. These component interactions
are summarized in Figure 1 and an example of a specific
pipeline is given in the section below.

Dispatcher architecture

The dispatcher subsystem coordinates messages coming
from consumers/enhancers and relays them to correspond-
ing message queues as configured by a particular data
enhancement/transformation workflow. Each workflow is
configured as a routing table. A route associates a status
label with a message queue. Special status labels are speci-
fied to indicate the start and the end of the pipeline. Each
consumer/enhancer is configured to listen for messages with
a certain status label on a particular message queue. When
the consumer finishes processing a data record, it puts a
message to a preconfigured message queue with a consumer-

specific output status label for the dispatcher to pick up. The
dispatcher creates a new message with the output status
label received and puts it to the message queue of the
matching route in the pipeline route table. This process
continues until there is no route left in the pipeline route
table. The dispatcher is a lightweight component acting as
an event bus. The heavy lifting is done by the consumers
running inside the consumer container(s).

The whole system including the workflow and the
enhancers is configured from a single configuration file.
For example, the bioCADDIE data processing workflow
consist of a transformation that aligns the metadata to
the DATS format (9), citation enhancement (datamention)
and biomedical named entity detection enhancement
[natural language processing (NLP)] steps as illustrated
by the YAML Ain’t Markup Language (YAML, a human-
readable data serialization language) configuration file
used for bioCADDIE in Figure 2. The configuration file
has four main sections: a database section for Mongo
database configuration, a message queue (mq) section
for message queue connection configuration, a workflow
section to specify the pipeline as a list of consumer
aliases and a consumers section to configure individual
consumers/enhancers used by the pipeline. Each consumer
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Figure 2. Meta configuration file for the Foundry system.

configuration has two mandatory fields, namely, ‘class’
to specify the full java class name of the consumer
implementation and ‘status’ indicating the status of the
processed record after this consumer has finished processing
it. The status label is used to name the internal message
queues used to orchestrate the pipeline processing and
should be unique for each consumer. Any additional options
specific to a particular consumer are provided as name–
value pairs besides mandatory class and status fields.

Consumer container architecture

The consumer container coordinates a set of consumers.
A consumer listens to a preconfigured message queue and
applies a predefined operation to the document indicated
by the received message. On success, a consumer sets the
processing status of the document to a preconfigured sta-
tus. Consumers are implemented as plugins with life cycle
methods that are called by the consumer container during
the life of the consumer in the container. The life cycle
events include the creation, initialization and shutdown of
a consumer. The Foundry framework provides support for
two types of consumers, namely, ingestors and enhancers.
The ingestors are responsible for the extraction/retrieval
of data/metadata from a data source. The enhancers are
responsible for transforming and enhancing the extracted
source data. Each consumer runs in its own thread. The
consumer container spawns only one consumer instance
for each enhancer type and spawns one ingestor per data
extraction source. An ingestor stays alive until all the data
records from that source are extracted and terminated by

the container afterwards. Enhancers are only terminated
when the consumer container terminates. The consumer
container is also responsible for duplicate checking and
document wrapper generation.

Harvesters (ingestors). All ingestors are implemented as plug-
ins. The Ingestor interface has life cycle methods to initialize
parameters received in the message body to start the inges-
tion process. These include the harvest url and ingestion
type-specific parameters defined in the harvest description
JSON file stored in the MongoDB under the sources col-
lection. The startup() life cycle method is generally used to
get the data to an intermediate storage/cache. An ingestor
plugin acts like an iterator where the hasNext() method
returns true if there are still more records to process and
the prepPayload() method returns a JSON representation
of the original record harvested.

The harvesters form the extract portion of the Foundry
ETL system. Both the distribution and format of the sci-
entific data are heterogeneous. Hence, both access mode
and data format need to be taken into account in devising
a generic design for the harvester portion of the system.
The generalizable parts, namely, the access mode of the raw
data [e.g. via FTP, RSync, web application programming
interface (API) or a file bundle] and distribution format
(e.g. XML, CSV or JSON) are abstracted out. All available
harvesters are parametrized to increase reusability. Another
responsibility of a harvester is partitioning of the data
into records to iterate over. The harvesting framework
relies heavily on the iterator design pattern (14) similar to
cursors used in relational database systems. In relational
database systems, structured query language (SQL) queries
are converted to a pipeline of relational operations on a set
of cursors for the tables and indices involved in the query
during the query planning phase (15). To support data sets
that will not fit the system memory, the devised iterators
are lazy and retrieve the next record on a demand basis in a
streaming fashion allowing the system to process very large
data files such as 0.5 TB XML file dumps from UniProt
(16) (RRID:SCR 002380). The harvester support system
has iterators for the scientific data distribution formats we
have encountered so far. The types of ingestors used for the
bioCADDIE project are summarized in Table 1.

DSL for data ingestion. For some of the data sources, an extrac-
tion step is involved, including multiple interdependent
steps to access data records and/or joining multiple data
file/API call results to form the data record to be extracted.
To this end, we have developed a DSL for data extrac-
tion/ingestion available as a generic ingestor/harvester. Sim-
ilar to the way a database management system handles
the query planning and processing, the harvester language
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Table 1. Ingestors/Harvesters used for bioCADDIE

Ingestor type Sample bioCADDIE sources Number of sources using this ingestor

Web service ingestor Clinical Trials, Uniprot 42
Database ingestor NeuroMorpho, PeptideAtlas, Clinical Trials Network 14
OAI-PMH ingestor † Dryad, The Cardiovascular Research Grid 2
Two-stage web service ingestor ∗ Inter-university Consortium for Political and Social Research,

Dataverse Native
2

Rsync ingestor PDB, dbGAP 2
FTP ingestor BioProject, Biological Magnetic Resonance Data Bank (BMRB) 2
Aspera ingestor GEO Datasets 1
CSV ingestor Gemma 1
XML ingestor ArrayExpress 1

The web service ingestor uses REST API of the source to access raw data. ∗The two-stage web service ingestor also uses REST API; however, the data is accessed in two steps: first, finding
the identifiers of the available data, usually through a web service providing search or summary listings, and then by retrieving each data record, through a more detailed service, by the
extracted identifiers. †The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) ingestor implements OAI-PMH protocol to retrieve archived data.

interpreter converts the declarative instructions into a set
of iterators (cursors) that can be joined together after
determining the join order.

Ingestion DSL syntax The syntax of the ingestion
DSL is shown in Figure 3. For all common harvesting oper-
ations such as downloading the raw data, extracting files
from data distribution bundles, partitioning the data files
into individual records and joining multiple raw records
into a record to ingest, a DSL statement is provided. The
statements in an ingestion script form a pipeline of low-
level operations to prepare raw data for ingestion into
the Foundry system. Statements such as ‘DOWNLOAD’
and ‘EXTRACT’ generate artifacts for the data process-
ing statements such as PARTITION and JOIN which are
identified by aliases. The aliases are used in upstream state-
ments to identify artifacts for partitioning and combining.
The script ends with an INGEST statement. From the
declarative ingestion DSL script, the ingestion DSL engine
creates an ingestion data preparation pipeline using the
built-in cursors/iterators of the Foundry framework. The
cursors can be parametrized using the SET statement as
needed.

An example script to extract records from the NITRC-
IR data resource (17) (RRID:SCR 004162) by joining
project, subject and subject data information are shown
in Figure 4.

Here, raw data is retrieved from three representational
state transfer (REST) API calls (the last call is parametrized)
in XML format and cached locally. Since the data retrieved
contains multiple data records, they are partitioned into
records via ‘partition’ statements. Each ‘row’ tag in the first
two XML documents under the ‘rows’ XML tag indicate a
data record. The last data set is parametrized by the subject
identifier and contains only one record. It is retrieved on
demand by the three-way inner join indicated by the ‘join’

statements. The fields to join on are declared as JSONPaths,
since all row data formats are converted to JSON first for
internal processing. The value for each parameterized REST
API retrieval call comes from the value of the join data
record on the left-hand side of the join. The data record
to be ingested is a combination of data records from the
project, project subjects and individual subject information
joined by the common (join) fields indicated in the join
statements in Figure 4.

Consumers/enhancers. The consumer container subsystem of
the Foundry framework manages the lifecycle of the con-
sumers, the main units of work, of the system. Each con-
sumer is responsible for a single atomic process applied to
a data record. They are stateless and work concurrently
on different data records. However, on the same record
the order of operations is determined by the configured
data/document processing pipeline orchestrated by the dis-
patcher. Consumers are implemented as plugins to a generic
consumer process to simplify third party consumer devel-
opment and to facilitate customizability and extensibility
of the system. Transformation and data enhancement are
the most common usages for consumers. Each consumer
listens on a predefined message queue for messages from the
dispatcher. These messages consist of the current status and
the id of the data record with which the wrapper for the data
record is retrieved from the MongoDB database, processed
and written back before signaling the dispatcher about the
current status of the document. The status messages are
used by the dispatcher to determine the next consumer in
the pipeline.

The types of document enhancements needed are appli-
cation specific. Thus, different sets of enhancers have been
developed for the projects where Foundry is used. For bio-
CADDIE, an NLP pipeline was developed by members of
the bioCADDIE Core Development Team at the University
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Figure 3. Syntax diagram of the DSL for the retrieval/combining/ingestion of the raw scientific data.

Figure 4. A sample ingestion script to retrieve and join data from three web services to form self-contained metadata records to be ingested.

of Texas Health Science Center at Houston for recognizing
gene, disease, drug and cell line mentions in the data record
metadata descriptions. This code module was converted to
an enhancer using the client side plugin API. To incorporate
literature citation information for data records from Protein
Data Bank (PDB) (18) (RRID:SCR 012820), GEO (19)
(RRID:SCR 005012) and other data sets, another enhancer
was also developed that incorporates citation information
from an external web service.

Since the CINERGI project is focused on enhancement of
geological metadata records, time was devoted to develop-
ing an ontology-backed NLP enhancer for keyword extrac-
tion and suggestion from the metadata record, a geolocation
enhancer with location named entity recognition and an
organization enhancer to associate organizations in free
text format in the geological metadata records with their
corresponding Virtual International Authority File records.

Data transformation language

Aggregation of heterogeneous semi-structured data from
multiple sources requires alignment and transformation to
a common format. To this end, we have developed a simple,
curator friendly, transformation language to transform a
given hierarchical data structure in JSON format to any
desired JSON form including JSON-LD for linked data.

The first thing that needs to be addressed is how to
indicate a path(s) in a JSON tree. For XML, there is the
XPath specification to address this issue. However, there is
no parallel standard for JSON. However, by analogy to the
XPath specification there are attempts to implement/specify
paths in a JSON tree. We have developed a subset of the
analogous functionality to XPath as JSONPath based on
the syntax from https://goessner.net/articles/JsonPath to be
used in the JSON transformation language (JSONTL). Our
JSONPath implementation is tightly integrated with our
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Figure 5. JSONPath syntax for the source document.

Figure 6. JSONPath expression syntax recognized.

Figure 7. JSONPath syntax for the generated target JSON document.

transformation engine to allow complex nested multivalued
source JSON forest to destination JSON forest transfor-
mations besides speed optimizations. The transformation
language named JSONTL allows declaration of a mapping
from a source path to a destination path optionally com-
bining and/or transforming the source value. To support
arbitrary value transformation, the JSONTL integrates the
Python programming language. This way, common oper-
ations such as data cleanup, conversion, normalization,
combining multiple fields, splitting values and generating
calculated fields based on existing ones are made possible.

JSONPath syntax. For the source side of a transformation
statement, the JSONPath is used to match path(s) and for
the destination side, the JSONPath is used to create a new
path (branch in the JSON document tree). Due to this func-
tionality difference, the recognized syntax of the source and
destination JSONPaths are slightly different. The syntax
diagrams for source document JSONPath syntax are shown
in Figures 5 and 6, the target document JSONPath syntax
is shown in Figure 7.

An example of JSONPath for a source document, taken
from the transformation script for the PDB, is ‘$..’PDBx:
database PDB revCategory’.’PDBx:database

PDB rev’[?(@.’@num’ = ’1’)].’PDBx:date’.’

$’’. This statement matches the text (‘ $’) of the
PDBx:date object in the PDBx:database PDB rev object
having a field named ‘@num’ (mapped from the ‘num’ XML
attribute) with value equal to 1. The ‘$..’ at the beginning
of the statement indicates that the remaining subtree is
matched at an arbitrarily deep level in the source document
JSON hierarchy.

An example of JSONPath for a destination document
from the transformation script for PDB is ‘identifiers[]

.ID’ where the destination document will have an array
called ‘identifiers’ at the top level having objects with a
field named ‘ID’.

JSONTL syntax. The transformation language consists of
five types of statements allowing one-to-one, one-to-many,
many-to-one and many-to-many mappings of various sorts.
Besides the join statement, all JSONTL statements can be
conditioned based on value, existence and non-existence of
any source document field, using the optional conditional
expression.

Constant field generation. This statement (see Figure 8) allows
introducing fields with constant values that does not exist
in the source record. This statement is mostly used to add
metadata about the data source to processed records.

An example constant field statement from the PDB trans-
formation script is let "dataRepository.name" =
"Protein Data Bank";

This statement assigns the value ‘Protein Data Bank’ to
the ‘name’ field of a top level destination object named
‘dataRepository’.

Single path transformation. Single path transformation (see
Figure 9) allows transforming of a single source path to
a single destination path with single value (one-to-one
transformation) or multiple values (one-to-many trans-
formation). One-to-many transformations are achieved
by using the optional apply block that allows arbitrary
manipulation of the matched source path value such as
splitting delimited text into a list of keywords.

An example from the PDB transformation script with an
apply block shows creating a landing page URL using the
entry id value from a PDB record.

transform column "$.’PDBx:datablock’.

’@datablockName’.’PDBx:atom sites’.’@entry

id’" to "access.landingPage" apply {{ result
=’http://www.rcsb.org/pdb/explore/explore.
do?structureId=’ + value}};

Usage of built-in date processing functions with NLP
capabilities for heterogeneous free form date fields can be
illustrated by the following example from the PDB transfor-
mation script.

transform column "$..’PDBx:database PDB

revCategory’.’PDBx:database PDB rev’[?(@.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay130/5255189 by guest on 21 M

ay 2024



Page 8 of 13 Database, Vol. 2018, Article ID bay130

Figure 8. Syntax diagram for constant field transformation statement.

Figure 9. Syntax diagram for single path transformation statement.

’@num’ = ’1’)].’PDBx:date’.’ $’" to "data

set.dateReleased" apply toStandardDateTime

("yyyy-MM-dd");

The transformation language is extensible with new
functions that can be used instead of the APPLY Python
script block as shown in the above example. The ‘toStan-
dardDateTime()’ function used above is provided by imple-
menting the transformation language’s plugin interface and
registering it with the transformation engine. This function
is used for converting date fields to internal date and time
format suitable for Elasticsearch indexing and also allows
free form date processing using NLP.

The entity–value–attribute (EVA) model is a common
extensible data model where data fields are encoded as
name–value pairs allowing different data records to contain
different set of data fields. To enable transformation of
EVA-style data records, an ASSIGN NAME FROM con-
struct is provided. The usage of an EVA-style transforma-
tion from the Ion Channel Genealogy transformation script
is shown below:

transform column "$.’metadata’[*].’value’"

to "metadata.value" assign name from "$.

’metadata’[*].’name’";

This statement converts each name and value field pair
from the source into a single field named from the source
name field with the value of the source value field as
demonstrated in Figure 10.

Multiple path transformation (many to one, many to many). This
transformation statement (see Figure 11) is similar to single
path transformation statements in structure. However, it
allows for the combining of values from multiple source

paths to a destination path through the help of the manda-
tory APPLY section.

The following statement from the PDB transform script
illustrates how this statement is used in practice.

transform columns "$..’PDBx:struct key

words’.’PDBx:pdbx keywords’.’ $’","$..’PDBx:

struct keywords’.’PDBx:text’.’ $’" to "data

set.keywords[]" apply {{
arr=re.split("\s*,\s*",value1,)
arr.extend(re.split("\s*,\s*",value2))
result=arr
}};
Here a multiple comma separated lists of keywords in

the source document are combined into a single array of
keywords after splitting the source keyword text fields into
individual keywords via the Python code in the apply block
of the statement.

Multiple path union transformation. This transformation
statement (see Figure 12) combines all values from all
the matching source paths and passes them all together
to the destination path that needs to be multivalued (i.e.
array). Each source value becomes another element in
the destination array. Each source value can be processed
by an optional apply block before being assigned to the
destination element.

The following statement from the PDB transformation
script illustrates a practical usage of the multiple path union
transformation statement:

transform union "$.’PDBx:datablock’.’PDBx:

entity src genCategory’.’PDBx:entity src gen’

[*].’PDBx:pdbx gene src ncbi taxonomy id’.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay130/5255189 by guest on 21 M

ay 2024



Database, Vol. 2018, Article ID bay130 Page 9 of 13

Figure 10. EVA style data transformation example.

Figure 11. Syntax diagram for the multiple path many-to-one transformation statement.

Figure 12. Syntax diagram for the multiple path union transformation statement.

’ $’","$.’PDBx:datablock’.’PDBx:entity src

genCategory’.’PDBx:entity src gen’[*].’PDBx:

pdbx host org ncbi taxonomy id’.’ $’" to

"taxonomicInformation[].ID" apply {{ result

= ’ncbitax:’ + value }};
Here the taxonomy identifiers from the source and host

organisms are combined together and passed one by one
into the apply block to generate a CURIE (https://www.w3.
org/TR/curie/), an abbreviated syntax for expressing uni-
form resource identifiers, for the passed taxonomy identifier.

Join transformation (many to one, many to many). This transfor-
mation statement (see Figure 13) passes a list of values
of each matching source path forest, as identified by its
JSON Path, to the optional APPLY block. If no apply
block is specified, all values from the source are combined
to a comma separated list that becomes the value of the
destination path. However, the power of this statement is
realized with an apply block allowing, for example, one to
select a corresponding source value based on the value(s) of
another field’s list.
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Figure 13. Syntax diagram for the join transformation statement.

Figure 14. Syntax diagram for the conditional expression supported in JSONTL.

Figure 15. Syntax diagram for the conditional operators supported in

JSONTL.

An example usage of this statement from the UniProt-
SwissProt BioCADDIE transformation script is show
below:

join "$.’entry’.’organism’.’name’[*].

’@type’", "$.’entry’.’organism’.’name’[*].

’ $’" to "taxonomicInformation[0].name"

apply

{{
i = -1

try:

i = value1.index(’scientific’)

except:

pass

result = value2[i] if i >= 0 else “

}};
This statement takes in a list of organism names and a list

of organism name types, identifies the organism name with
the type ‘scientific’ and assigns the found scientific organism
name to the destination as the taxonomic information
name.

Conditional expression. JSONTL supports conditioning of a
transformation statement on arbitrary number of source
path values by a wide array of comparison operators.
The syntax diagrams of the conditional expression and
operators are shown in Figures 14 and 15.

A practical example of conditional expression usage
from the transformation script for Gemma (20) (RRID:SCR

008007) is shown below:
if "$.’SourceAccession’" like "%GSE%"

then let "datasetDistributions[2].storedIn"

= "Gene Expression Omnibus";

Here if the ‘SourceAccession’ field value contains the
string ‘GSE’, then a constant field is generated on the
destination.

Data export

The ability to export transformed and/or enhanced data
is essential for an ETL system. The exported data is
used by the upstream systems. In the case of bio-
CADDIE, the enhanced data is indexed to an Elas-
ticsearch endpoint used by the DataMed UI. In the
case of the CINERGI project, the enhanced ISO XML
metadata documents are exported as files for index-
ing within an ESRI Geoportal server (https://www.esri.
com/en-us/arcgis/products/geoportal-server/overview). The
export functionality is implemented as another enhancer/-
consumer in the Foundry system configured to be the final
step in the processing pipeline.

Results and discussion

The introduced transformation language enables incremen-
tal development of data transformations since each trans-
formation rule only handles a small number of branches
(usually only one branch) in the source data hierarchy. Thus,
the rules can be developed and tested individually. A web
front-end for testing the transformation rules is part of the
system to facilitate incremental development. In DISCO,
transformation and data aggregation of a data source is
done in a single SQL query that usually ends up being
overly complex making it hard to maintain requiring expert
level SQL skills. Also, the transformations are limited to
the capabilities of SQL in a single large query. With its
embedded Python programming language execution capa-
bilities, the introduced transformation language provides
data manipulation capabilities of a full-blown computer
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language. The system includes a tool to automatically gen-
erate identity transformation rules from raw sample data
as an aid to the curators to minimize effort. These features,
together with the relative simplicity of the transformation
language, lower the bar of entry for curators, decreasing
data source transformation development and maintenance
time. The transformation language was designed in concert
with curators working on biomedical data curation for
almost a decade in SciCrunch and with the input from
BioCADDIE curators.

In Foundry, in contrast to DISCO, a raw data set is stored
as a denormalized and potentially hierarchical document
instead of a set of normalized relational database tables.
This allows each data set to be self-contained without
requiring costly join operations to access related data. One
of the main design goals for Foundry is to push as many
of the semantic enhancements to the offline from the online
search processes to improve end user experience. Each self-
contained data set can be semantically enhanced indepen-
dent of each other in parallel and the additional semantic
information is indexed together with the data/metadata
enabling fast, semantically enhanced queries.

Foundry is open source and together with its docu-
mentation can be retrieved from the bioCADDIE GitHub
repository (https://github.com/biocaddie/Foundry-ES).

Initial testing of the system was done on a system con-
taining a single MongoDB instance running on an Ama-
zon m4.large (8 GB RAM with two virtual CPUs) virtual
machine and another m4.large virtual machine running
the ActiveMQ server, Foundry dispatcher and a consumer
container with ingestor enhancer. This testing was done
with the initial bioCADDIE DataMed corpus consisting of
58 sources (77 085 123 metadata records) with a total
size of 68.54 GB (median record size of 2.89 KB with a
minimum size of 0.57 KB and a maximum size of 3.4 MB,
see Figure 16).

Performance of the core system for metadata ingestion
was measured for each source and took a total of 23 hours
and 35 minutes (224 documents per second). Data transfer
from the remote source was not included in the timings
as this can be quite variable and is also determined by
the remote sources policies for crawl rates and frequency.
This base system performance can also be affected by
the addition of various enhancement modules (e.g. NLP
processing). In order to enable additional processing steps
while maintaining throughput, the system needs to be scaled
horizontally.

To test the horizontal scalability of the introduced sys-
tem, we devised an experiment on a large data resource
(full set of PubMED abstracts) on the Amazon cloud. The
system consists of a single MongoDB instance running on
an m4.large (8 GB RAM with two virtual CPUs) virtual

machine, another m4.large running the ActiveMQ server,
Foundry dispatcher and a consumer container with ingestor
enhancer and four consumer containers running on four
Amazon t2.medium (4 GB RAM with two virtual CPUs)
EC2 nodes (virtual machines). Altogether, there are five
computation nodes one of which is responsible for data
ingestion and transformation and the other four only for
transformation. For cloud deployment, we utilized two
types of Amazon Machine Images (AMI), one for the node
running the ActiveMQ server, dispatcher and the consumer
container for ingestion and another for the slave nodes run-
ning consumer containers configured without the ingestion
capability. The consumer AMI is then manually cloned to
create the four consumer EC2 nodes. All the EC2 nodes are
configured to be in the same zone and security domain. The
consumer AMI can be used with the Amazon EC2 Auto
Scale functionality to automatically start new consumer
nodes on demand when load increases.

We started with a master node and introduced each addi-
tional computation node one at a time while the pipeline
is running. Each additional node is introduced at least one
hour of processing apart and the rate of document pro-
cessing after each introduced computation node is plotted
together with the linear regression line in Figure 17, show-
ing linear increase in processing rate. The Amazon EC2
nodes we have used are general purpose virtual machines
with low to moderate network traffic settings using general
purpose solid-state drives showing that decent data process-
ing performance can be achieved even with run of the mill
hardware with the introduced ETL system.

Conclusion

In this paper, we introduced a scalable data integration/in-
dexing platform that is being used across a wide variety of
scientific domains. The system has been shown to have wide
applicability across different scientific domains, metadata
specifications and data types and formats. Through the
transformation and enhancement process, a pipeline can
be easily customized for a specific domain and associated
use case. The transformation language and source config-
uration YAML files provide biomedical curators with an
easy and understandable process to specify how a data
source should be ingested. Current work is focused on
development of additional enhancement modules that will
support standardized mechanisms for query expansion and
enhancement of links between indexed documents.
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Figure 16. Average Metadata Record size across bioCADDIE DataMed test corpus.
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