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Abstract

The BioCreative-V community proposed a challenging task of automatic extraction of

causal relation network in Biological Expression Language (BEL) from the biomedical

literature. Previous studies on this task largely used models induced from other related

tasks and then transformed intermediate structures to BEL statements, which left the

given training corpus unexplored. To make full use of the BEL training corpus, in this

work, we propose a deep learning-based approach to extract BEL statements. Specifi-

cally, we decompose the problem into two subtasks: entity relation extraction and entity

function detection. First, two attention-based bidirectional long short-term memory

networks models are used to extract entity relation and entity function, respectively.

Then entity relation and their functions are combined into a BEL statement. In order

to boost the overall performance, a strategy of threshold filtering is applied to improve

the precision of identified entity functions. We evaluate our approach on the BioCreative-

V Track 4 corpus with or without gold entities. The experimental results show that our

method achieves the state-of-the-art performance with an overall F1-measure of 46.9%

in stage 2 and 21.3% in stage 1, respectively.

Database URLs: https://wiki.openbel.org/display/BIOC/BioCreative+BEL+Task+Challenges

Introduction

Automatic extraction of biological network information is
one of the most desired and challenging tasks in biomedical
text mining research community. It needs to integrate
biomedical knowledge buried in the literature into knowl-
edge bases in a structured representation. Well-established
standards to formally represent biological networks are
the Systems Biology Markup Language (1), the Biological
Pathway Exchange Language (2) and the Biological

Expression Language (BEL) (http://www.openbel.org/) (3).
Among them, BEL is gaining increasing attention for system
biology applications because it combines the power of a
formalized representation language with a relatively simple
syntax designed to be both human readable and machine
accessible.

Despite there have been multiple knowledge acquisition
efforts in biomedical domain, such as Comparative
Toxicogenomics Database (CTD) (4) and sbv IMPROVER
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initiative (5), a considerable amount of knowledge
is still buried in the literature due to the high cost
and special expertise needed for knowledge curation.
For promoting the research on biomedical text min-
ing technologies, BioCreative-V community proposed
a challenging task of automatically extracting casual
network information in BEL format from biomedical
literature (http://www.biocreative.org/tasks/biocreative-v/
track-4-bel-task/). BEL is designed to represent scientific
findings in the field of life sciences in a structured form.
BEL statements convey causal relationships (‘increases’ and
‘decreases’) between two BEL terms or among multiple
BEL terms. BEL terms are formed using biomedical entities
(gene/protein and chemical abundances, biological and
pathological processes) together with functions that are
used to modify entities [e.g. deg() (degradation), tloc()
(translocation)]. A concept of namespaces [e.g. Chemical
Entities of Biological Interest (CHEBI)] and associated
identifiers, e.g. a(CHEBI:‘nitric oxide’), is adopted to
normalize entities in a flexible way.

Different from previous biomedical relation extraction
(RE) tasks such as disease–gene association (6, 7) and
protein–protein interaction (8, 9), where relationship is
purely binary, the BEL tasks (BioCreative V Track 4 Task
1 and BioCreative VI Track 4 Task 2) aim to discover the
hierarchical relations between biomedical entities, meaning
that the relationship (‘increases’ or ‘decreases’) can hold
among multiple entities and complex biomedical functions
[such as complex() or tloc()] can also be involved. The goal
of the BEL tasks is to extract the whole BEL statement from
the sentence. It defines two evaluation stages depending on
whether gold entities on the test set are given (stage 2) or
not (stage 1). Taking as examples the following sentences
and their corresponding BEL statements extracted from
the BioCreative-V (BC-V) corpus (For easy reference, we
mark the entity mentions in the sentences in italic type
face.):

a. We now demonstrate that AKAP220 fragment is a
competive inhibitor of PP1c activity (K(i) = 2.9 +/−
0.7 micrometer) (PMID: 11152471).

p(HGNC:AKAP11) decreases act(p(HGNC:PPP1CC)).

b. UbcH7 is a ubiquitin-conjugating enzyme mediating
c-fos degradation, transcription factor NF-kappaB mat-
uration, human papilloma viru-mediated p53 and Myc
protein degradation, in vitro. (PMID: 10760570).

cat(p(HGNC:UBE2L3)) increases deg(p(HGNC:FOS)).
cat(p(HGNC:UBE2L3)) increases deg(p(HGNC:MYC)).
cat(p(HGNC:UBE2L3)) increases deg(p(HGNC:TP53)).

c. Binding of PIAS1 to human AR DNA+ligand binding
domains was androgen dependent in the yeast liquid

beta-galactosidase assay. (PMID:10628744)
a(CHEBI:androgen) directlyIncreases complex
(p(HGNC:AR), p(HGNC:PIAS1)).

Example (a) shows a sentence with its target BEL state-
ment. Two proteins <HGNC:AKAP11> and
<HGNC:PPP1CC> are italicized while ‘decreases’ denotes
the predicate of the relationship between the two proteins
and act() (molecularActivity) is a biomedical function on
the protein <HGNC:PPP1CC>. It states that the protein
<AKAP11> decreases the molecular activity of the protein
<PPP1CC>. Example (b) demonstrates an example where
one sentence may correspond to multiple BEL statements
and (c) is an example that complex function [complex()]
which acts on two or more entities can be involved in a
BEL statement.

Various approaches have been proposed to address the
BEL task. They can be roughly grouped into rule-based,
cross-task and within-task methods.

Ravikumar et al. (10, 11) tested a rule-based semantic
parser that is capable of handling complex syntactic struc-
tures involving connectives, events and anaphora. They
achieved the start-of-the-art performance in BioCreative V
BEL Task, which demonstrates that domain-specific knowl-
edge plays an important role in the task. However, the
method has the issues of inflexibility and domain depen-
dence. Cross-task methods convert intermediate structures
predicted from other tasks into BEL statements. Choi et al.
(12) extracted Genome Information Acquisition (GENIA)
event structures using the Turku event extraction system
(13) and then translated them into BEL statements. Lai et al.
(14, 15) identified casual relations from the output of a
biomedical semantic role labeler and classified entity func-
tions with keywords appearing in the context of entities.
Nevertheless, they did not make use of the original BEL
training corpus, thus limiting their performance. Within-
task methods directly use the BEL training corpus in one
or the other way, hoping to improve the performance. Ali
et al. (16) treated the BEL task as conventional binary RE
and therefore can apply RE techniques directly. They used
a Convolutional Neural Networks (CNN) model to extract
the relationship between two biomedical entities. Other
complex relations and biomedical functions are totally
ignored, and, therefore, the performance is greatly dimin-
ished. Liu et al. (17) cast the BEL task as a hierarchical
sequence-labeling problem. They constructed a training
corpus from the original BEL training corpus using word
alignment technique. However, due to the complexity of the
task, training a model to directly extract BEL statements
does not yield promising results.

In order to make full use of the BEL training corpus and
include as many relations (including functions) as possible,
we propose a method to extract BEL statements by com-
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bining RE with function detection (FD). Relations between
two entities and biomedical functions related to these two
individual entities are considered when generating a BEL
statement in order to improve the overall performance.
Two respective attention-based bidirectional long short-
term memory networks (att-BiLSTM) models are used for
RE and FD due to their excellent performance in the gen-
eral domain (18). However, preliminary experiments show
that simply merging the results from RE and FD did not
yield performance improvement for BEL statement extrac-
tion. Therefore, a strategy of threshold filtering is applied
to improve the precision of identified entity functions by
discarding unreliable ones. Our contributions include the
following:

i. An att-BiLSTM model to detect entity function in order
to incorporate them with entity relations into BEL
statements.

ii. A strategy of threshold filtering to select entity func-
tions with high reliability in order to improve the
overall performance.

iii. We achieve the best F1 performance of 46.9% in stage
2 and 21.3% in stage 1 at statement level on the
BioCreative V BEL task.

Materials and methods

In this section, we first present the statistics on the corpus,
then we systematically describe our approach for the BEL
statement extraction task.

Data set

The corpus provided by the organizer for the BioCreative
V BEL task comprises the training, sample and test sets,
where one sentence is annotated with one or more BEL
statements. Table 1 reports the statistics on the sentence,
BEL statements, entities, relations and functions in the BC-
V BEL corpus as four parts from top to down as follows:

i. The number of sentences and their associated BEL
statements. Usually the latter is much greater than the
former since there may be multiple BEL statements
corresponding to one sentence.

ii. The number of four types of biomedical entities,
gene/protein, chemical, disease and biological process.
Among them, ∼85% are gene/protein.

iii. The number of relations (‘increases’ and ‘decreases’),
where ‘directlyIncreases’ and ‘directlyDecreases’ are
mapped to ‘increases’ and ‘decreases’, respectively.
Over 70% of the relations in the training set are
‘increases’. Notice that the total number of relations
in the corpus is more than that of BEL statements.

This is because nested relations in a BEL statement are
decomposed into multiple binary relations.

iv. The number of major types of functions, among which
over 65% are Activities. Main subtypes of Activities,
Transformations and Modifications are also included
in the parentheses. Usually the number of functions
is less than that of entities involved in relations. This
means that only a small number of entities in relations
have functions.

From the above statistics on the training corpus, we
can see that ∼91% of relations are binary between two
entities while only a small number of them contain nested
relations. Focus on binary relations, therefore, will lose very
few BEL statements with nested relations. Furthermore,
among entities which appear in BEL statements, ∼42%
have a function with one entity as its argument, meaning
that disregarding these functions would significantly hurt
the overall performance (16). Therefore, in this work when
we build BEL statements, we focus on the entities that have
a binary relation and their unary functions.

Methods

In our approach the BEL task is decomposed into two
subtasks: entity RE and entity FD. First, binary relations
between two entities are extracted and then entity functions
involved in these relations are recognized via a new FD
method. Finally, BEL statements can be formed by combin-
ing entity relations with their functions.

Figure 1 illustrates the workflow of our method that
comprises five main components: name entity recognition
and alignment (NERA), instance construction (IC), RE,
FD, followed by BEL statement merging. The NERA
module recognizes entities in a sentence and align them
with the identifiers in BEL statements. The IC module
constructs both RE and FD instances for training and
testing, respectively. Then, two respective models for RE
and FD are induced from the training instances. During
testing, the RE and FD models are simultaneously applied to
the testing instances to determine the relationship between
two entities and their individual functions. Finally, based
on the predictions of RE and FD, a BEL statement can
be created for the pair of entities via BEL statement
merging.

Figure 2 shows an example of the BEL statement extrac-
tion workflow. The sentence in example (i) is the input.
After the two entities are recognized and aligned in the
sentence, the RE model is applied to extract the relationship
between them. The FD model is applied to detect respective
functions of two involved entities. Finally, the relationship
and the functions are combined to form the output,
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Table 1. Statistics on the BC-V BEL task corpus

Statistics Train Sample Test

Sentence 6353 190 105
BEL statement 11 066 295 202

Gene/Protein 14 108 333 238
Chemical 677 69 23
Disease 207 43 11
Biological process 1522 62 23
Total 16 514 507 295

Increases 8382 228 154
Decreases 3006 94 53
Total 11 388 322 207

Activities (cat(), kin(). . .) 4571 213 44
Complex() 659 26 16
Transformations (deg(). . .) 454 25 10
Modifications (pmod(). . .) 1212 24 9
Total 6896 282 79

Figure 1. The system workflow diagram.

i.e. the BEL statement ‘p(HGNC:AKAP11) decreases
act(p(HGNC:PPP1CC))’.

Name entity recognition and alignment

Since only the identifiers of entities, rather than their exact
locations in a sentence, are given in the training corpus, the
first step is to recognize biomedical entities in the sentence
and align them to their identifiers in the BEL statement. We
adopted three steps including NER, renormalization and
dictionary search in order to maximize the entity recall.

‘NER’. Three NER tools are used respectively to identify
different biomedical entities, including GNormplus (19) for
gene and protein recognition, tmChem (20) for chemical
recognition and DNorm (21) for disease recognition. In
addition, these tools also normalize recognized entities to
the corresponding entity databases. GNormplus links genes
and proteins to Entrez (22), tmChem links chemicals to

Medical Subject Headings (MESH) (23) and CHEBI (24)
and DNorm links diseases to MESH and OMIM (25). The
normalized entities are finally aligned to their identifiers in
the BEL statement.

‘Renormalization’. Due to name variation, entity identi-
fiers in the BEL statement, however, are not always the same
as the ones recognized by the NER tools, so the second step
is to renormalize and align the latter into the former. Protein
identifiers are consistent across Entrez, HGNC and MGI,
so no conversion is needed. Recognized chemical identifiers
are converted to CHEBI ones in terms of their normalized
names. Recognized disease identifiers are discarded if they
are linked to OMIM since conversion from OMIM to
MESH is currently infeasible.

‘Dictionary search’. Although the three tools achieve
the state-of-the-art performance in recognizing different
biomedical entities, there are still a number of entities in
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Figure 2. An example of the BEL statement extraction workflow.

the BEL statement unrecognized, particular for biological
processes. Therefore, we finally performed a dictionary-
based entity search for the remaining unaligned entities
in the BEL statement. The dictionary consists of sym-
bols and synonyms from five entity lists provided by the
organizer, i.e. Mouse Genome Informatics (MGI), HUGO
Gene Nomenclature Committee (HGNC), CHEBI, Medical
Subject Headings from the Diseases (MESHD) and Gene
Ontology names for Biological Process (GOBP), etc. The
matching is based on edit distance and the continuous word
sequence with minimal distance to the dictionary entries
is recognized as the correct entity and aligned to the BEL
statements.

For eliminating the variability of entity names and their
lengths, we anonymize the entity mentions in sentences by
replacing them with placeholders to indicate their types and
numbers as GENE 1, GENE 2 as in Figure 2.

Candidate instance construction

Prior to RE and FD, relation and function instances for both
training and testing should be first constructed. Relation
instances are generated from all entity mentions in a pair-
wise way. That is, if a sentence has n entities, it will produce
n(n-1)/2 relation instances. Specifically, during training, if
a relation candidate appears in the BEL statements, it is
a positive instance with the corresponding relation type,
otherwise regarded as a negative instance. In this way, we
can generate the RE training set. At the same time, the FD
training set is also generated from the BEL training set. For
each entity in the BEL training set, if a function is associated
with the entity, a positive function instance is generated,
otherwise a negative instance is formed. If there are m
positive relation instances in a sentence, 2m entity function

instances will be produced. During testing, the relation and
function instances are generated in a similar way except that
an FD test instance is formed for each individual entity.

Using the above method, we generate a RE training set
including 9149 positive, 4574 negative instances and an
FD training set including 5226 positive instances and 9769
negative instances.

Relation extraction

RE aims to extract the relationship between two enti-
ties, disregarding the functions around them, such as
the relation type ‘decreases’ between the entity pair
<p(HGNC:AKAP11)> and <p(HGNC:PPP1CC)> in
the sentence without considering the function act(). The
problem can be cast as a conventional RE problem, where
an att-BiLSTM model is trained on the RE training set and
then used to extract the relation on the RE test set because
this kind of model has been demonstrated to perform
excellently in RE in the general domain (18). The training
instances (sentences and their relation labels) are fed into
a learner to derive a classification model that is in turn
used to predict the relation labels for the test instances.
The RE model is elaborated in the Subsection Models
simultaneously with the FD model because they share many
similarities.

Function detection

Entity FD is aimed to detect the functions of entities. For
simplicity here we focus on the functions used to modify
one entity, i.e. unary functions, excluding the complex()
function involving two or more entities. As example (a)
mentioned above, there are two entity function candidates,
function None for <p(HGNC:AKAP11)> and function act
for <p(HGNC:CASP1)>, respectively, in the BEL statement
‘p(HGNC:AKAP11) decreases act(p(HGNC:PPP1CC))’.
There is no direct research on FD in the previous within-
task methods, which is either regarded as a part of sequence
labeling task (17) or totally discarded (16). Based on the
observation that the function of an entity may depend on
its context, we recast the subtask as a classification problem
similar to RE except that there is only one entity involved.
Therefore, an att-BiLSTM model is introduced to FD. The
context within a window around an entity together with
the function label is fed into the learner to induce the model
which is in turn applied to predict the test instances. The
FD model is also detailed in the section Models.

BEL statement merging

After the identification of relations between two entities
and their individual functions, it is straightforward
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Figure 3. An att-BiLSTM model.

to combine them into BEL statements. In Figure 2,
for example, we first identify the relation ‘decreases’
between <GENE 1> and <GENE 2>, then detect the
function act on the second protein, finally, we recover
<GENE 1> and <GENE 2> to their normalized iden-
tifiers <p(HGNC:AKAP11)> and <p(HGNC:PPP1CC)>,
finally, the relation ‘decreases’ and function act are com-
bined into the corresponding BEL statement
‘p(HGNC:AKAP11) decreases act(p(HGNC:PPP1CC))’.

However, preliminary experiments showed that naive
merging of entity functions into entity relations leads to
overall performance degradation due to the relatively low
precision of entity FD. Therefore, a strategy of threshold
filtering is proposed to filter out the predicted functions
with low reliability before merging in order to improve the
overall performance. The idea behind the strategy is that
unreliable functions hurt the accuracy of BEL statements
when they are incorporated into entity relations.

Models

In this section, we describe in detail the att-BiLSTM model
for both RE and FD. An overview of our model is illus-
trated in Figure 3, which includes the following four layers:
embedding layer, Bi-LSTM layer, attention layer and output
layer. The main difference between RE and FD lies in the
input forms and the output labels.

The inputs of the networks for the entity RE and entity
FD are slightly different. The input to RE is the tokenized
words of the whole sentence while a window of 15 words
around the entity is fed into the entity FD. In the embedding
layer, an input word is encoded with the concatenation of
the word vector and the position vector. Note that there are
two position vectors corresponding to two entities for RE
while there is only one position vector for FD. Then, the Bi-

LSTM layer is followed to encode the sematic information
of the input sequence. After that, the attention mechanism is
applied to merge hidden vectors from each time step in the
sequence into a sentence-level vector by multiplying them
with their associated weights. Finally, a softmax transfor-
mation is used in the output layer to transform the sentence
representation into a probability for a relation/function
label. For entity FD, threshold filtering is further applied to
filter out entity functions with low reliability.

Input representation

Given an input sequence consisting of n words s =
{w1, w2, . . . , wn} and two marked entities e1 and e2 or
one marked entity e1, we first convert each word into a
real-valued vector. A word wi is transformed into its word
embedding xw

i by looking up the word in the embedding
matrix Ew ∈ R

dw×|V|, where V is the input vocabulary and
dw is the word embedding dimension.

It is evident that words close to the target entities play
a key role in determining the relation/function, so we also
incorporate the word position embedding proposed by
Zeng et al. (26). In the above sentence, the relative distances
of ‘inhibitor’ to ‘AKAP220’ and ‘PP1c’ are 5 and −2,
respectively. The relative distance is mapped to a vector with
dimension dp, which is a hyperparameter to be chosen. Let
xp

i,1, xp
i, 2 ∈ R

dp denote the position vectors corresponding to
the i-th word in the sentence for the first and second entities,
respectively. The final embedding xi for the i-th word can be
obtained by concatenating the word embedding with the
position vectors, i.e. for RE xi = {xw

i , xp
i,1, xp

i, 2}, for entity

FD, xi = {xw
i , xp

i }. Accordingly, the input representation for
the sequence can be represented S = [x1, x2, . . . , xn].

Bi-LSTM layer

The LSTM architecture consists of a set of recurrently
connected cells, known as memory units. Each time step
corresponding to each word is regarded as an LSTM mem-
ory unit, which is used to compute current hidden vector
ht based on the previous hidden vector ht-1 and the current
input word embedding xt. Its operations can be defined as
follows:

it = σ
(
Wwi · xt + Whi · ht−1 + bi

)
(1)

ft = σ
(
Wwf · xt + Whf · ht−1 + bf

)
(2)

gt = tanh
(
Wwc · xt + Whc · ht−1 + bc

)
(3)

ct = it ⊗ gt + ft ⊗ ct−1 (4)

ot = σ
(
Wwo · xt + Who · ht−1 + bo

)
(5)

ht = ot ⊗ tanh (ct) (6)
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where i, f and o are the input, forget and output gates,
respectively, b is the bias terms, c is the cell memory and
W(. . .) are the training parameters. For each word wt, the
forward LSTM layer will encode wt by considering the
contextual information from word w1 to wt, which is
marked as

−→
ht . In a similar way, the backward LSTM layer

will encode wt based on the contextual information from
wn to wt, which is marked as

←−
ht . Finally, we use element-

wise sum to combine
−→
ht and

←−
ht as the representation of the

word’s encoding information, denoted as ht = −→
ht ⊕ ←−

ht .

Attention layer

It is obvious that not all words contribute equally to the
representation of the sequence meaning. To illustrate this,
we take the aforementioned sentence (a) as an example. It is
intuitive that the importance of the word ‘inhibitor’ is much
higher than other words when considering the semantic
relation type of ‘decreases’. Therefore, we introduce the
attention mechanism proposed by Zhou et al. (18) to auto-
matically focus on the words that have decisive effects on
relation classification or FD. The importance score εi of the
i-th word in a sequence is given by:

εi = Wa · tanh
(
hi

)
(7)

Then, the normalized importance weight αi for each
word can be obtained through a softmax function shown
as follows:

αi = exp (εi)∑n
k=1 exp

(
εk

) (8)

Where hi is the i-th output vector the LSTM layer, and
Wa is a weight vector to be learned during the training
process. The dimension of both hi and Wa is dw. Then the
representation r of the sentence is formed by a weighted sum
of all output vectors:

r =
n∑

i=1

hiαi (9)

Output layer and threshold filtering

In the output layer, the sequence representation r is first non-
linearly transformed to a vector h∗:

h∗ = tanh(r) (10)

Then a softmax classifier is used to predict label

�

y
among a set of classes y from the vector h∗ as follows:

p
(
y|s) = soft max

(
W(s)h∗ + b(s)

)
(11)

�

y = arg max
y

p
(
y|s) (12)

Table 2. Hyperparameters for both RE and FD models

Parameters Value

Dimension of word embedding 200
Dimension of position embedding 64
LSTM units 600
Learning rate 0.001
Loss function Cross-entropy
Regularization L2

Regularization coefficient 0.0001
Optimizer Adam

Here a difference exists between RE and FD. For the
former, we just take

�

y as the output relation label. For
the latter, however, we introduce a threshold τ to filter out
unreliable entity functions in order to improve the precision
though at the expense of the recall. If the probability of

�

y
is lower than τ , we relabel the instance as a negative one.
That is

�

y = None if max
(
p

(
y|s)) < τ (13)

The idea behind the threshold filtering is that if the
precision of FD is too low, it will significantly degrade the
performance of BEL statements as will be demonstrated in
Table 5.

Training

To learn the parameters of the networks, we adopt the
following loss function for training both RE and FD models:

J (θ) ∈ − 1
m

m∑

i=1

log p
(
yi|si, θ

) + λ‖θ‖2 (14)

where p(yi|si, θ) is the confidence score of the gold label yi

of the training relation/function instance, λ is the regular-
ization coefficient and θ is the set of parameters.

Experimentation

In this section, we first present the hyperparameters of
our models, then we describe the evaluation, finally, we
systematically evaluate the performance of our approach on
the corpus.

Hyperparameter setting

We adopt the same set of parameters as listed in Table 2
for both RE and FD models due to their similar structure.
Particularly, word embeddings are randomly initialized and
further automatically adjusted during the training process,
since preliminary experiments didn’t show any improve-
ments for pre-trained word embedding.
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Table 3. 10-fold cross-validation performance of RE and FD on the BC-V training set

Relation/function types # P(%) R(%) F1(%)

RE 9176 61.7 60.8 61.3(±1.4)
Increases 6701 65.1 73.4 69.2(±1.4)
Decreases 2475 54.2 40.0 46.0(±2.4)
FD 5226 53.9 54.0 53.9(±2.5)
act() 4163 52.3 59.8 56.0(±4.1)
deg() 103 58.8 16.9 26.3(±16.)
pmod() 698 59.5 32.8 42.3(±5.8)
sec() 226 51.7 23.1 31.9(±9.2)

Evaluation metrics

The performance is measured in terms of standard P/R/F1;
however, due to the complexity of BEL statement extrac-
tion, different levels of scores are also calculated in order
to evaluate the performance at different extraction levels,
i.e. Term (T), Function-Secondary (FS), Function (Fun)
Relation-Secondary (RS), Relation (Rel) and Statement
(Stat). In particular, evaluation scheme does not discern
between direct and indirect relation types, which means that
‘increases’ and ‘directlyIncreases’ are treated as equal, so are
‘decreases’ and ‘directlyDecreases’, and function evaluation
is simplified by mapping activity functions, such as kin(),
tscript() and cat(), to the more general act() function (27).
Among them the statement one is the overall performance
that we are concerned with. The evaluations are done on
the BC-V test set with gold entities (stage 2) unless it is
specified that entities are automatically recognized (stage
1). For more information about the BC-V BEL task and
its evaluation, kindly refer to Rinaldi et al. (27) and Fluck
et al. (28).

Experimental results

Cross-validation performance of RE and FD on the BC-V training set.

We evaluate the cross-validation performance of our models
on the RE and FD, respectively, where we apply a 10-fold
cross-validation to the RE and FD training sets. The average
results across 10-folds are reported in Table 3 where RE
and FD denote the overall performance for RE and FD,
respectively. The best performance scores in each column
for individual relations and main functions are displayed
in bold typeface. The values in the parentheses beside the
F1-scores are their standard deviations across 10-folds.

Table 3 shows that causal RE and FD in biomedical
domain are two challenging subtasks with 61.3 and 53.9%
of overall F1-measures, respectively. It also shows that

i. The performance of FD is lower than that of RE. This is
mainly because the classes of entity relations (2) is less

than that of entity functions (4) and the RE training set
is much bigger than the FD one.

ii. For the subtask of RE, the performance of the type
‘decreases’, especially its recall, is drastically lower than
that of ‘increases’. Obviously, it is due to the great
number of training instances for ‘increases’.

iii. For the subtask of FD, the performance of act(), particu-
larly its recall, is much higher than those of other func-
tions. However, the precision of pmod() is the highest
among all functions, probably because the expressions
containing ‘phosphorylation’ usually denote the pmod()
function.

Performance on the BC-V test set with/without functions. We evalu-
ate our RE and FD models, which were induced from the
whole RE and FD training sets respectively, on the BC-V
test set with gold entities (stage 2). Due to variations for
multiple runs of the same model trained on the same data set
on the TensorFlow platform, we average the results over five
runs. The same setting will be used in the following exper-
iments unless specified otherwise. The upper part of the
Table 4 shows the performance at various levels with naïve
merging of relations and functions while the lower part
shows the statement performance without/with functions,
i.e. only relations and naive merging, respectively. Note that
the function performance is only related to naïve merging
while Term/Relation performance remains constant. From
Table 4 we can see that

i. The performance at T level is extremely high with
around 95% or above for P/R/F1. This is because in
stage 2 all the entities participating in BEL statements
are given, and the high performance at RS level indi-
cates that nearly all the relations are recognized in a
loose sense, leading to the inclusion in the final BEL
statements of all the entities involved in these relations.

ii. The performance at RS level is also surprisingly high
with ∼96% of F1. On the one hand, due to its loose
criteria, RS level only evaluates whether any two of
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Table 4. Performance in stage 2 on the BC-V test data with/

without considering functions

Evaluation levels P(%) R(%) F1(%)

Term 99.3 95.2 97.2(±0.7)
FS 43.3 45.2 44.3(±2.3)
Function 31.7 36.7 34.0(±2.9)
RS 98.8 94.4 96.5(±0.7)
Relation 66.2 65.4 65.8(±0.8)
Statement(RE) 45.1 44.8 44.9(±1.0)
Statement(Merging) 42.5 41.2 41.7(±1.6)

three arguments in a relation instance (i.e. subject,
predicate and object) match rather than all its three
arguments. On the other hand, our model is trained
on the data set and applied to the test set where each
gold entity should be involved in at least one relation,
and thus RE in this scenario is relatively easier than in
the general setting where a large number of negative
instances dominate both training and test sets.

iii. There is a dramatic decline in performance from RS
level to Rel level due to the latter’s strict evaluation
criteria, i.e. all three arguments in a relation, includ-
ing relation types and argument order, are evaluated.
Therefore, errors in both relation types and argument
order contribute to the performance decline.

iv. Compared with the merging strategy of only using
RE, the F1-measure of naive merging at Stat level
decreases 3 units (from 44.9 to 41.7%) when entity
functions are incorporated into the statements. This is
contrary to our intuition that entity functions would
enhance the statement performance if they are detected
correctly. We also notice that the function performance
is significantly lower than that of cross-validation in
Table 3 by ∼20 units. This is mainly due to the errors
caused in the predicted relations. After careful exam-
ination, we found that due to the low precision of
FD (31.7%), more than half of predicted functions
are wrong, leading to the corresponding incorrect BEL
statements, otherwise some of these statements would
be correct if no entity function is introduced.

Impact of threshold filtering on the BC-V sample set. In order to
select the optimal threshold τ , we evaluate its impact on
the statement performance on the BC-V sample set. Figure 4
illustrates how the F1-measures (on the vertical axis) on the
sample set with gold entities vary with different thresholds
(on the horizontal axis) from 0 to 1.

We can see in Figure 4 that when τ equals 0.8 or 0.85,
the statement performance reaches the highest level, which
results in an increase of 1.0 in F1-measure compared with

Table 5. Performance in stage 2 on the BC-V test set using

relation merging with threshold filtering

Evaluation levels P(%) R(%) F(%)

Term 99.3 95.2 97.2(±0.7)
FS 71.6 23.1 34.8(±2.7)
Function 57.2 17.4 26.6(±1.6)
RS 98.8 94.4 96.5(±0.7)
Relation 66.2 65.4 65.8(±0.8)
Statement 47.5 46.3 46.9(±1.6)

when τ is between 0 and 0.5. Therefore, τ is set to 0.8 in
the following experiments.

Two threshold values of 0 and 1 need to be particularly
noted, where 0 implies naive merging of relations and
functions and 1 means that only relations are considered.
The significant decrease for τ=1 is due to the fact that,
different from the test set, most (∼70%) BEL statements
on the sample set entail entity functions, and therefore
omission of entity functions will significantly degrade the
statement performance.

Performance on the BC-V test set using statement merging with threshold

filtering. Table 5 reports the performance at different levels
on the BC-V test set when τ is set to 0.8 for threshold
filtering. Likewise, the performance scores different from
those in Table 4 are displayed in boldface, it shows that

i. With threshold filtering, we achieve the best statement
F1-measure of 46.9% with the increases in both pre-
cision and recall. This justifies the strategy of thresh-
old filtering due to the high reliability of functions as
shown by the high precision scores at both function and
function-secondary levels.

ii. Nevertheless, the recall scores at both Fun and FS levels
are lower than those in Table 4. The reason is obviously
due to threshold filtering that favors precision at the
expense of recall degradation.

Performance in stage 1 on the BC-V test set using different merging

strategies. In order to investigate whether threshold filtering
can work when gold entities are not given, we test our
models on the BC-V test set with automatically recognized
entities and report in Table 6 the performance in stage
1. The top half of the table shows the performance at
various levels using threshold filtering for merging state-
ments (Actually, only performance of FS and Fun is related
to merging strategies.) while the bottom part shows the
statement performance using different merging strategies,
i.e. only relations, naive merging and merging with thresh-
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Figure 4. The performance of F1 with different thresholds on the BC-V sample set with gold entities.

Table 6. Comparison of performance in stage 1 on the BC-V

test set using different merging strategies

Evaluation levels P(%) R(%) F(%)

Term 56.3 63.6 58.6(±0.9)
FS 66.7 23.1 34.3(±1.4)
Function 36.8 11.7 17.7(±2.1)
RS 57.6 67.8 62.3(±1.7)
Relation 27.7 36.6 31.6(±1.8)
Statement(RE) 16.0 23.3 19.0(±1.2)
Statement(Merging) 14.2 20.7 16.8(±3.2)
Statement(Filtering) 18.7 24.8 21.3(±1.8)

old filtering, etc. Note that the same models as in Table 5
are used.

Compared with the performance in stage 2 in Tables 4
and 5 etc., a significant decrease in Table 6 occurs at all
levels except FS. This should, at first sight, be caused by
entities mistakenly recognized, but may also result from the
fact that the RE model was trained on the biased training set
where positive instances greatly outnumber negative ones
decreases significantly while there are much more negative
instances in the test set in stage 1.

Nevertheless, the statement performance in stage 1
shows a similar trend to the performance in stage 2
regarding different merging strategies. When naive merging
is adopted, the statement performance actually decreases
compared with using only relations, and merging with
threshold filtering in stage 1 can also boost the statement
performance probably due to the same reason as in stage 2.

Comparison with other systems. Table 7 compares the perfor-
mance of our method on the BC-V BEL test set with other
systems in stage 1 (the upper half) and stage 2 (the lower

Table 7. Performance comparison with other systems on the

BC-V test set in stages 1 and 2

Systems T FS Fun RS Rel Stat

Rule (10) 62.9 55.4 42.6 73.3 49.2 39.2
Event (12) 34.0 10.0 8.6 25.1 41.4 20.2
SRL (14) 45.0 9.5 2.7 56.7 26.4 19.7
Ours 58.6 34.3 17.7 62.3 31.6 21.3
Rule (10) 82.4 56.5 30.0 82.4 65.1 25.6
Event (12) 54.3 26.1 20.8 61.5 43.7 35.2
SRL (14) 55.2 - - 63.5 44.6 33.1
Ours 97.2 34.8 26.6 96.5 65.8 46.9

half). The other systems on the BC-V task are based on rule
(10), event (12) and Semantic Role Labeling (SRL) (14).
The highest performance in each column is displayed in
boldface. (We select the best performance of other systems
from all possible runs.)

We can see in Table 7 that in stage 2, our system achieves
the best performance at 4 of 6 evaluation levels except func-
tions. At stat level, we achieve the F1-measure of 46.9%,
significantly outperforming other systems by more than
10 units. In stage 1, our system still achieves competitive F1-
measure, though in a lesser degree. This demonstrates that
attention-based neural networks together with threshold
filtering are promising for BEL statement extraction.

Discussion

To understand why the task is challenging, we closely
examined the errors and grouped them in terms of different
stages.

i. ‘Misaligned entity mentions’. The first step of our
approach is to align entity identifiers in a BEL state-
ment to entity mentions in the sentence. However, an
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entity identifier may be aligned to an erroneous men-
tion in large part due to the dictionary search based on
edit distance, particularly for biological processes. For
example, the BEL statement ‘tscript(p(HGNC:JUN))
increases bp(GOBP:“wound healing”)’ corresponds to
the sentence ‘These results demonstrate that activing
B promotes epithelial wound closure in vivo through
the RhoA-Rock-JNK-cJun signaling pathway’ (PMID:
21949871). Based on the edit distance between contin-
uous words, the entity <HGNC:JUN> is mistakenly
aligned to ‘wound’ and entity <GOBP:“wound heal-
ing” > is misaligned to ‘signaling’.

ii. ‘Long-distance dependence’. One error source for RE is
that the relationship between two entities is determined
by the long-distance dependence in the sentence, which
is still very difficult to be captured by an att-BiLSTM
model. For instance, the BEL statement ‘p(MGI:Egf)
increases r(MGI:Tkt)’ corresponds to the sentence ‘In
addition, TKT mRNA levels were elevated fivefold
in the corneas of 28-day-old mice raised in darkness
and injected with EGF compared to uninjected mice
also deprived of light’ (PMID: 11095059). The long-
distance dependence between ‘TKT’ and ‘EGF’ deter-
mines the relationship ‘increases’.

iii. ‘Lack of domain knowledge’. A large part of entity
functions can only be inferred from domain knowledge
other than the sentence. For example, the kin() function
denotes that an entity acts as a kinase, in some cases,
however, the sentence doesn’t express the function at
all, as in ‘Mutant src(−/−) mice have osteopetrosis
resulting from defective osteoclasts (increased apopto-
sis).’ (PMID: 11157779) with its corresponding BEL
statement ‘kin(p(MGI:Src)) decreases path(MESHD:
Osteopetrosis)’. The kin() function of the protein
<MGI:Src> can only be inferred from its description
‘neuronal proto-oncogene tyrosine-protein kinase Src’
in the MGI database, indicating that it is a kinase.

iv. ‘Cascaded errors’. An unavoidable disadvantage of a
pipelined system like ours is that errors from the pre-
vious step can be propagated and further amplified to
the next one, leading to significant errors accumulated
in the system. The misaligned entity mentions, long-
distance dependence and the lack of domain knowl-
edge all contribute the low performance for the whole
system.

Conclusion

In this work, we tackle the BEL statement extraction task
as a combination of RE and FD. We adopt the state-of-the-
art models (att-BiLSTM networks) to extract entity relation
as well as detect their individual functions, followed by the

incorporation of entity relations and functions to form the
BEL statements. In order to boost the overall performance,
we also introduce the strategy of threshold filtering to
select the highly reliable functions before constructing BEL
statements. Experimental results show that our method
achieves the best performance on the BC-V BEL task.

The limitation in our work is that we do not tackle
complex functions and nested relations that still account
for a non-negligible number of relations. We will deal with
these issues in the future work. We also intend to jointly
train entity RE and FD in order to further improve the
overall performance.
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