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Abstract

The discovery of antiviral drugs is a rapidly developing area of medicinal chemistry

research. The emergence of resistant variants and outbreaks of poorly studied viral

diseases make this area constantly developing. The amount of antiviral activity data

available in ChEMBL consistently grows, but virus taxonomy annotation of these data is

not sufficient for thorough studies of antiviral chemical space. We developed a procedure

for semi-automatic extraction of antiviral activity data from ChEMBL and mapped them

to the virus taxonomy developed by the International Committee for Taxonomy of

Viruses (ICTV). The procedure is based on the lists of virus-related values of ChEMBL

annotation fields and a dictionary of virus names and acronyms mapped to ICTV taxa.

Application of this data extraction procedure allows retrieving from ChEMBL 1.6 times

more assays linked to 2.5 times more compounds and data points than ChEMBL web

interface allows. Mapping of these data to ICTV taxa allows analyzing all the compounds

tested against each viral species. Activity values and structures of the compounds were

standardized, and the antiviral activity profile was created for each standard structure.

Data set compiled using this algorithm was called ViralChEMBL. As case studies, we

compared descriptor and scaffold distributions for the full ChEMBL and its ‘viral’ and

‘non-viral’ subsets, identified the most studied compounds and created a self-organizing

map for ViralChEMBL. Our approach to data annotation appeared to be a very efficient

tool for the study of antiviral chemical space.

Database URL: http://viraldb.org
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Introduction

According to the 2016 release of viral taxonomy by Inter-
national Committee for Taxonomy of Viruses (ICTV), there
were more than 3700 different viral species (1), and at
least 210 of them were known to cause human diseases
(2, 3). Only 9 viral diseases caused by a dozen of viral
species may be considered as treatable by drugs, and only
90 antiviral drugs based on around 70 different small
molecule compounds were approved for treatment by 2016
(4). Therefore, a serious unmet clinical need for new antivi-
ral drugs is clear. Given a significant amount of antiviral
activity data in public databases (5), it is attractive to use
data mining approaches based on chemical space analysis
to study and predict the antiviral activity spectrum for small
molecule compounds (6). Nevertheless, this task appeared
to be not as straightforward as it would seem.

A previous attempt to mine the antiviral chemical space
was made by Klimenko et al. (7), who constructed the
antiviral subset of ChEMBL by selection of assays using
the keyword search in the public web interface, obtaining
a total of 24 633 compounds. The application of the
Generative Topographic Mapping (GTM) machine learning
approach to this subset allowed to successfully classify
the antivirals according to target viruses and spectra of
antiviral activity (7, 8). Seven major activity classes of
antivirals, corresponding to certain genera, were considered
in this study, thus allowing further detalization of the GTM
antiviral chemical space sketch.

When we accessed ChEMBL (9) to find the information
about antiviral activity against tick-borne encephalitis virus
for compounds identified in our previous studies (10), we
could not find these data through the biological taxonomy
tree available in the web interface. Nevertheless, the struc-
tures themselves were present in the database, and the assay
descriptions, as well as activity values, were correct, but the
target organism field was empty (Figure 1). Thus, a deeper
analysis of the database content was required to extract as
many records relevant to antiviral activity as possible to
build the antiviral chemical space.

The importance of the correct data annotation and
standardization was highlighted in the field of quantitative
structure-activity relationships (QSAR) and chemoinfor-
matics model development and analysis (11, 12). In the
framework of antiviral activity data analysis, two anno-
tations are particularly important: target virus annotation
and molecular target annotation. In the primary sources,
such as experimental papers, representation of antiviral
activity is greatly varied due to the variability of experimen-
tal methods, thus requiring an additional curation for some
of ChEMBL data. The antiviral activity is usually assessed
in limited throughput assays, e.g. plaque or cytopathic effect
assays (13). A large amount of data was obtained using only

Figure 1. Example of incomplete data annotation in ChEMBL.

these assays, and no further target mining was performed.
These assay types are underrepresented in data ontologies;
common viral reproduction inhibition assay formats fall
into the unstructured branch ‘organism-based format’ in
BioAssay Ontology (14), used in ChEMBL, and specific
branches for replicon-based assays are not developed at all.

The situation is additionally perplexed by the variability
of mechanisms through which antiviral activity may be
realized. These mechanisms may be divided into two large
groups, utilizing host targets or viral targets, but molecular
target information is usually not available for common
antiviral assays with such endpoints as inhibition of viral
reproduction or inhibition of viral replication. Thus, the
molecular target annotation may be ignored on the first
stage of antiviral data mining, and the correct annotation
of assays to target virus species becomes the foremost task.

For sorting out the organisms, ChEMBL uses a
simplified version of NCBI taxonomy (15, 16), which
incorporates taxa from a wide range of sources, such
as the published literature, web-based databases, data
from sequence submitters, etc. (16). Being extended upon
submission of new sequences in GenBank, this taxonomy
contains separate entries for strains and isolates belonging
to the same virus species, along with other name variants
(16). A special disclaimer on NCBI taxonomy website
states that ‘NCBI taxonomy database is not a phylogenetic
or taxonomic authority and should not be cited as
such’ (www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.
html/index.cgi?chapter=howcite). In contrast, ICTV tax-
onomy is developed by the expert community (17). This
taxonomy is also constantly updated to reflect the scientific
progress, and these updates are sometimes confusing and
make the mapping of data from the scientific literature
to different taxonomy releases complicated (18, 19).
Nevertheless, for consistency of the studies, it is required
to develop a scheme of mapping ChEMBL assays to ICTV
taxonomy as the most comprehensive and expert-curated
taxonomy. In 2008, a tool, named ORION-VIRCAT, was
developed for mapping NCBI and ICTV taxonomies (20).
This tool was based on a set of manually created annotation
links for older taxonomy releases and thus cannot be
directly applied to map current taxonomy releases.

In this manuscript, we present an algorithm for semi-
automated extraction and curation of antiviral data from
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Table 1. Taxonomy table statistics (placeholders included)

Table name Taxonomy rank Number of entries

ICTV.orders Order 8
ICTV.families Family 114
ICTV.subfamilies Subfamily 237
ICTV.genera Genus 770
ICTV.species Species 3837

ChEMBL. Assay selection procedure employs the lists of
relevant assay organism and target organism annotations
and text mining of assay descriptions using dictionaries of
virus-related terms. This advanced approach allowed us to
extract 2.5 times more data points and compounds than
ChEMBL taxonomy browser allowed (https://www.ebi.ac.
uk/chembl/target/browser). Data points were annotated by
virus taxa according to ICTV taxonomy; compound struc-
tures and activity values were standardized to obtain antivi-
ral activity profile for each compound. This approach led
to the most exhaustive and clearly annotated collection of
publicly available antiviral activity data to date that we refer
to as ViralChEMBL. Data visualization showed the features
of this antiviral chemical space.

Methodology

Taxonomy representation

ICTV taxonomy is organized hierarchically with five
possible taxonomic ranks (higher to lower): order, fam-
ily, subfamily, genus and species (https://talk.ictvonline.
org/taxonomy/w/ictv-taxonomy). The basic unit of the
taxonomy is species, defined as ‘a monophyletic group
of viruses whose properties can be distinguished from
those of other species by multiple criteria’ (1, 21). Most
species are grouped into genera, but higher ranks are
undefined for many of them. Hereafter, only taxa names
recognized by ICTV are italicized. Taxonomy structure
was converted into a relational database (Supplementary
data 1) organized as a tree with tables corresponding to
the taxa (Table 1). On each level, one ‘unassigned’ entry
was generated to deal with cases when exact ICTV species
name could not be unambiguously assigned or for taxa not
assigned to the higher levels by ICTV. A unique identifier
was generated for each taxon (species id, genus id,
subfamily id, family id and order id) to be used
for table connections.

Additional field ‘pathogenicity flag’ (path flag) was
defined for each species. Integer non-zero value of this field
is the reference number for the source of pathogenicity
data (Supplementary data 2). These data were extracted
from the biosafety documents (The Approved List of bio-

logical agents: http://www.hse.gov.uk/pubns/misc208.pdf)
enhanced with other web resources (http://viralzone.expasy.
org/678) and Google and Wikipedia searches and cross-
checked with lists of pathogenic viruses compiled earlier by
Woolhouse et al. (2, 3).

Selection of assays

Data in ChEMBL are organized into a relational database,
comprising separate interconnected tables. By proper selec-
tion of assays, compounds, for which biological activity
was assessed in these assays, are extracted in a single step.
Therefore, the main problem to obtain the antiviral activity
data was to define the set of relevant assays properly.

Direct use of ChEMBL tax id field values was not rea-
sonable due to the inconsistency between NCBI and ICTV
taxonomies. In general, tax id values did not contain
additional information compared to the data presented in
the text annotation fields.

Four ChEMBL fields contain the information that can
be used for text-based search of antiviral activity data:
assays.assay organism (organism used in an assay),
assays.description (free text description of an assay),
target dictionary.organism (organism in which
the intended molecular target of compounds tested in an
assay resides) and target dictionary.pref name

(name of the intended target protein). The analysis of
plaintext values of assays.description field is the
most complicated task. Taking into account that assay and
target organism fields may contain non-virus-related values
or placeholders even for the relevant entries (Table 2), we
used assay description field as an additional data source to
get as much relevant information as possible. Virus names
may be also poorly standardized, e.g. in row 3 of Table 2,
two different names for the same virus are used (its current
species name is Human alphaherpesvirus 1).

Since the data in different fields might contradict
each other, all of them were analyzed separately in
parallel. The lists of available values were extracted from
the annotation fields assays.assay organism and
target dictionary.organism. Then virus-related
entries were manually chosen from them and directly
mapped to ICTV taxa where possible (Table 3). The field
target dictionary.pref name was not analyzed
because it does not contain any new information about
viral species. Data extraction from the table assays was
performed via an SQL query using ao list elements
as the keys for assays.assay organism. It gave
the first set of relevant assays, which was added to
ViralChEMBL.av assays table. The second set of
assays was extracted from assays table using to list

and target dictionary table in a similar manner.
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Table 2. Examples of limited and contradicting information in ChEMBL fields: full information is available only in row 1,

irrelevant values and placeholders are highlighted with bold typeface

assays.
chembl id

assays.
assay organism

assays.description target dictionary.
organism

target dictionary.
pref name

Reference

CHEMBL748873 Influenza A virus In vitro inhibitory activity
against influenza A
neuraminidase using enzymatic
assay

Influenza A virus
[A/Puerto
Rico/8/1934(H1N1)]

Neuraminidase (22)

CHEMBL825021 Homo sapiens Antiviral activity against
envelope deficient HIV-1 in a
single cycle replication assay
(experiment 1)

NULL Unchecked (23)

CHEMBL662228 NULL Inhibition of HSV-1 DNA
polymerase in HSV-1 C42
plaque reduction assay

Herpes simplex virus
(type 1 / strain 17)

Human herpesvirus 1
DNA polymerase

(24)

CHEMBL751813 Hepatitis C virus Inhibitory activity against the
hepatitis C virus NS3 protease
was determined

NULL Unchecked (25)

Table 3. Virus-related entries in text annotation fields

Field All values Virus-related values File

assays.assay organism 3952 653 ao list (Supplementary data 3)

target dictionary.organism 2420 272 to list (Supplementary data 4)

Assays not present in ViralChEMBL.av assays table
were added to the table.

The number of unique values in assays.description
field was 965 591, not allowing manual analysis. Thus,
automated procedures for data extraction were needed.
A dictionary containing all taxa names from ICTV
master species list (https://talk.ictvonline.org/files/master-
species-lists/m/msl/5208) was compiled. To complement
the dictionary with virus names present in ChEMBL, the
records from ao list and to list were used. For
viruses with available pathogenicity data (path flag is
not ‘NULL’), name variants (older names, synonyms and
abbreviations) were added. The choice of mostly pathogenic
viruses was dictated by ChEMBL data availability because
antivirals were usually designed and tested only against
pathogenic viruses, and for most plant viruses, phages,
viroids etc., there were no antiviral data. However, ICTV
taxa names and plant viruses’ names present in ChEMBL
fields allowed the extraction of some assays related to
plant viruses (e.g. Tobacco mosaic virus). Full dictionary
of virus names and name variants (older names, synonyms
and abbreviations) contains 4814 entries and is available
as Supplementary data 5.

Dictionary of virus names and name variants was
converted into a set of key strings to be searched in assay

descriptions. Empirical rules, available as Supplementary
data 6, were developed to maximize the number of
extracted antiviral assays and to sort out irrelevant assays
at the same time. All the assays were prefiltered using stop
words. Then non-alphabetic characters, including spaces,
were stripped from the key strings containing more than
four alphabetic characters to obtain the minimal specific
substrings. Non-alphabetic characters were stripped from
assays.description field values as well and dictionary
items of at least five characters in length were searched in
these modified descriptions. Virus abbreviations of three to
four characters flanked with spaces or line start/end sym-
bols were searched in the modified assay descriptions, with
all non-alphabetic characters changed to spaces (Figure 2).
This search gave 101 174 pairs of assays and key substrings,
with 559 virus-related substrings appearing at least once.

The substring dictionary was further extended with
refined substrings to map the extracted assay descriptions
to individual virus taxa. The shortest substrings were man-
ually supplemented with alphanumeric symbols required to
disambiguate viral species, then all items of this extended
dictionary were mapped to the species identifiers from
ICTV.species table. For example, substrings ‘hiv1’ and
‘hiv2’ were added to the extended dictionary with the aim to
map data extracted using the substring ‘hiv’, where possible.
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Figure 2. Procedure for filtering assays.description field values.

If a substring could not be mapped to a species, ‘unassigned’
value of the corresponding taxonomy branch was used as a
placeholder. The substring dictionary was supplemented
with ao list and to list elements with assigned
taxonomy identifiers. Substrings leading to extraction of
large amounts of irrelevant descriptions [e.g. substring ‘icv’
corresponding to Influenza C virus is present in description
‘Compound was tested for blockade of locomotor activity
in guinea pig, elicited by icv administered Sar9Met(O2)-SP’
(assays.chembl id CHEMBL687446)] were dropped
from the extended dictionary. This procedure led to 1192
pairs of key substrings and species identifiers.

Annotation of assays

Viral taxon annotations were generated for ChEMBL
assays extracted by values of assays.assay

organism, target dictionary.organism and
assays.description fields, independently. These
annotations were put into the fields ao tax, to tax and
dg tax, respectively. Final taxon annotation (findec a)
was combined from these fields using a decision-making
scheme (Figure 3) based on the choice of the taxon of
the lowest level when taxa from different source fields
did not contradict each other. If there was only one
field containing viral taxon, this annotation was directly
assigned as final. Mapping confidence score was assigned
to each ‘findec a’ based on rules defined in Table 4.

There were 316 assays with contradictory values of
ao tax, to tax and dg tax; these assays were put into

a separate list for further analysis. The list was extended by
assays extracted through text search using a set of strings,
which could indicate non-antiviral assays [‘antibacterial’,
‘antifungal’, ‘antitumor’, ‘vector’, ‘transformed’, ‘cell cycle
arrest’, ‘apoptosis’, etc. (see Supplementary data 6 for the
full list)], e.g. where virus was used for gene delivery. Obvi-
ous mistakes have been corrected during manual check-
up of the list, and 283 complicated cases (1366 standard
structures) will be solved through the literature sources;
results will be reported elsewhere. Thus, most antiviral
assays in ChEMBL were mapped to specific virus taxon
records in ICTV.species table.

Data standardization

Compounds tested in assays annotated as antiviral were
extracted and standardized with ChemAxon Standard-
izer (JChem 14.11.3.0; ChemAxon, 2014, http://www.
chemaxon.com) by stripping metal atoms, desolvation,
removal of the smaller unbound fragment, aromatization,
kekulization and tautomerization to the standard form
(Standardizer XML file is available as Supplementary data
7). This sequence led to 260 866 unique standard structures.
A unique identifier stdstr id was assigned to each
standard structure. ChEMBL IDs of initial compounds were
retained and could be used for backwards compatibility and
detalization of the data. The structure data were organized
into the stdstr mrgn table, which provided links
between initial ChEMBL representations of compounds
by molregno with stdstr id, canonical SMILES
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Figure 3. Decision-making scheme for the assignment of a viral taxon.

Table 4. Mapping confidence flag description

Mapping confidence
(mapping conf)

Fields with virus-related values Number of assays

assays.

assay organism

target dictionary.

organism

assays.

description

5 1 1 1 20 763
4 1 1 0 411
3a 1/0 0/1 1 5847
2a 1/0 0/1 0 377
1 0 0 1 9697
0 annotation inconsistencies (ERROR code in findec a field) 283

aThese mapping conf values appear when only one of assay organism and target organism fields contains a virus-related value.

representations std smiles and molecular weight molw
for standard structures. Entries with empty structures (851
unique molregnos) were excluded from this set.

Raw ChEMBL entries may contain numerous rep-
resentations of activity inherited from original publica-
tions, and standardized activity values calculated during

the database filling (pChEMBL) are not available for
many of them. ViralChEMBL.av activities table
was created for viral-related assays based on the core
structure of ChEMBL.activities table. Data from
ChEMBL.activities were extracted for assays from
ViralChEMBL.av assays table by assay id values
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Table 5. ChEMBL activity data considered as interpretable

standard type standard units Number of entries

IC50
nm
ug.ml-1∗

67 208
4740

Potency nm 335 316

Inhibition
nm
%

177
14 848

Ki nm 8587

EC50
nm
ug.ml-1∗

57 888
7496

MIC nm 1843

ED50
nm
um

2655
450

∗Data with ‘ug.ml-1’ units were converted to nm.

Table 6. Activity data classification rules; av act50 values

Active (1) Inactive (0)

av units = ‘nm’ AND av value ≤50000 AND
standard relation = ‘=’ OR standard relation = ‘<’

av units = ‘nm’ AND av value >50000 AND
standard relation = ‘=’ OR standard relation = ‘>’

av units = ‘%’ AND av value ≥70 AND
standard relation = ‘=’ OR standard relation = ‘>’

av units = ‘%’ AND av value <70 AND
standard relation = ‘=’ OR standard relation = ‘<’

av units IS NULL AND activity comment LIKE ‘active’ av units IS NULL AND activity comment LIKE ‘inactive’

and enhanced with fields molw, av type, av value

and av units, aimed to contain easily interpre-
table data from standard type, standard value

and standard units fields of ChEMBL.activi-

ties, respectively (Table 5). The list of all extracted
field values is available as Supplementary data 8.
Thus, ViralChEMBL.av activities is connected to
ViralChEMBL.av assays through assay id keys and
to stdstr mrgn through molregno keys. SQL script for
activity data standardization is available as Supplementary
data 9.

Rules for binary classification of activity were developed
for interpretable activity data. Activity flag av act50 was
assigned to each ViralChEMBL.av activities entry
using the rules provided in Table 6. For each stdstr id–
assay id pair, a Boolean field was generated based on
these rules to represent the activity of a compound in
an assay. Activity data were summarized in sum table,
where each entry represents a stdstr id–species id

pair. For each pair, p 50 parameter was calculated as
Nactive/(Nactive + Ninactive), where Nactive and Ninactive are
numbers of entries for which a compound was classified
as active or inactive, respectively. Antiviral activity profiles
were constructed for each compound, represented by one-
dimensional arrays of p 50 values, where array position
corresponded to a single species.

Computational methods

Databases

MySQL edition of ChEMBL v. 20 was used (9) (ftp://ftp.ebi.
ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_
20/). Dump file was added to a local MySQL database.
An internal structure of ViralChEMBL tables was based
on the structure of the corresponding ChEMBL tables
and complemented by taxonomy-related and -standardized
values of the fields. The taxonomy database was created on
the basis of the ICTV master species list (2014 v4 release)
(https://talk.ictvonline.org/files/master-species-lists/m/msl/
5208). Placeholder taxa ‘Unassigned’ were added to
each level of taxonomy branches using SQL statement.
DrugBank database (v. 5.0.7) was downloaded in structure-
data file (SDF) format from web server (26) (https://www.
drugbank.ca/).

Data retrieval and annotation

Data retrieval was carried out using Python 2.7 in
Spyder integrated development environment (https://www.
spyder-ide.org/) and MySQL 5.7 Workbench interface
(https://www.mysql.com/products/workbench/). On the
first iteration, ao list and to list were used as
keys for assay extraction. On the second iteration, assay
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description and assay id primary keys were retrieved
from ChEMBL via an SQL query. These descriptions
were searched against virus name substring dictionary
using a Python script (Supplementary data 6), and
virus-related assays were extracted into a temporary
file. All retrieved assays were mapped to ICTV tax-
onomy using the list of substring—species id pairs
(Supplementary data 10). For virus names containing
another virus name as a substring (e.g. rhinovirus and
Inovirus), a dictionary of corresponding substring pairs
(Supplementary data 11) was used to avoid irrelevant map-
pings. Mapping was performed using a Python script avail-
able as Supplementary data 12. Final taxonomy identifier
findec a was chosen on the basis of ao tax, to tax

and dg tax identifiers using a script available as Sup-
plementary data 13. If the identifiers represented different
branches of ICTV taxonomy tree, the records were marked
for the further manual check. Antiviral assay records from
table ChEMBL.activities were extracted using an SQL
query (primary key assay id) and added to the table
ViralChEMBL.av activities; corresponding entries
of ChEMBL.compound structures were extracted via
an SQL query (primary key molregno) and added to the
table ViralChEMBL.compound structures.

Data standardization

ChEMBL compound structures were extracted as SMILES
strings and saved in a comma separated values (CSV) file.
Structures were standardized with ChemAxon Standardizer
14.11.3.0 (Supplementary data 7). Standard structure
identifiers (stdstr id) were assigned to initial structures.
Molecular weight values for standardized structures
were calculated in ChemAxon InstantJChem 17.1.30.0
(ChemAxon, 2017, http://www.chemaxon.com) and added
to ViralChEMBL.av activities table. Activity values
were standardized to unified activity types and standard
units (Table 5). DrugBank structures were standardized
using the same procedure.

Data analysis and visualization

DataWarrior v. 4.4.3 (27) was used for self-organizing
map (SOM) creation. DataWarrior’s fragment fingerprint
FragFp was used for structure representation. Torus topol-
ogy map of 50 × 50 neurons with ‘Gaussean’ neighborhood
function was created using a fast routine for finding the best
match.

Scaffold distributions were generated using DataWarrior
‘scaffold analysis’ function with Murcko scaffolds, defined
as all plain ring systems of the molecule and their connec-
tions with each other. All substituents that do not contain

ring fragments were deleted from the structure to obtain
this kind of scaffold.

Molecular descriptors for histograms were calculated
with ChemAxon JChem 16.8.29.0 (ChemAxon, 2017,
http://www.chemaxon.com).

For the functional group analysis, the fully automated
algorithm suggested in (31) was used. The algorithm is
based on processing heteroatoms and their environment
with the addition of some other functionalities. We used
the implementation of this algorithm available in RDKit
v. 2018.03.4 (http://www.rdkit.org).

Results & Discussion

Antiviral data

A compound may show antiviral activity mediated by viral
or host targets. For purposes of antiviral data mining,
an assay is considered to be relevant only if it assesses
an organism-based or replicon-based antiviral activity or
interaction with a viral protein. For numerous host proteins,
participation in viral reproduction pathways is demon-
strated, and, in certain cases, modulators of these proteins
may show antiviral activity or even may be developed as
antiviral drugs. Nevertheless, binding assays against these
proteins cannot be considered for antiviral data mining if
inhibition of viral reproduction by the compounds is not
assessed in separate assays. On the contrary, despite binding
or modulation of viral proteins in vitro do not necessarily
lead to antiviral activity, viral proteins are often specific for
viruses and do not have host analogs. In a classic target-
based approach, these binding data form a core basis for
further organism or replicon level antiviral activity studies
and thus are relevant antiviral data.

The procedure of antiviral data extraction is designed
with an aim to obtain as much data as possible and to anno-
tate them on the fly, reducing the need for manual inter-
ventions. Statistics for antiviral assays extracted with our
procedure is given in Figure 4. The core of the procedure is
represented by an algorithm of mapping an assay to a viral
taxon by the values of database fields. Extensive variation
in virus name representation and not-always-obvious cor-
respondence between common names and taxa of viruses
make this mapping sometimes rather tricky. The situation
when all relevant fields (av assays.assay organism,

target dictionary.organism and av assays.

description) contain values directly mappable to a
certain species is the easiest, but a significant amount
of assays presents the annotation conflicts or incom-
plete data. If an assay does not contain the virus-
related terms in av assays.assay organism or
target dictionary.organism fields, it does not
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Figure 4. Assay statistics. (a) A number of assays, compounds (∗, non-standardized) and entries extracted using ChEMBL web interface (taxonomy

tree, accessed 12.04.16) or our procedure (ViralChEMBL); (b) number of assays extracted by each of used fields; (c) percent of assays mapped back

to each taxonomy level.

mean that this assay is not really virus-related. Text mining
of assay descriptions allows enriching the collection with
such assays.

Not every virus-related assay description may be
mapped back to a single virus species. For example,
strings ‘HIV’ or ‘human immunodeficiency virus’ cannot
be mapped to species Human immunodeficiency virus 1
(HIV-1) or Human immunodeficiency virus 2 (HIV-2)
without additional information. If the full assay description
contains a substring allowing exact species mapping (e.g.
‘HIV-1’), this mapping is performed. However, if assay
description mentions only ‘HIV’, placeholder species
‘Unassigned Lentivirus’ is to be used, placing an assay to
the higher taxon branch (genus Lentivirus in this example).
In more complicated cases a virus may be traced back only
to the family level; this is typical for taxa with a rich history
of changes and revisions, such as Papillomaviridae. In the
case of annotation conflicts between different field values,
the only reasonable decision was to raise an error. Several
assays are definitely virus related, containing the ‘antiviral
activity’ substring in the description, but no other clues
are present to map them to any taxon, so they have all

taxonomy levels set to ‘Unassigned’ (Table 7). There are
411 such assays that require further human insight and
backward literature analysis. Nevertheless, their amount
is negligible compared to the total number of annotated
assays.

There are six types of assays in ChEMBL 20: binding (B),
functional (F), ADME (A), toxicity (T), physicochemical
(P) and unknown (U) (28). This classification is based
on the type of measured effect: for a binding assay, the
measured value is related to the binding of a compound
to a molecular target; for a functional assay, a particular
biological effect caused by a compound (cell death,
antiviral activity etc.) is measured; and ADME includes
effects of compound metabolism, pharmacokinetics and
pharmacodynamics. Functional assays comprise ∼70%
of all assays in ViralChEMBL and 40% in ChEMBL.
We attempted to check the correctness of available assay
attribution to B and F classes in the ViralChEMBL
subset and found that this attribution is usually correct.
Nevertheless, in this study, we made no distinction between
binding and functional assays. A deeper analysis of assay
types will be performed in future studies.
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Table 7. Annotation procedure results

Assay ID Description Assay organism Target organism Viral annotations Final decision

CHEMBL615372 Antiviral activity
against 07/1 strain of
VZV in HEL (human
erythroleukemia) cells.

vericilla zoster virus∗ Human herpesvirus 3 Assay organism,
Human herpesvirus 3;
target organism,
Human herpesvirus 3;
description, Human
herpesvirus 3

Human herpesvirus 3

CHEMBL661557 In vitro activity
against coxsackie B-4

Coxsackievirus Coxsackievirus Assay organism,
unassigned
Enterovirus; target
organism, unassigned
Enterovirus;
description,
Enterovirus B

Enterovirus B

CHEMBL695294 Inhibitory
concentration against
HCMV in plaque
reduction assay

Human herpesvirus 1 Human herpesvirus 1 Assay organism,
Human herpesvirus 1;
target organism,
Human herpesvirus 1;
description, Human
herpesvirus 5

ERROR CODE

CHEMBL698767 Inhibitory effect
against influenza virus
plaque formation at a
concentration of
100 um

Unidentified influenza
virus

Unidentified influenza
virus

Assay organism,
Orthomyxoviridae;
target organism,
Orthomyxoviridae;
description,
Orthomyxoviridae

Orthomyxoviridae

∗As in ChEMBL. Correct name is Varicella zoster virus

Profiling of antiviral activity for ChEMBL

compounds

All compounds linked to assays marked as antiviral on
the previous step are extracted and standardized. Standard
structures form the centers of the nests comprising all their
ancestors. Antiviral assays are mapped to these standard
structures, and, for each standard structure, there is a list of
assays where it has been tested (some examples are given in
Table 8). Original identifiers (molregno) were preserved,
and any additional information for these compounds may
be easily extracted from ChEMBL. A list of tested com-
pounds was created for each virus species (statistics are
given in Figure 5 and Table 9). This system of interactions
defines an enhanced subset of ChEMBL that we named
ViralChEMBL.

A large amount of individual activity measurements
for common broad-spectrum antivirals is quite expected,
but even more data points are available for HIV-1 non-
nucleoside reverse transcriptase inhibitors efavirenz and
nevirapine. They were used in numerous HIV reverse tran-
scriptase binding and functional anti-HIV assays as stan-
dards. Attempts to repurpose these molecules, if any had
been performed, did not find their way to ChEMBL. On

the contrary, typical broad-spectrum nucleoside analogs are
often the first line of testing and treatment for emerging
viruses and in drug discovery programs targeting specific
viruses. Ribavirin is definitely a Jack of all trades and master
of few in this field, given its low activity in most cases.

A ‘testing fingerprint’ for each ViralChEMBL compound
is a 1D numeric array, elements of which represent the
number of activity measurements against each virus species
for the compound. Heatmap visualization of these test-
ing fingerprints (Supplementary data 14) shows that the
majority of the compounds were tested only against several
most common viruses. This heatmap substantiates the need
for an extension of efforts on testing new compounds
against different viruses. For the majority of the com-
pounds (255 883 of 260 520 compounds and 433 111 of
434 893 compound-virus pairs) there are no more than 10
data points in the database. For comparison, in a recent
study of ChEMBL21, 4613 targets with at least 10 active
compounds were identified (29).

Antiviral activity profiles were created using a more
elaborate scheme, taking into account activity data type
and the number of measurements. These profiles are bit
strings, where the value of ‘1’ appears if the percent of
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Table 8. Compounds with the largest number of linked assays

Structure Name
Number of

species∗ genera∗ activity records

zidovudine 27 17 1739

efavirenz 8 5 1612

ribavirin 36 17 1517

nevirapine 7 5 1514

acyclovir 40 28 1459

ganciclovir 35 27 1198

brivudine 33 23 985

lamivudine 18 13 704

(Continued).
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Table 8. Continued.

Structure Name
Number of

species∗ genera∗ activity records

oseltamivir 22 19 646

cidofovir 43 25 602

∗Including ‘Unassigned’.

Figure 5. Statistics for individual activity entries (green) and standardized compounds (blue) mapped to virus species.

interpretable activity measurements, where the compound
was active against a certain virus species, is larger than
50% and ‘0’ otherwise. Reduction to interpretable activity
values retains 85% of entries and is necessary to make the
development of predictive models possible. The current
implementation of ViralChEMBL does not take into
account the mechanisms of action for the compounds,
but preliminary classification models based on chemical
space approaches may be useful for data analysis. Despite
the mechanism of action classification exists in ChEMBL
in the form of the confidence score field, which
ranges from 9 for direct assignment of a single protein
target to 0 for unassigned targets, for more than 90%

of ViralChEMBL assays, the single target is not assigned
(confidence score <8). Thus, for the moment, full-
fledged annotation of the mechanism of action is not
possible and further data curation is needed. On the
other hand, a significant percent of non-interpretable data
consists of assays with lower relevance to antiviral activity,
e.g. ratios of activity and toxicity, which usually repeat data
already available through activity and toxicity assays.

ViralChEMBL versus ChEMBL

ViralChEMBL is a subset of ChEMBL containing presum-
ably all compounds for which the antiviral activity or
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Figure 6. Descriptor distributions for ViralChEMBL (blue), non-ViralChEMBL (purple) and ChEMBL (yellow). (A) Molecular weight, (B) ring count, (C)

hydrogen bond acceptors and (D) hydrogen bond donors.

Table 9. Number of assays assigned to each virus species

# Species Assays

1 HIV-1 12 760
2 Hepatitis C virus 3274
3 Human herpesvirus 1 2417
4 Influenza A virus 2112
5 Unassigned Lentivirus 1789
6 Human herpesvirus 2 1215
7 Hepatitis B virus 1064
8 Human herpesvirus 5 1003
9 Human herpesvirus 3 727
10 Vaccinia virus 710
11 HIV-2 645
12 Unassigned Enterovirus 535
13 Enterovirus B 498
14 Unassigned Vesiculovirus 467
15 Other species 7818

viral protein binding was measured at least once. Although
these compounds may be classified as active/inactive against
each virus species only separately, a global comparison of
ViralChEMBL compounds with ChEMBL as a whole may
be performed, as well as with the compounds never tested
in virus-related assays.

Distributions of simple descriptors for all databases did
not show large deviations for any of them (Figure 6). It

means that no specific selection rules are employed in the
library design for antiviral HTS campaigns, and common
Lipinski-compliant compounds are usually selected. On the
contrary, scaffold distribution for databases is definitely
different (Table 10). Whereas benzene ring is the most
frequent scaffold in all sets, its frequency is different.
ViralChEMBL is specifically enriched with nucleoside-like
scaffolds because nucleosides are considered as privileged
structures for antiviral drug discovery (30). Functional
group counts in the sets also show some common and
distinct patterns (Supplementary data 15). For example,
aromatic carbon–nitrogen–carbon pattern is the most
common for all the sets and shows almost the same
frequency (present in 33.8% of ViralChEMBL compounds
and 33.7% of non-ViralChEMBL compounds). On the
other hand, aliphatic ether/alcohol pattern CO occurs in
14.7% of non-ViralChEMBL compounds (ranked third)
but only in 10.9% of ViralChEMBL compounds (ranked
fifth). More thorough analysis of structural features
enriched in antiviral compounds based on these lists will be
published elsewhere.

Antiviral chemical space

SOMs were used as a simple approach to visualize the
antiviral chemical space represented by ViralChEMBL
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Table 10. Top 10 most frequent scaffolds; the cells are coloured corresponding to the frequency of the scaffold in the

ViralChEMBL dataset (from purple to red), gray background denotes scaffolds that are not present in the dataset; red frame

highlights scaffolds specific to antiviral compounds
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Figure 7. SOMs of antiviral chemical space. (a) All compounds (blue dots) with background colored according to neuron similarity. Greener areas

correspond to high local similarity, yellow borders divide regions. (b) The same compound dots colored by virus family (color legend is available as

Supplementary data 16). Note that compounds tested against more than one family (light yellow) are scarce. (c–e) The same dots colored by activity

against a certain species: green, active; red, inactive; gray, not tested. (c) HIV-1; (d) Hepatitis C virus; (e) Influenza A virus; (f) Dengue virus.
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Figure 8. DrugBank mapped onto ViralChEMBL SOM. Dots are colored by SOM Fit, higher values showing better fitness of projected compounds

to their neurons.

Table 11. Examples of ViralChEMBL compounds close to DrugBank compounds

DrugBank
compound

Name Indications ViralChEMBL
compound

Activity SOM
distance

SOM Fit Tanimoto
similarity

Albendazole Parenchymal
neurocysticercosis due
to active lesions
caused by larval forms
of the pork tapeworm,
Taenia solium; cystic
hydatid disease of the
liver, lung and
peritoneum, caused by
the larval form of the
dog tapeworm,
Echinococcus
granulosus.

Hepatitis C virus
reproduction inhibitor
CHEMBL2114775∗∗

0.113 0.7080 0.8071

Benztropine Parkinsonism; control
of extrapyramidal
disorders due to
neuroleptic drugs.

Entry inhibitor for
Lassa virus
CHEMBL1794308∗∗

0.148 1.0226 0.8861

∗stdstr id from stdstr mrgn table
∗∗CHEMBL ID of the assay
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(Figure 7a). ViralChEMBL compounds are diverse and
occupy most regions of the map. To illustrate our data
enhancement, we colored the SOM dots according to
the viral family against which a compound was tested
(Figure 7b). This taxonomy level was used as a compromise
between the number of different colors to be used on the
map and information content of the plot.

It may be easily observed that most compounds were
tested against single families. As usual, most of them cor-
respond to families Retroviridae (the most studied member
is HIV-1), Flaviviridae (Hepatitis C virus) and Orthomyx-
oviridae (Influenza virus A). Several compound classes,
usually explored against certain viruses, form tight clusters.
Compounds tested against multiple virus families are small
in number and scattered around the map.

For each of 158 virus species with interpretable activ-
ity data, the map can be colored by activity. However,
visual analysis is easy only for species with rather a high
number of data points (Figure 7c–e). Enrichment of HIV-1
(Figure 7c), Hepatitis C virus (Figure 7d) and Influenza
A virus (Figure 7e) maps with actives clearly shows the
publication bias in literature-based data; on the contrary,
data for less studied Dengue virus (Figure 7f) are often
published along with the data for other viruses, and activity
is observed only against one of them.

Maps of antiviral chemical space may be useful to iden-
tify the possible antiviral activity of new or repurposed com-
pounds. As a simple example, we projected DrugBank onto
the ViralChEMBL SOM (Figure 8) and used SOM distance
between pairs of compounds as an alternative to Tanimoto
similarity for searching compound pairs. Two examples of
such pairs are given in Table 11. Further elaborated studies
for antiviral activity prediction may be developed based on
ViralChEMBL data.

Conclusions & Future Directions

Discovery of new antiviral drugs is a very important prob-
lem of medicinal chemistry, justified by the emergence
of novel viruses and resistance of known ones. A large
amount of antiviral activity data is available in the most
widely used public repository ChEMBL, but these data
require additional annotation to be used for the mapping
of antiviral chemical space. To overcome this problem,
we developed an algorithm of semi-automatic curation of
ChEMBL data based on mapping lists for assay organism
and target organism data and dictionary of virus-related
terms. The work of this algorithm was demonstrated using
ChEMBL 20 and ICTV taxonomy 2014 by a generation of
the first version of antiviral activity data set ViralChEMBL,
available as Supplementary data 17 to this paper. SQL

version of the database used for the data management is
provided as Supplementary data 18.

Both ChEMBL database and ICTV taxonomy are not
stable entities, subject to change due to science develop-
ment. As for now, ViralChEMBL presents just a snapshot
of both data systems. A convenient approach for updating
of the database along with ChEMBL and ICTV taxonomy
is being developed now. In this paper, we describe the
development of general procedures for efficient extrac-
tion of antiviral activity data from public databases. These
procedures were applied to ChEMBL release 20 that was
current at the time of the start of the work. The major
aim of the study was to demonstrate the data handling
workflow and its applicability to a real data set, as well
as to provide some simple analysis of the antiviral chemical
space as an illustration. Automated procedures of antiviral
activity database generation are developed now, and a web
server implementation will be prepared for ViralChEMBL
to make the analysis of the antiviral chemical space more
accessible for the community.
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statement: virus taxonomy in the age of metagenomics. Nat. Rev.
Microbiol., 15, 161–168.

22. Lew,W., Escarpe,P.A., Mendel,D.B. et al. (1999) Stereospecific
synthesis of a GS 4104 metabolite: determination of absolute
stereochemistry and influenza neuraminidase inhibitory activity.
Bioorg. Med. Chem. Lett., 9, 2811–2814.

23. Pais,G.C., Zhang,X., Marchand,C. et al. (2002) Structure activ-
ity of 3-aryl-1,3-diketo-containing compounds as HIV-1 inte-
grase inhibitors. J. Med. Chem., 45, 3184–3194.

24. Norén,J.O., Helgstrand,E., Johansson,N.G. et al. (1983) Syn-
thesis of esters of phosphonoformic acid and their antiherpes
activity. J. Med. Chem., 26, 264–270.

25. Rancourt,J., Cameron,D.R., Gorys,V. et al. (2004) Peptide-based
inhibitors of the hepatitis C virus NS3 protease: structure-
activity relationship at the C-terminal position. J. Med. Chem.,
47, 2511–2522.

26. Law,V., Knox,C., Djoumbou,Y. et al. (2014) DrugBank 4.0:
shedding new light on drug metabolism. Nucleic Acids Res., 42,
D1091–D1097.

27. Sander,T., Freyss,J., von Korff,M. et al . (2015) DataWarrior: an
open-source program for chemistry aware data visualization and
analysis. J. Chem. Inf. Model., 55, 460–73.

28. Papadatos,G., Gaulton,A., Hersey,A. et al. (2015) Activity, assay
and target data curation and quality in the ChEMBL database.
J. Comput. Aided Mol. Des., 29, 885–896.

29. Awale,M. and Reymond,J.-L. (2017) The polypharmacology
browser: a web-based multi-fingerprint target prediction tool
using ChEMBL bioactivity data. J. Cheminform., 9, 11.

30. Jordheim,L.P., Durantel,D., Zoulim,F. et al. (2013) Advances in
the development of nucleoside and nucleotide analogues for
cancer and viral diseases. Nat. Rev. Drug Discov., 12, 447–464.

31. Ertl,P. (2017) An algorithm to identify functional groups in
organic molecules. J. Cheminform., 9, 36.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay139/5308407 by guest on 20 M

ay 2024


	Enhanced taxonomy annotation of antiviral activity data from ChEMBL
	Introduction 
	Methodology
	Taxonomy representation
	Selection of assays
	Annotation of assays
	Data standardization

	Computational methods
	Databases
	Data retrieval and annotation
	Data standardization
	Data analysis and visualization

	Results & Discussion
	Antiviral data
	Profiling of antiviral activity for ChEMBL compounds 
	ViralChEMBL versus ChEMBL
	Antiviral chemical space

	Conclusions & Future Directions
	Author contributions
	Availability of data and material
	Supplementary data
	Funding


