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Abstract

Each cancer is a complex system with unique molecular features determining its

dynamics, such as its prognosis and response to therapies. Understanding the role

of these biological traits is fundamental in order to personalize cancer clinical care

according to the characteristics of each patient’s disease. To achieve this, translational

researchers propagate patients’ samples through in vivo and in vitro cultures to test

different therapies on the same tumor and to compare their outcomes with the molecular

profile of the disease. This in turn generates information that can be subsequently

translated into the development of predictive biomarkers for clinical use. These large-

scale experiments generate huge collections of hierarchical data (i.e. experimental trees)

with relative annotations that are extremely difficult to analyze. To address such issues

in data analyses, we came up with the Semalytics data framework, the core of an

analytical platform that processes experimental information through Semantic Web

technologies. Semalytics allows (i) the efficient exploration of experimental trees with

irregular structures together with their annotations. Moreover, (ii) the platform links its

data to a wider open knowledge base (i.e. Wikidata) to add an extended knowledge

layer without the need to manage and curate those data locally. Altogether, Semalytics

provides augmented perspectives on experimental data, allowing the generation of new

hypotheses, which were not anticipated by the user a priori.

In this work, we present the data core we created for Semalytics, focusing on its semantic

nucleus and on how it exploits semantic reasoning and data integration to tackle issues

of this kind of analyses. Finally, we describe a proof-of-concept study based on the

examination of several dozen cases of metastatic colorectal cancer in order to illustrate
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how Semalytics can help researchers generate hypotheses about the role of genes

alterations in causing resistance or sensitivity of cancer cells to specific drugs.

Database URL (data core demo): https://github.com/lasircc/semalytics-demo

Introduction

Understanding cancer dynamics is essential for biomedical
research. Studies of past decades have shown that tumors
are not identical instances of a universal disease proto-
type (e.g. breast cancer and lung cancer). Although they
affect the same tissues and they often share very similar
phenotypes, it has been demonstrated that each cancer is
a complex and variable system with unique characteristics
at the molecular level. This is ascribable to the Darwinian
selection of stochastic events (i.e. genetic alterations), which
is inherently responsible for cancer onset and progression
(1). Those causative events determine the intrinsic genomic
features that, in turn, are responsible for cancer behavior
and therefore may be exploited to predict the effectiveness
of candidate therapies or the prognosis of the disease.
Therefore, grasping and leveraging correlations between
genome variants and drug responses are fundamental to
optimize personalized clinical care in precision medicine (2).

Understanding how genomic alterations affect drug
responses is the main goal of translational research in cancer
pharmacogenomics, where pre-clinical investigators work
close to the clinic in order to move relevant discoveries
from bench to bedside. In this context, patient-derived
tumor specimens are (i) exploited to generate cultures,
which are then serially propagated through in vivo or in
vitro experimental procedures (e.g. propagation in mice,
cell cultures) to create distinct biological samples (i.e.
bioentities) derived from the same tumor (3, 4) and/or (ii)
transformed to extract information about the molecular
characteristics of the tumor. Usually, the final goal of such
approaches is to match the spectrum of efficacy of different
drugs against the molecular configuration of a specific
cancer case.

The collection of bioentities (e.g. cell lines, tissues, mice
and DNA/RNA aliquots), together with their related data,
is likely to shape a hierarchical data structure, in which the
biospecimens are nodes interconnected by links represent-
ing the experimental procedures through which they have
been generated or transformed. We call such hierarchies
‘experimental trees’. Experimental trees are characterized
by a variable degree of complexity, which is determined by
multiple factors.

1. Heterogeneous observations: different kinds of bioen-
tity are exploited to generate dissimilar observations
types (i.e. experimental results). For instance, treated

mice can produce observations about therapies perfor-
mance, instead derived DNA aliquots can create molec-
ular observations.

2. Longitudinal series: the repetition of the same measures
in time. For example, administered therapies could alter
genomic features of cancer in different ways, which, in
turn, can modify its downstream behavior (e.g. resis-
tance to therapies and prognosis; 5). Monitoring those
changes requires one to collect chronological sequences
of measures sets.

3. Bioentities branching: the isolation of longitudi-
nal experiments in distinct branches to test diverse
treatment strategies and to simulate reactions and
modifications of the same cancer under different
conditions.

For instance, the DNA of a tumor can be extracted
from a sample and sequenced. Then, a different biological
specimen, derived from the same sample, can be implanted
subcutis in an immunocompromised mouse to test in vivo
the efficacy of a specific drug. Finally, at the end of the
therapy, the tumor can be retrieved from the mouse for a
new DNA extraction and a new sequencing; besides it can
be used to generate new bioentities downstream. In this way,
each sample produces heterogeneous data (e.g. genomic
profiles and drug sensitivity data) obtained through experi-
ments performed at different times on different nodes of the
experimental branch (e.g. before and after the treatment).

This hierarchical representation of experimental activ-
ities enables the systematic comparison of genomic land-
scapes before and after therapies, which is instrumental for
the identification of recurring gains or losses of specific
genetic variants occurring during treatments. Therefore,
for analytical purposes, heterogeneous data scattered along
experimental trees of variable size have to be summarized
and compared according to the investigational needs.

Breaking down data types involved, we can distinguish
three main layers of information: (i) experimental data, (ii)
knowledge and (iii) annotations (Figure 1). The (i) experi-
mental data describe streams of bioentities in trees and their
connections. The (ii) knowledge represents the abstract set
of interconnected metadata that defines general concepts
and rules involved in pharmacogenomics (e.g. BRAF is
a human gene; it encodes a protein called B-Raf). The
(iii) annotation data type connects experimental data to
the knowledge to keep track of observations linked to
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Figure 1. Large-scale experiments in translational research. On the left, the production of operational data derived from patient’s samples, which

generate hierarchical structures with several bioentities. On the right, the knowledge that describes abstract concepts. Each starting sample can be

serially propagated in experimental branches to assess clinical hypotheses (e.g. the sensitivity of cancer cells to specific drugs) and to get insights

about ‘-omics’ data. Results should be annotated along branches by virtually connecting experimental reports, scattered along nodes, to biological

features in knowledge. New results create new knowledge, strengthening the loop of translational cancer research.

bioentities along trees. The management, the curation and
the analysis of this three-tier information space is crucial for
the success of these translational approaches.

Data that characterize modern science are constantly
increasing. Both experimental information and knowledge
have been rapidly accumulating at exponential rates.
Indeed, the capabilities of high-throughput methods
have made laboratory data more affordable and easier
to produce. For example, next-generation sequencing
technologies have dramatically reduced costs associated
with genome sequencing and, more in general, major
improvements in biotechnologies have eased the extraction
of genomic information (6). This avalanche of operational
data generates a similar trend also in the rate of knowledge
accumulation (7). Newly generated knowledge sets the
bases for the production of new hypotheses. As a conse-
quence, new experimental data are produced, enlarging
analytics perspectives and further reinforcing this virtuous
loop.

Such advancements enable large-scale translational
research settings oriented to pharmacogenomics. Indeed,
the creation of huge collections of experimental trees
with large branches can be deployed at affordable costs
in order to match numerous candidate treatments against
genomic features. These practices frequently produce huge
collections of trees composed by thousands of hierarchical
nodes representing bioentities and their related data.

From the data management perspective, this requires an
information technology (IT) tool for helping researches get
relevant information in large-scale hierarchical scenarios.

To the best of our knowledge, there are no IT platforms
devoted to this specific aim, and these data are managed
with ad hoc solutions or using common software. For exam-
ple, tools like the Laboratory Information Management
Systems (LIMSs) are exploited to handle laboratory samples
and processes (8). These are oriented to daily data-tracking
and are usually based on Online Transaction Processing
Software (OLTP). In addition to LIMSs, analytical data
portals, such as cBioPortal (9) and PDXFinder (10), focus
on data analysis rather than on transactions processing
and may rely on Online Analytical Processing Software
(OLAP). However, LIMSs and data portals are not usually
designed for dealing with annotations of hierarchical data.
Moreover, they generally use controlled vocabularies (i.e.
lists of metadata used as labels) as knowledge references for
annotating biological information. This approach to data
enrichment is affected by severe limitations. Indeed, on one
hand it certainly allows querying experimental data tagged
with a set of labels, for example a set of user-entered genes
variants. However, on the other hand, it is almost impossible
exploring relations among metadata in abstract knowledge.
For example, one could be interested in querying samples
annotated with all the sequence variants known to predict
a positive response to a given drug. Usually, this preliminary
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knowledge items selection (i.e. the set of predictive variants
to analyze) is performed manually, harnessing personal
expertise, with no, or limited, help of machines. Of course,
knowledge data require heavy and continuous curation to
avoid getting outdated and to add new information. Such
problems affect data processing, analysis and integration
(11, 12).

In order to overcome such limitations in the data man-
agement in the presented translational settings, the follow-
ing open issues need to be tackled.

1. Tracking of experimental trees. Bioentities and their
relationships need to be tracked and queried in order to
explore nodes along experimental trees with arbitrary
lengths and irregular branches.

2. Building a representation of knowledge. A structured
data representation is necessary to organize knowledge
and describe biological features and their relationships.
This need is crucial, since it represents the way to allow
algorithms to investigate knowledge the way humans
do. Moreover, knowledge data need to be updated and
integrated with new information.

3. Connecting experimental data with knowledge (anno-
tation). Heterogeneous experimental data should be
connected to knowledge (i.e. annotated). In particular,
a model accounting for the intrinsic interconnectedness
of operational data with abstract concepts is required.

4. Leveraging IT for working at scale. Huge data volumes
and complex data schemata require the use of specific
computer technologies for querying huge hierarchical
datasets.

In this work, we illustrate the design and the implemen-
tation of the data core of ‘Semalytics’ (the name comes from
the synthesis of ‘Semantic Analytics’), an IT annotation
platform based on Semantic Web technologies (13, 14)
that aims to tackle such open issues. In particular, Sem-
alytics helps users explore data with two major features:
(i) it allows tracking, exploring and summarizing data and
annotations scattered along experimental trees according to
knowledge and (ii) it provides a framework for knowledge
expansion through a real-time connection to Wikidata, the
crowdsourced semantic project of Wikimedia Foundation
(15). Finally, as a proof-of-concept, we use Semalytics to
analyze drug–gene interactions in metastatic colorectal can-
cer, exploiting the platform to explore several experimental
trees stored locally and connecting them to Wikidata.

Platform implementation

We based Semalytics on a NoSQL architecture (16). The
main reason for this choice is that the data issues presented
in the previous section of this manuscript cannot be eas-
ily addressed harnessing Relational Database Management

Systems (RDBMSs). Indeed, although RDBMSs represent a
robust solution for several common applications, they do
not fit well this specific scenario. In particular, the trees
exploration requires queries similar to the ones used in
social networks analysis (e.g. friend of a friend). Harness-
ing RDBMSs, the bioentities table should be recursively
joined to explore trees and branches; however this implies
a massive memory usage that renders the queries inefficient
or even infeasible on large data collections (17, 18). The
same scalability issue is further amplified when operational
data are joined to knowledge through annotations, and
data need to be retrieved together. Furthermore, RDBMSs
present many drawbacks when the schema changes recur-
rently (19) like it happens in this context, where the data
schema evolves frequently in order to extend knowledge
entities and relations.

We started the design of the platform from the anal-
ysis of current features of the Laboratory Assistant Suite
(http://las.ircc.it/), also known as the LAS: a custom LIMS
developed in the Candiolo Cancer Institute (http://www.
ircc.it), which is oriented to data management for transla-
tional research in oncology (20–23). LAS exploits a mul-
tilayered data architecture (i.e. polyglot persistence) built
on the top of a hybrid storage framework created on
both relational (i.e. MySQL) and NoSQL (i.e. Neo4j and
MongoDB) Database Management Systems. In particu-
lar, the Neo4j-based layer of the system tracks data as a
directed graph (http://neo4j.com/). With the use of Neo4j,
nodes and links are labeled (i.e. classified) and are detailed
with further key-value properties. This is extremely useful
for tracking experimental trees. The LAS represents each
bioentity as a typed node, which can be linked to its
ancestor and to downstream bioentities derived from it
(e.g. starting node, ‘Bioentity#1’; link, ‘generates’; ending
node, ‘Bioentity#2’. The Bioentity#1 is a viable sample
implanted in the Bioentity#2, a mouse). An analogous
graph representation is used to assert structured knowl-
edge facts (e.g. starting node, ‘PTEN’; link, ‘is_part_of’;
ending node, ‘human_chromosome_10’). We built in the
LAS a starting knowledge base, integrating external sources,
such as Ensembl (24) and COSMIC (25). This knowledge
graph describes concepts and relations among chromo-
somes, genomic regions, genes, exons, proteins and several
genetic variants.

Although the adoption of Neo4j-based graph modeling
enabled efficient hierarchical trees and graphs explorations,
the current design of the LAS still suffers from requiring
a massive amount of effort for data optimization and
curation. Indeed, to improve the performance of specific
traversal queries, it is sometimes essential building many
additional links in the graph as a shorthand. In such cases,
custom ‘CREATE’ queries or triggers are required, and/or
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Figure 2. Main data classes in Semalytics. The blue area represents (i) operational data connected with the predicate ‘generates’. The orange region

shows classes describing biological features in (ii) knowledge. The green zone illustrates the tracking of experimental observations, connecting

operational information to abstract knowledge through (iii) annotation instances.

ad hoc software is needed. Moreover, the knowledge is
manually curated; therefore custom software is necessary in
order to keep data up-to-date and to integrate new datasets.
Indeed, the implementation of this local knowledge base
has been requiring a lot of effort and time for manual
integration of external datasets, and it requires continuous
updates.

In order to overcome such restrictions, we created the
data core of Semalytics modeling information with the
Resource Description Framework (RDF), a standard data
model created on purpose to describe and link information
(26), which is at the basis of the Semantic Web technology
(27). From the technical point of view, the Semantic Web
is one of the most prominent ways for giving machines the
capabilities to consume complex information, also in the
context of scientific data curation (28). Its aim is building
networks of Linked Data (i.e. a web of data), interconnected
and extremely flexible, reflecting the structures of real
world. The semantic ecosystem relies on the RDF that
represents information as collections of triple patterns that
describe graph-like structures. A triple consists of a subject,
a predicate and an object. Resources (i.e. pieces of informa-
tion) in triples are uniquely identified by Uniform Resource
Identifiers (URIs), strings very similar to internet URLs,
which can be used to identify data items and to make them
likable ‘intra’- and ‘inter’-graph, borrowing the structure
of the common Web. Additionally, Semantic Web is based
on mathematical logic. Hence, given a set of inference

rules, the starting graph can be extended through reasoning
algorithms to infer new triples as a logical consequence of
the starting set of assertions.

We built the data core of Semalytics relying on Semantic
Web technologies. Harnessing this method, we can state
triples about both experiments and knowledge with a
standard data representation. Moreover, the graph structure
and the logical reasoning allow efficient explorations of
scattered data in trees and ease knowledge integration.
For the practical implementation of Semalytics, we
exploited GraphDB by Ontotext (https://www.ontotext.
com/products/graphdb/), a triplestore (i.e. a database sys-
tem for managing RDF graphs) that offers an infrastructure
for dealing with Linked Data, bundled with a built-in
reasoning engine. Furthermore, GraphDB has an integrated
query endpoint based on SPARQL, a SQL-like declarative
language for querying RDF data, available over HTTP.
Semantic graphs can be founded on diverse standard logic
rulesets: the more expressive is the logic, the deeper is
the inference but the more expansive is its computational
cost. In Semalytics, we chose OWL-Horst as inference
ruleset, because of its scalability and since it represents
a good balance between basic reasoning (i.e. mere
syntactic reasoning) and more expressive and expansive
rulesets (29).

In the following sections, we denote with a colon the
default prefix for local URIs defined in Semalytics (e.g.
‘:Gene’ indicates the Semalytics URI for the resource
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Figure 3. An example of annotations in Semalytics. On the left, colored with blue shadows, a small portion of a hierarchical tree where several

bioentities are connected to annotation nodes (green dots in the middle) with predicates ‘has_annotation’. Annotation nodes are linked to knowledge

items with predicates ‘has_reference’. On the right, a partial representation of knowledge with interconnected biological features. In this figure, the

predicate ‘rdf:type’ is abbreviated ‘a’.

representing the category of human genes), and we use
the Turtle serialization for the RDF to describe triples (30).

Semalytics data model

The ontology (i.e. the description of entities and relations
of a domain) of Semalytics defines general rules involved
in (i) operational records, (ii) abstract knowledge and (iii)
annotations. We exploited the RDF to define these data
semantically (Figure 2).

We modeled (i) experimental data (blue area in Figure 2)
with few categories: the class ‘Case’, which represents an
anonymized reference to a patient with other metadata;
‘Tissue’, which characterizes the type of tissue collected;
and ‘Bioentity’, which models the biological materials pro-
duced during experiments. Each of them can be subclassed
by more specific categories for fine-grained typing (e.g.
DNA, RNA, CellLine, etc.). All experimental data along
trees belong to these classes. Indeed, since bioentities are
propagated downstream through experimental procedures,
every couple of instances can be connected through the
predicate ‘generates’, which builds the main structure of
tree branches. Harnessing this modeling philosophy, trees of
arbitrary width and depth can be represented from a single
root case.

Similarly, we included in Semalytics a structured repre-
sentation of (ii) biological knowledge about human genome
(orange area in Figure 2). The class ‘Chromosome’ collects
all instances of human chromosomes. These instances are
connected to objects belonging to the class ‘Region’, rep-
resenting any range of nucleotides within a chromosome.
A specific kind of region is the gene (i.e. a functional
unit within the genome coding for molecules), which is
described by the class ‘Gene’. Besides these general classes,
we defined more specific physical and functional relations
at the molecular level, for examples the classes ‘Exon’,
categorizing the coding regions within genes; ‘Transcript’,
representing the RNA instances derived from genes; and
‘Peptide’, which identifies the protein products of genes.

Furthermore, we also attempted to include part of the
knowledge about the DNA alterations that are hallmarks
of the oncological disease (31, 32). To do this, we intro-
duced the main class ‘Alteration’, with several subclasses
such as ‘Sequence_Alteration’ (e.g. point mutations) and
‘Copy_number_variation’ (e.g. amplifications).

Finally, we modeled the possible different outcomes of
experiments in which tumors are subjected to therapies. The
aim of this part of knowledge is to allow the categorization
of treatments outcomes in response classes, depending on
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how tumor growth is affected by a therapy. In particular,
the class ‘Treatment’ represents the type of therapeutic
regimen, while the class ‘Drug_response’ indicates the class
of the response to therapies. Each instance of the class
‘Drug_response’ is connected to its possible response types
(e.g. see Figure 3). In order to classify the response, we use a
clinical-‘like’ assessment, based on the tumor volume vari-
ation during treatments, as follows: positive response for
variations of at least −50%, neutral response for variations
strictly comprised between −50% and +35%, negative
responses for variations of at least +35% (33–35).

The last main data type we built in Semalytics is the
‘Annotation’ class (green area in Figure 2), which works as
bridge for capturing experimental evidence. Each observa-
tion is tracked by a dedicated annotation node, and it is
explicitly referred to the bioentity where the evidence has
been detected. Therefore, when multiple observations occur,
the same sample can be connected to several annotation
nodes, pointing to different knowledge items. In Semalytics,
each annotation connects one instance of an operational
data to a concept in knowledge through a two-predicate-
long path (Figure 3). With the predicate ‘has_annotation’,
a bioentity is linked to an annotation item, which is conse-
quently connected to a concept in the knowledge with the
predicate ‘has_reference’. We introduced the intermediate
annotation node in order to store meta-annotations. Indeed,
we can record supplementary notes about the event of the
generation of the observation (e.g. user data or analytical
sessions) with other triples about the annotation node.

Furthermore, where necessary, we used data properties
to link Semalytics resources to literal values in order to
assert further information, such as local barcodes, genomic
coordinates, gene symbols or cross references about knowl-
edge data pointing back to identifiers in data sources (e.g.
Ensembl and COSMIC).

This modeling technique allows us to connect laboratory
trees with an actionable representation of knowledge that
users can harness to explore experiments and metadata
without relevant modeling issues or constraints in data
schema, which are typical of RDBMSs. However, data
retrieval is a critical phase due to the scattered nature
of annotations of hierarchical data in experimental trees.
Indeed, researchers need to perform ‘intra’- and ‘inter’-tree
analyses at scale. ‘Intra’-tree queries require the aggrega-
tion of heterogeneous observations (e.g. gene variants and
drug responses) along an experimental pathway to analyze
events cooccurrence. ‘Inter’-tree investigations are neces-
sary in order to summarize data of more patient-related
experiments and to compare different strategies. From the
computational point of view, it may mean traversing hun-
dreds of trees full of nodes to gather sparse knowledge
annotations according to researcher interests. In principle,

Table 1. The starting topology of an experimental tree is

described with the predicate ‘generates’ connecting nodes

(subjects) to their direct successors (objects). To facilitate the

exploration of huge collections of complex trees, we defined

the new transitive property ‘hasDescendant’ to automatically

infer a secondary structure able to ease data exploration,

without losing original connections.

Subject Object

:generates :hasDescendant ‘(inferred)’

Root Tissue1
Tissue2

Tissue1
Tissue2
Bioentity1
Bioentity2
Bioentity3
Bioentity4
Bioentity5

Tissue1 Bioentity1 Bioentity1
Bioentity4

Tissue2 Bioentity2
Bioentity3

Bioentity2
Bioentity3
Bioentity5

Bioentity1 Bioentity4 Bioentity4
Bioentity3 Bioentity5 Bioentity5

SPARQL allows those kinds of queries. However, the sum-
marization of annotations at query runtime does not scale.
Therefore, the analysis of large collections of data is often
unfeasible. To address this issue, we exploited semantic
reasoning to automatically enrich our ontology with several
triples that can be used as logical shortcuts. In particular,
we declared a new transitive property ‘hasDescendant’
as super-property of the legacy resource ‘generates’. This
required only the following two triples:

:generates rdfs:subPropertyOf:hasDescendant
:hasDescendant rfd:type owl: TransitiveProperty

Once triples are loaded in the Semalytics ontology, the rea-
soner uses such statements to infer new information: every
couple of nodes connected with ‘generates’ is consequently
connected with the predicate ‘hasDescendant’. Moreover,
since this property ‘R’ is transitive, given three nodes ‘a’,
‘b’ and ‘c’, the following relation holds:

aRb ∧ bRc ⇒ aRc

Therefore, a secondary tree structure is added automatically
by the reasoner, connecting any node at any level with
all its offspring through predicates ‘hasDescendant’. This
secondary inferred structure flattens the trees connecting
downstream nodes and their annotations directly to ances-
tors, regardless of their depth (e.g. Table 1).
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Analogously, to improve the exploration of alterations,
we created the property ‘has_variant’ as super-property
of all predicates connecting genes with their aberrant fea-
tures, independently of the variant category. This makes the
reasoner add new triples, connecting each gene to all its
aberrant modifications in a more general way.

The inference processes are performed by the reasoner
that materializes new persistent triples. Those entailed
triples can be used at query runtime at no extra compu-
tational cost. The entailment usually takes several seconds
even on huge collections of trees. It is worth observing that,
since Semalytics relies on the reasoner, there is no need
to write complex queries or custom triggers in order to
materialize new implicit information and to keep it up-to-
date, as it is instead necessary in the relational model or in
data models relying on plain graphs without semantics.
The reasoner automatically keeps inferred statements
aligned to explicit triples also after subsequent variations
of data (e.g. data addition and deletion). In this way,
Semalytics allows users to track, explore and summarize
immediately scattered data in experimental trees, even on
large collections. Without those entailed data, queries for
exploring trees may take more than 30 minutes or may even
become infeasible.

Linked data integration

Semalytics aims to harness an augmented knowledge rep-
resentation in order to enrich local data and improve its
analytical capabilities. Even if an increasing amount of
knowledge is constantly released in literature, it is locked up
in documents written in natural language, or it is released
in scattered datasets with different data models and barely
interconnected. Currently, there is a plethora of IT-based
tools for exploring biological information (7), but most of
them are still largely relying on naïve metadata or natural
text processing, making information hard to query and to
leverage at scale. The current challenge is turning data in
machine-understandable information (11, 12). The seman-
tic framework of Semalytics addresses this issue, offering a
built-in way for enriching knowledge based on the Linked
Data paradigm (36). Indeed, RDF-based datasets released
as Linked Data can be easily integrated with Semalytics.

Since the first introduction of Semantic Web fundamen-
tals by Sir Tim Berners-Lee, many linked datasets related
to life sciences have been released (https://lod-cloud.net),
exploiting a first-class publication process for data interop-
erability and linkage (https://5stardata.info/en/). Although
the semantic framework is a stable model, an effective con-
nection of datasets for creating a web of biological features
in translational research, as well as in many other fields, is
a still critical point (37). It turned out that even integrating

semantic datasets still requires a considerable effort. Copy-
ing and merging Linked Data in local triplestores is not as
straightforward as it might seem at the first sight. Indeed,
different designs in knowledge representation require a
huge manual curation for both merging and maintenance
of Linked Data. Alternatively, datasets can be combined
at queries runtime with federated queries (37). With this
pattern, queries are distributed over different SPARQL end-
points (i.e. linked datasets interfaces), and external informa-
tion is reached hitting remote endpoints at queries runtime,
with no need to maintain a local copy of remote data.
Even if this approach avoids heavy datasets updates, it
still needs mapping rules between local information and all
the datasets exposed through remote endpoints. Moreover,
running federated queries over many endpoints becomes
soon infeasible because of their limited availability/up-time
or poor performance of distributed queries (38, 39).

To overcome such shortcomings, we connected Sema-
lytics to Wikidata (http://www.wikidata.org), the crowd-
sourced project of Wikimedia Foundation (15) based on
a Linked Data model (40). A very active community, its
collaborative philosophy, a CC0-‘based’ licensing policy, as
well as a central and a highly available SPARQL endpoint
make Wikidata an ideal context for centralizing integration
and maintenance of biological data (41). To date, many
knowledge sources are available in Wikidata, resembling
a unique and interconnected living picture (42). Recent
curation initiatives are focusing on the use of Wikidata as
central hub for linked life sciences information, integrating
and synchronizing biological data, such as human genes and
variants, pathways, proteins, diseases, chemical compounds
and drugs, as well as related scientific bibliography (43, 44).
This makes possible building applications based on this
biological data ecosystem (45). The majority of imported
items in Wikidata retain also original identifiers pointing
back to initial sources (e.g. Ensembl and COSMIC), as
well as further metadata about each statement such as the
information about the original reference. Interestingly, if
there are contradictory evidence about a fact, Wikidata can
store also statements about controversies (e.g. a variant can
predict both a positive and a negative response to the same
drug). This feature reflects the real nature of the scientific
knowledge, which sometimes is debated and it is not as
clear-cut as one may argue.

There is a variety of different practical approaches for
linking Wikidata to other knowledge graphs (46). We con-
nected Semalytics knowledge to Wikidata through the OWL
Web Ontology Language (47). In particular, the platform
relies on local knowledge for preliminary data annotation,
but then local information is extended through pointers
to Wikidata. We decided to map local triples with the
remote ones exploiting the predicate ‘owl:sameAs’. With
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Figure 4. (A) A SPARQL query for retrieving annotated nodes. In the very first part, a ‘PREFIX’ is declared as a shorthand for local URIs. The pattern

described in the ‘WHERE’ clause asks GraphDB to get all the annotated nodes. In line 2, the projection clause selects distinct nodes. (B) Response

fractions in trees with no variants in the genes panel (on the left) and with one or more variants (on the right). Cases harboring variants in the panel

are less sensitive to cetuximab.

this property, we can define that two resources, even if
identified by different URIs, are actually representing the
same entity. For example, stating local triples as follows:

:n679698:symbol ‘PTEN’;
:ac ‘ENSG00000171862’;
rdf:type:Gene;
owl:sameAs wd:Q14878377.

We define ‘:n679698’ as our local representation of the gene
PTEN with a pointer to its Ensembl identifier. Then, we
assert that it is the identical concept of the resource with
the URI ‘wd:Q14878377’, which is the Wikidata represen-
tation of the same gene. The resource ‘wd:Q14878377’ is
also present in the remote dataset but with more details that
we did not store locally. Additionally, the remote version
of the resource is interconnected to an enriched network
of improved and updated information that can be directly
linked to local experimental data for analytical tasks.

Following this pattern, we mapped more than 24 000
human genes covering the human coding genome through
their Ensembl identifiers. Moreover, matching COSMIC
identifiers, we mapped about 80 variants coming from
the CIViC database (48), a community-driven collection
about clinical interpretation of variants in cancer, ori-
ented to precision medicine and currently integrated in
Wikidata.

Thanks to those new data identities, Semalytics allows
users to (ii) federate local data with an external knowledge

base in order to gain augmented insights about data inter-
pretation.

Querying data with Semalytics

In this section, we present a functional proof-of-concept in
order to exemplify the capabilities of Semalytics in querying
data and to simulate the usage of our tool in translational
cancer research. In particular, we exploit the platform to
analyze correlations between DNA aberrations in colorectal
cancer cases and their response to drugs.

We harness Semalytics for the analysis of a dataset
that we have generated for the evaluation of drugs effi-
cacy in metastatic colorectal cancer (33) and that we had
previously examined with ad hoc data procedures. Those
data have been produced through hierarchical experiments
using patient-derived samples implanted in mice (49) for
administering different drugs and for propagating bioenti-
ties downstream in order to compare longitudinal genomic
data. Specifically, here we investigate DNA variant types
‘sequence_alteration’ and ‘feature_amplification’ (i.e. a sub-
class of ‘copy_number_variation’) related to a panel of four
genes (BRAF, EGFR, HER2/ERBB2 and KRAS), which are
known to play relevant roles in the response to a drug
named cetuximab. This drug is a monoclonal antibody
against the Epidermal Growth Factor Receptor that is
clinically approved for treatment of several cancer types,
including metastatic colorectal cancer (33, 50).
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Figure 5. (a) A data matrix obtained by querying annotations scattered along experimental trees with Semalytics. Each chart in the matrix represents

the combination of criteria in the relative row and column. Regarding matrix rows, the top one shows cases with mutations in the genes panel (BRAF ,

EGFR, HER2/ERBB2 and KRAS) without amplifications; the middle row exhibits cases harboring amplifications in the panel without mutations; the

bottom one shows cases with mutations or amplifications. Variants distributions per each gene (log-10 scale), response rates and response fractions

per variants are illustrated in columns. In particular, in the third column, we correlate genomic landscapes with drug responses. Each colored bar

of charts in the third column represents the response fraction of cases with aberrations detected in genes on x-axes. (b) Variants occurrences in

non-responder cases grouped by gene, then by variant type, finally by variant instance (available only for mutations).

For this proof-of-concept, we loaded in Semalytics the
LAS biobank of the Istituto di Candiolo that includes the
aforementioned annotated dataset. We dumped LAS data in
RDF format, then we serialized them into a Turtle file. To
do this, we performed a custom preprocessing of LAS data
depending on the specific data representation of the source.
We turned original data in triples describing the hierarchy of
the experiments and relative observations, according to the
data schema of Semalytics. Then, we loaded the RDFized
information into the platform database with the REST API
available in GraphDB (51), thus binding the initial dataset
to the Semalytics ontology and triggering inference. In this
investigation, we removed annotations that are not related
to the exploration scope (e.g. annotations about other gene
variants) but we retained all the available operational data
(i.e. about 10 000 hierarchical trees), as well as all the local
knowledge representation, in order to make Semalytics deal
with a large dataset. In this test, data are managed in a
unique GraphDB repository with about 14 million asserted
triples and more than 2 million inferred axioms. The plat-
form runs on an HW/SW with the following features: Intel
Core i7-6700 CPU at 3.40GHz, 16 GB of memory, SSD,
Ubuntu 16.04, GraphDB 8.7 (as triplestore), Python 3.7.0

for handling queries and result sets. An interactive compu-
tational narrative with further details about this proof-of-
concept is provided in a Jupyter notebook (52), available in
the Docker-based demo bundled with this work.

Semantic exploration of local data

First, we used Semalytics to analyze and correlate scat-
tered annotations about genetic alterations and responses
of tumors to cetuximab to test the trees exploration features
of Semalytics. In this example, we focus on root nodes (i.e.
starting cases) and we use the SPARQL endpoint of Sem-
alytics to query our data (e.g. Figure 4a). Running several
SPARQL queries, basic insights about the datasets can be
discovered almost instantly. For example, we realized there
are about 4000 bioentities with notes about genes variants
in the panel or responses to the cetuximab. Moreover, 354
trees are annotated with one or more variants, while 238
have notes about drug responses. The presence of one or
more variants of genes in the panel seems affecting the
response to the cetuximab. Indeed, about 30% of cases
with no variants has negative responses to that drug, but
this fraction raises up to 70% in cases with variants in the
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panel (Figure 4b). Semalytics allows users to rapidly retrieve
the set of the cases annotated with both genes and variants
notes, which is composed by 113 trees and that represents
the investigation set of the following examples.

With Semalytics, we can drill in this investigation set to
mine more insights. An example of this kind of analyses
is shown in Figure 5, where we matched gene variants
against drug responses in different ways. For example, we
analyzed the distribution of general variants per each gene,
exploring the whole set, the subset ‘Amplifications only’ of
cases harboring amplifications (i.e. ‘feature_amplification’)
but no mutations, or the subset ‘Mutations only’ harboring
mutations (i.e. ‘sequence_alteration’) but no amplifications.
We discovered that in the subset ‘Amplifications only’, just
two genes are amplified (i.e. EGFR and ERBB2) and the
most amplified one is EGFR. Instead, the most frequently
mutated gene in the subset ‘Mutations only’ is KRAS. From
the responses point of view, the three response types are
almost uniformly distributed in the subset ‘Amplifications
only’, instead, the drug performs way worse in the subset
‘Mutations only’.

Besides, we used Semalytics to correlate genomic land-
scapes with drug responses and we calculated response
fractions, filtering cases per detected aberrations for the
whole set and for subsets ‘Amplifications only’ and ‘Muta-
tions only’ (third column of Figure 5a). In particular, we
computed response fractions of cases with variants in single
genes and with variants cooccurring in more than one gene.
It turned out that are no cases with variants cooccurring
in all the genes in the panel or with variants cooccurring
in three genes. There are only several cases harboring alter-
ations in two genes at the same time and they resulted not
sensitive to the drug. The cetuximab seems effective only on
several cases harboring EGFR or ERBB2 amplifications.

Finally, we used Semalytics to explore the genomic vari-
ants detected in all trees annotated with negative responses.
In particular, genomic alterations of non-responder cases
are sliced and diced to present distributions of altered genes,
alteration types per gene (mutations or amplifications) and
mutations detected per gene. As shown in Figure 5b, those
cases are characterized by mutations in KRAS and BRAF,
as well as several amplifications in EGFR and ERBB2. In
particular, about 85% of investigated variants are point
mutations while the others are amplifications. Variants
occur mainly in KRAS (63%), while remaining alterations
are almost equally distributed across the other three
genes.

Querying data with linked knowledge

Semalytics harnesses its architecture also to connect local
information to external knowledge maintained remotely

(i.e. Wikidata), in order to extend the analytical viewpoint.
The investigation set we explored in the section above
is saved in the local database but can be analyzed also
through the knowledge stored remotely to uncover response
predictions to different drugs. We ran the following queries
on November 2018. Wikidata information is continuously
maintained and updated; therefore slightly different results
may be returned in the future.

We used the platform to retrieve chemical compounds,
stored in Wikidata, which physically interact with products
encoded by genes included in the investigation panel. The
rationale behind this is that when the genes of the panel are
altered, their protein products are aberrantly activated and
profoundly affect the behavior of cancer cells. Therefore, a
drug targeting such altered protein products can potentially
confer a clinical benefit interfering with the tumor biology.
In this case, the platform selects remote knowledge about
drug–gene interactions and retrieves local cases harboring
mutations in genes for which specific drugs have been
reported. This analytical pipeline can be exploited to gen-
erate new hypotheses. Indeed, the repositioning of existing
drugs in new therapeutic contexts can be inferred thanks
to the integration of genomic data and available gene–drug
interaction annotations. In turn, such hypotheses can then
be challenged experimentally by going back to the biologi-
cal samples. In the specific setting of this investigation set,
approximately 20 different drug–gene options are returned
from Wikidata. Such data analyses are usually managed by
Semalytics with one federated query that hits the Wikidata
endpoint.

Furthermore, we can use Semalytics to explore remote
information about explicit variants evidence. The rationale
behind this new analysis pattern is that biomarkers in
experimental data (e.g. the gene mutation BRAF V600E)
can predict positive or negative responses to drugs, even
if those evidence come from therapies for different cancer
types. Leveraging the platform, we can prioritize hypotheses
about other drugs that can be validated. Using Semalytics
for this investigation set, we discovered several dozen
positive and negative response predictions about local
observations. Moreover, information about the pub-
lication record describing such evidence is available
for further details. For example, we found that sam-
ples in our local investigation set harboring the muta-
tion BRAF V600E can be potentially treated with
Dabrafenib/Trametinib combination therapy (https://
www.wikidata.org/wiki/Q38160427). Indeed, this ther-
apeutic option has a good performance in patients
affected by melanomas characterized by that alteration,
as stated in the literature returned through the platform
(53–55). Also in this case, we got such data with a unique
federated query in Semalytics.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baz080/5529975 by guest on 20 M

ay 2024

https://www.wikidata.org/wiki/Q38160427
https://www.wikidata.org/wiki/Q38160427


Page 12 of 14 Database, Vol. 2019, Article ID baz080

Figure 6. Deployment of Semalytics as a Web-based platform. Local data are mapped to Wikidata creating an annotation system with extended

knowledge. Those two data spaces can be federated with SPARQL. The backend and the Web frontend help users interact with data, even if they are

not familiar with SPARQL query language. Finally, data Application Programming Interfaces manage information ingestion from external sources

(e.g. LIMSs or spreadsheets), as well as the exporting of results of local data processing. Those two data spaces can be federated with SPARQL. The

backend and the Web frontend help users interact with data, even if they are not.

Discussion and future work

In this work, we presented the data framework of Sem-
alytics, the core of an IT platform that combines (i) an
efficient exploration of scattered and heterogeneous data
along hierarchical experimental trees with (ii) the connec-
tion to structured knowledge in Wikidata. This platform
allows the storage and the analysis of large collections
of hierarchical data, which are typical of several research
settings in translational pharmacogenomics. We based the
architecture of this tool on Semantic Web and Linked Data
technologies in order to provide a structured representation
of operational data and related observations. The local
data framework is expanded and completed with logical
reasoning and external knowledge in Wikidata. Finally, we
deployed a proof-of-concept analysis to demonstrate the
effectiveness and the efficiency of the platform capabilities.

The semantic data schema we introduced in Semalytics
tackles main issues of RDBMSs in managing this data
scenario. Indeed, this data schema can be easily modi-
fied or updated, and it deals efficiently with graph and
tree structures. The connection with Wikidata provides a
high-quality hub for biological knowledge that avoids the
need for local knowledge curation, which is usually effort-
consuming and prone to human errors. Wikidata is a living
knowledge base where a very active community keeps data
up-to-date and continuously loads new information. The
effort of this data curation is distributed among a large
group of users and collected in a central interconnected
repository. Moreover, very large datasets, including those
related to biological knowledge, are loaded and maintained
through programmatic bulk operations. Interestingly, the
more Wikidata is used, the better is the quality of its data.
For example, during the building and the usage of Semalyt-

ics, we found some minor data issues that we corrected or
that we reported to Wikidata curators and so they promptly
fixed them. Moreover, this connection hits just one external
SPARQL endpoint, thus minimizing technical issues such as
network latency and federation performance.

As we mentioned, Wikidata is a remote collaborative
platform that anyone can edit. This approach may have
several drawbacks on data control and availability for
federated analyses. Indeed, data vandalisms, errors, as well
as unavailability of the remote endpoint, can temporarily
compromise the results of federated queries. During our
tests, we noticed that data damages are extremely rare
and that the downtime of Wikidata endpoint is negligible
(56). Besides, operational data can be loaded locally and
connected to local Wikidata references, even if the remote
endpoint is temporarily off-line. Eventually, local dumps of
Wikidata can be stored and deployed locally, for example
with a custom installation of Wikibase (i.e. the software
collection used by Wikidata (57)), and then connected to
Semalytics. These versions can be used as a knowledge
extension backup during eventual Wikidata downtimes, or
also to reproduce static results that are not affected by the
evolution of the remote knowledge base.

Semalytics is a support system for translational investi-
gators for generating and prioritizing in silico hypotheses
that can be subsequently tested in a laboratory. For
example, we imagine several main use cases in drugs assess-
ment. As we showed in the proof-of-concept, Semalytics
can be used to summarize drugs performance against
genomic landscapes in longitudinal experiments. Moreover,
researchers can exploit the platform to automatically
connect their experimental results to remote evidence in
order to select drugs that could be potentially effective
given the observed genomic landscapes. Semalytics could be
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used also for alternative analytical patterns. For instance,
the platform can be exploited to verify consensus about
evidence. Indeed, in local experimental data, some genomic
landscapes could be annotated with positive responses
to a drug but, in the remote knowledge, there could be
a negative response prediction to such a drug for such
genomic features, or vice versa. Those cases could be object
of supplementary laboratory experiments for discovering
different biological dynamics. Moreover, the platform can
also be extended for the investigation of other biological
features relevant to translational research, even for non-
hierarchical data. Altogether, this platform deploys an IT
infrastructure to harness machines not only to store data
but also to track and connect a machine-understandable
representation of the information, in order to save effort
for data preprocessing that researchers can spend for an
improved data investigation.

As future developments, we planned to enrich Sem-
alytics with graphical interfaces for a user-friendly data
exploration that does not require one to master SPARQL.
Improvements may also involve the integration of sev-
eral Application Programming Interfaces in the backend
devoted to data ingestion from external sources and to
data export. With these enhancements, Semalytics can be
distributed as a full-fledged Web-based platform with a
Docker-based installation, bundling a free-licensed version
of a triplestore (Figure 6).
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