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Abstract

In the last decade, genomics data have been largely adopted to sketch, study and

better understand the complex mechanisms that underlie biological processes. The

amount of publicly available data sources has grown accordingly, and several types of

regulatory interactions have been collected and documented in literature. Unfortunately,

often these efforts do not follow any data naming/interoperability/formatting standards,

resulting in high-quality but often uninteroperable heterogeneous data repositories. To

efficiently take advantage of the large amount of available data and integrate these

heterogeneous sources of information, we built the RING (Regulatory Interaction Graph),

an integrative standardized multilevel database of biological interactions able to provide

a comprehensive and unmatched high-level perspective on several phenomena that take

place in the regulatory cascade and that researchers can use to easily build regulatory

networks around entities of interest.

Database URL: https://precious.polito.it/theringdb/

Introduction
Genes regulation in eukaryotic cells is driven by a large
number of complex interactions that take place among
several regulatory entities, which may belong to different
categories such as sequence-specific transcriptional/post-
transcriptional regulators, DNA-binding proteins, coacti-
vators and chemical interactions. Such a heterogeneous
and wide variety of regulators act in concert to control

or tune the expression of each single gene. In the last
decades, literature mining and experimental studies have
helped researchers to discover and understand several of
these regulatory interactions and to infer from them a
significant number of regulatory subnetworks (pathways),
made available through several public databases (1) (2).

However, while each database is a very specialized
source of data, researchers often encounter difficulties
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when integrating data from different repositories. There
are several reasons to this, and here we discuss the ones
that in our opinion are the most relevant.

Scope

A large number of the available databases limit their scope
to only one or few types of interactions. Many databases
take into account transcriptional regulation only, while
neglecting posttranscriptional mechanisms; others provide
links to only a limited subset of homogenous interactions,
thus lacking a holistic perspective on the complex set of het-
erogeneous interactions that very likely co-occur in a more
realistic regulatory model. For instance, protein–protein
interaction (PPI) databases usually map and possibly assign
a score to each physical interaction and functional asso-
ciation. However, interactions reported in these databases
(like Mentha (3), String (4) or Fisingene (5)) only refer to
interacting proteins; thus, the resulting interactome remains
somehow incomplete, unless other important molecular
interactions are included. As another example, microRNAs
(miRNAs) databases, such as miRTarBase (6) and Tar-
getscan (7), contain only specific miRNA–mRNA interac-
tions, and they are not usually included in the context of
pathways and signaling cascades. We already addressed this
problem in Politano et al. (8) (9). Similar limitations apply
to databases related to intergenic or intragenic miRNA
ontogenesis, like miRiad (10), whose aim is to provide a
direct link from host genes to their cotranscribed miRNAs,
thus lacking any other information regarding possible inter-
actions among the hosting genes.

Data format

The fact that search results are often provided as a batch
download of large custom structured plaintext lists with
proprietary formalisms and naming conventions results in
an overall small data interoperability and high management
complexity (11). As an example, PPIs usually include hun-
dreds to thousands of regulations. Such a large number of
interactions,oftenreported in termsofaplaintext list, isquite
difficult tohandle in its rawformat.Buildingparsers for these
data is often a time-consuming and error-prone task, and
information retrieving from these sources of data may result
inefficient. Things get even more complex when we consider
other sources of regulation, like transcription factors (TFs)
(12, 13) (14) and coTFs (15), as well as drugs (16, 17, 18),
other chemicals (19, 20) or genetic variations [like single-
nucleotide polymorphisms (SNPs) (17)] possibly interfering
with, or modifying, the normal regulatory behavior.

Data sources

Synchronism in data integration is another problem. Due
to asynchronous updates in data sources, direct linking in

databases may rapidly become obsolete and, even more
dangerously, source of erroneous assumptions. For instance,
the StarbaseDB, which is indeed a valuable source of data,
was only recently updated. Before this last update, however,
the maintained catalog of miRNA IDs was referred to miR-
Base Release 20. This was a significant source of problems,
since miRNA IDs have been largely renamed and reassigned
in miRBase Release 21, which has been remapped against
the new human genome assembly, GRCh38. During this
update, miRBase curators cleaned up dubious and mis-
annotated sequences and reassigned previously used ids.
The result, according to the differential changes between
Releases 20 and 21, is that 169 hairpins and 353 mature
sequences have changed names (21). Therefore, any work
citing sequences belonging to Release 20 may currently refer
to different and unexpected miRNAs. Keeping track of the
consistency of cross-references among different databases is
not trivial and must be taken into account every time data
from multiple sources must be integrated.

Naming and standards

On top of the previously discussed limitations in data inte-
gration, to make things even more complex, the overall lack
of unified standards and naming convention makes it often
really hard to properly cross-match information among
multiple data sources (e.g., see the lookup table available
from Unichem (19), which provides for each chemical up
to 35 different aliases that show how there is no consensus
in uniquely identify each chemical). Despite that integrative
databases (DBs) have been built in the past years, the actual
results are still limited to very specific domains (22) and
usually provide only a limited set of interactions (23), thus
resulting weak from a holistic perspective.

The obvious solution to these problems would be to have
a set of widely accepted international standards to regulate
data formats and naming conventions. Unfortunately, so far
there is no consensus in the field of life sciences researchers,
thus leading to several overlapping and sometimes conflict-
ing conventions adopted in different communities.

Therefore, since standardization is still far from being
a viable solution, and given the overall need to provide
life scientists with a holistic representation of all the com-
plex interactions that simultaneously take place in complex
genetic regulations, in this article we present the RING
(Regulatory Interaction Network Graph), a unified, holistic
and standardized data repository integrating data from 38
different sources. The RING has been constructed in such
a way to resolve naming inconsistencies and to present the
resulting data at different levels of detail and aggregation.

The RING is the result of a more than 1-year-long
effort that is now able to offer a holistic representation
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of regulatory interactions based on heterogeneous publicly
available databases.

In particular, the most attractive features of the RING
database are as follows:

• Scope: It integrates regulatory interactions information
about TFs, coTFs, miRNAs, chemical compounds/drugs,
diseases, polymorphisms and target genes/proteins, as
well as a very large amount of predicted or experimentally
observed transcriptional and posttranscriptional interac-
tions, from 38 selected databases. Its overall structure is
designed to guarantee further extensions to other regula-
tory entities.

• Naming and standards: It provides nomenclature stan-
dardization (of genes, proteins, miRNA names and all
types of interactions between them), in order to make
multiple sources of data reliably cooperating together;
for example all same/similar interaction types, named
in different ways in the original databases, have been
translated according to a common dictionary.

• Data sources: To guarantee the highest data-integration
reliability, we carefully analyzed the structure and orga-
nization of all data sources and, for each of them, created
automated pipelines able to continuously maintain data
synchronization and up-to-date cross-reference nomen-
clature. The inclusion of new sources is possible and will
be a continuous process. Obviously, each new data source
will not be immediately integrated ‘as-is.’ Each new data
source will have to be verified for compatibility with the
data already present and then imported using custom
automatic procedures.

• The RING graph: It exposes its data in the form of a pre-
assembled repository of complex regulatory interactions.
In the current version, the RING includes a regulatory
network model composed of almost 75 k interactors and
1G interactions.

The RING is not the first attempt of integrating large
amount of biological information. We are aware that there
is a plethora of large integrated databases [e.g. NCBI (24),
University of California Santa Cruz (UCSC) (25), etc.],
each of them containing both peculiar and unique but
also overlapping information. With the RING database,
we do not want to claim that these databases are not
useful. We are instead focused on building an integrated
database that tries to merge the common knowledge of
all these data sources into a single repository specifically
oriented to the interactions of interest in regulatory net-
works. Peculiar information of each database used to build
the RING database remains extremely important, and for
this reason, the RING database maintains a link to each
original data source, thus guaranteeing the completeness of
the information.

The RING was not developed with a precise biological
question in mind. The general idea was to provide a tool
that allows an easier exploration of the heterogeneous regu-
latory interaction networks in the human genome. Basically,
it is a tool that life sciences researchers can use to build
regulatory networks around entities of interest. It was not
our purpose to create a tool to solve problems that cannot
be solved in other ways. The RING integrates data from
publicly available sources, so every result obtained with
the RING could be obtained, with a much more time-
consuming and laborious process, querying each of the
individual databases and selecting, at each step, the data of
interest. Nevertheless, this is the same also for other ‘large
integrated databases,’ which do not allow to solve otherwise
unsolvable problems, but simply make knowledge extrac-
tion easier and faster. In the additional material, we added
two use-cases that demonstrate two possible scenarios in
which the RING database could be used.

The RING architecture

The RING database is organized in several layers, each with
an increasing degree of data integration (Figure 1):

• Raw data layer: This is the lower layer, where each
individual data source is automatically downloaded from
its online repository. Each data source goes through a
standardization process of its internal naming references.
This allows us to uniform the data representation by
resorting to a limited set of allowed naming authorities.
Details and implementation are reported in the Overall
Naming Conventions subsection.

• Omics layer: This is the middle layer, where data refer-
ring to the same interactors are grouped and integrated
together. This layer also integrates all interactions data
between pairs of interactors.

• Model layer: This top layer exposes data in a holistic way.
In the current implementation, the RING model layer
includes a RING graph model representing all interactors
and interactions available at the omics layer. The RING
graph is organized, for performance issues, into three
tables, the first dealing with genes–miRNAs–TFs interac-
tions, the second with diseases–genes–SNPs associations
and the third one with drugs–genes–SNPs associations. To
create this network, to our knowledge unique, the RING
authors defined a vocabulary to standardize both naming
conventions as well as all possible interaction types.

Each data source will be synced and updated whenever
a new release is made available and is compatible with all
the ‘integration’ requirements in terms of consistency and
availability of naming convention lookups. The inclusion
of new sources is possible and will be a continuous process.
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Figure 1. The RING architecture. The database is organized into three hierarchical layers. The bottom layer (raw data layer) integrates raw data

imported from several external sources, the middle layer (omics layer) groups together data referring to similar interactors, and finally the top layer

(model layer) exposes data in a holistic network-like representation.

Once the import procedure of a new data source is devel-
oped, data can be automatically kept in sync as done with
the data sources already considered.

In particular, an automated pipeline based on Python
can be configured for different synch tasks with different
schedules. The pipeline is currently able to automatically
check for updates of most of the data sources (the ones that
maintain a programmatical way to download updates); a
specific configuration may be required in order to update
other sources or to add new data shapes.

The work done here was to create common dictionaries
and translation rules in order to have a uniform repre-
sentation of all data. The outcome of this activity was
the creation of an automatic procedure that allows us to
maintain the RING database in sync with the original
sources through periodic updates.

Apart from the automated backend, which procedu-
rally processes raw data to be included or updated in

the database, we designed an interactive web-based user-
friendly application layer allowing to query and extract
knowledge from the integrated data, download reports and
analyze results. This latter layer is in continuous expansion
as we implement advanced network analysis functionalities.

Raw data sources and the omics layers

The RING is a relational database built with particular
attention to the concept of ‘relation’ among omics entities
(the interactors). Both the omics layer and the model layer
have been built starting from the data available in sev-
eral publicly available databases. The following subsections
detail each source.

• Genes and predefined gene regulatory networks: Gene
information has been downloaded from NCBI (24)
and UCSC Genome Browse (25). Basic information has
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been retrieved from NCBI for genomic assessment (i.e.
naming, geneID and aliases extraction for further use in
naming standardization). The UCSC Genome Browse
has been accessed via its MySQL interface to extract
gene locations expressed as start/end base pairs and
chromosome, and then it has been further used for the
identification of putative intergenic miRNA hosts. Gene
regulatory data usually represented as pathways have
been obtained from KEGG (2);

• TFs and co-TF interactions: Transcription factors and
coTF regulations have been extracted from TcoF-DB
(15), TargetMine (14), tRRust (12) and tf2dna DB
(26) (we included all the nine experimental subsets
(13, 26–33), as well as the full set of computationally
inferred regulations. Transcription factors data are usu-
ally provided in the form of TF-> regulated gene

relations. Besides this commonality, different databases
may provide, as extra attributes, the binding scores (i.e.
scores that represent binding free energy or some similar
binding strength score) and further interaction details
like the transcriptional effect TF has on its target (i.e.
repression or enhancing). All scores are maintained as
raw data, but their integration into a unified score is
still under evaluation.

• Protein and protein interactions: Protein information
and naming standardization have been collected from
UniProt (34). Other data sources have been used for
accession lookup; in particular, we exploited the cross-
references data between Uniprot and ChEMBL (20),
Stitch (35) and String (4). Since multiple Uniprot ID
(UID) are currently associated to the same gene [for
instance, A1CF gene has currently associated (among
the others) some isoforms like UID: A0A024QZJ5 and
UID: A0A024QZM7 and also similar coded/pseudo
protein like UID: B4E1E3], for sake of simplicity we
annotated all the isoform proteins encoded by the same
gene, with the name of their host gene (in this way,
each gene represents the cluster of its coded proteins).
Protein–protein interaction data have been extracted
from Fisingene (5), Irefindex (36), String (4), Mentha
(3), Reactome (1) and Signor (37). There is a significant
overlap of information among these sources. Single PPI
interactions/regulations are in fact usually expressed
as a linkage between two proteins, along with extra
attributes that further explain the interaction. Some
data sources may offer a more or less formal vocabulary
of heterogeneous regulatory terms. Where available, all
regulatory terms have been inspected to extract further
regulatory information (in particular the interaction
effect, i.e. repression or enhancement) and used to build
a custom controlled vocabulary of interaction types
(see The RING graph). Whenever a straightforward and

clear interpretation of the interaction effect was not pos-
sible (like in the case of a generic ‘physical association’
attribute), we just reported the association as ‘undi-
rected.’ Whether or not the interaction effects can be
extracted and normalized in our dictionary of terms, the
original label is always available to the user for a more
meaningful visual assessment of the results. Among
the additional data sources, we especially appreciated
Signor (37), a collection of approximately 12 000 man-
ually annotated causal relationships between over 2800
human proteins participating in signal transduction.
The causal relationship guarantees that data coming
from such repository always have a clear interaction
effect and a clear direction for each entry, as well as some
bibliographical references that experimentally confirm
the regulation.

• miRNA ontogenesis and targeting: MiRNAs informa-
tion has been collected from MirBase (21) for basic post-
transcriptional assessment and naming standardization.
In particular, we resorted to mature miRNA accession
ids as general database naming convention. When only
single precursor miRNA references were available (as
in miRNA ontogenesis DBs), we specifically accounted
the regulation to the two mature forms of the miRNA,
if both exist in MirBase.
For miRNA ontogenesis, we resorted to miRIAD
(10), a DB that contains cotranscriptional effects
that take place between miRNAs and their intragenic
and intergenic host genes. MiRNAs may be in fact
located in intergenic regions (‘intergenic miRNAs’)
or mapped to intragenic loci of protein coding genes
(namely ‘host genes’). Another custom approach to
further and broadly infer other miRNA host genes has
been implemented by looking at miRNA coordinates
reported on MirBase and UCSC; in particular, we
searched for all possible miRNAs whose genomic
coordinates fall into the genomic coordinates of a
surrounding gene (i.e. intronic or intragenic miRNAs),
and miRNAs that are not located into any intronic
region are instead reported along with their closer
upstream or downstream gene. This may be meaningful
according to the fact that the expression of intergenic
miRNAs has been reported affected by their genomic
context. In França et al. (38), the authors, focusing
on miRNA neighbor coding genes, discovered that
intergenic miRNAs are distant from a few dozens
to >1.5 Mb (median = 34 kb) bases. Furthermore,
according to our knowledge, this kind of data has not
been previously reported in any publicly available data
source, which makes the RING the only DB actually
reporting closer neighbor genes (inferred hosts) on a
miRNA-wide basis.
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For miRNA targeting, we resorted to data available
on mirTarBase (6), MirWalk (39) and TargetScan (7).
Mirtarbase is currently the largest source of validated
miRNA–target interactions, which makes it a reliable
source of miRNA regulatory information, and also
largely reduces the usual and often unmanageable
number of inferred targets. Such approach may be useful
to rapidly confirm preliminary hypotheses or select
best candidates for experimental procedures according
to robust previous knowledge. For more exhaustive
and possibly new discoveries, the list of targets may
be enlarged by resorting to computationally predicted
miRNA–target interactions available in both MirWalk
and TargetScan. The RING integrates all these sources
by providing a unified view of all miRNAs interactions
with their regulating/regulated entities.

• SNPs: dbSNP (40) has been used to extract SNP basic
information as well as to define an SNP naming stan-
dardization. For each SNP, we collected the dbSNP id,
the prognostic role and the name of the gene affected
by the polymorphism itself. SNP interactions have been
extracted from DrugBank (17) that reports drug–SNP
interactions and from pharmGKB (18), which includes
both SNP–disease and drug–SNP linkages.

• Drugs and chemicals: Drugs basic information has been
collected from ChEMBL (20) and UniChem (19). When-
ever possible, drugs have been referred and convention-
ally named across the DB with their ChEMBL id and
their accepted name. Nonetheless, given the amount of
chemicals not included in ChEMBL, we also resorted to
UniChem as a second naming authority. Given its open
approach, UniChem allows the community to include
their own chemicals in the DB, resulting in a larger
collection that contains any possible chemical. On the
other hand, UniChem is much more prone to reference
errors since it allows for duplicated information and
ambiguous references (e.g., there are several ids that
point to the same chemical form), which may fragment
further integration and/or require a large supervised
effort to be fully understood. Drug interactions have
been extracted from DGId (16), DrugBank (17), Phar-
mGKB (18) and STITCH (35). The drug interactions
collected so far include drug–gene, gene–drug and drug–
drug associations.

• Diseases: Diseases basic information has been collected
from OpenTargets (41) and DisGeNET (42). As for
drugs, given the lack of a single naming reference, we
resorted to a two-level naming convention. Given the
largest amount of diseases is reported in DisGeNET
when compared against OpenTargets (i.e., 10 053
diseases in OpenTargets and 13 074 in DisGeNET), we
chose DisGeNET as the primary reference. Whenever

possible, diseases annotated in other sources have been
remapped against their DisGeNET id and, if failing,
against OpenTargets. Diseases not included in one of
the two databases have been flagged, maintained in
the database and associated with the original name
provided in the evidence. Disease interactions have
been extracted from DisGeNET, OpenTargets and
PharmGKB (18) and represent association between
disease and genes/SNPs.

The omics layer

The omics layer aims at standardizing and reorganizing the
data collected in the raw data layer in order to structure
the available information and to make it easily accessi-
ble. However, the RING DB does not want to replace
the original databases. While the RING DB puts its main
focus on organizing information about interactions among
the considered entities, each data source includes a large
amount of peculiar information that could have significant
value depending on the specific biological question. For
this reason, we decided to keep cross-reference links to the
original data sources. In particular, each database entry is
provided with a direct link to its original data source using
a unique reference to a cross-reference table storing all the
extra information about each data source. This is helpful
to link back results to their original sources in order to
allow the user to get more details on a given interaction
or interactor. Each entry is also linked to the specific row
of the raw tables used to compile the RING. This hidden
treasure of information easily allows us to augment the
amount of data integrated in the RING and possibly build
better knowledge extraction models in its future releases.

The SQL dump of the omics layer tables is available
in the ‘Download’ section of the RING website. In this
way, researchers will still be able to take advantage of
the data without being dependent on the web interface
performances.

As mentioned in the previous section, each interactor
present in the RING database has been mapped against one
or more reference databases in order to provide common
accessions. A lot of curation effort has been in fact spent
to build the lookup tables necessary for a reliable cross-
database translation of all interactor names and ids. As a
result, all naming conventions are consistent through the
whole DB, no matter the original source of data. Table 1
summarizes, for each interactor type, the source of data we
adopted for its names catalog. In this way, search results
may be easily enriched by directly linking each interactor
to its original reference DB and possibly integrating extra
information that goes beyond the scope of this release of
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Table 1. Naming authorities

Entity Naming source

Gene id (NCBI), symbol (HGCN)

TF id (NCBI), symbol (HGCN)

Protein id (UniprotKB)

MiRNA mature mirna id (miRBase)

Drugs/chemicals id (cheMBl), id (UniCHem)

SNP id (dbSNP), symbol (HGCN)

Diseases name, id (DisGeNET), id

(OpenTargets)

the RING, but may be useful for more effective comparative
capabilities and human-supervised assessments.

The RING graph

One of the primary motivations to build the RING was the
desire to create a homogenous network-like representation
of the interactome and to make it compact, reliable and fast
enough to be a useful instrument both for computational
and human-supervised approaches.

The overall schema of this model, called the RING
graph, is summarized in Figure 2. Each entity and each
possible interaction are shape- and color-coded in the
graphical result provided by the RING web interface.
Hopefully, this formalism renders a more readable picture
by allowing to easily identify same interactor types. All
omics (genes, proteins, coTFs and SNPs) interactors are
represented with rectangular symbols, while their colors
differ according to the specific family they belong to.
miRNAs, drugs and diseases are instead represented by

oval symbols. It is also possible to filter in and out specific
edges in order to switch among dense and light views, thus
guaranteeing the ability to tune the preferred amount of
details while avoiding unnecessary and possibly confusing
data.

Interaction types have been uniformed, whenever possi-
ble, in a manner similar to the one used for the interactors
naming standardization. For each interaction, the RING
database uses three custom fields: direction, action and
score to uniformly represent all possible types of relations.
The direction field reports a unified dictionary of symbols
able to largely uniform the network representation in terms
of the interaction biological meaning (Figure 3). This field
has been manually verified for each included source of infor-
mation in order to translate their custom/proprietary nam-
ing conventions into a general representation. The action
field reports the original annotation that was used to define
the corresponding symbol. This field is especially useful to
further disambiguate undirected relations. For example, the
same direction symbol for undirect relation (‘-’) may be
applied to both ‘physical association’ and ‘complex input’
actions. We chose to text-code symbols instead of assigning
them a numerical id in order to make this information more
easily human-readable directly from the database search
results.

The score field reports, where available, the confidence
values inherited from each database. The main problem
in their integration is that their values, depending on
the original source, may have different scales, meaning
and ranges. We are currently evaluating possible ways
of normalizing these scores in order to make them work
together.

Figure 2. The RING model schema. Each entity and each possible interaction is shape- and color-coded in the graphical result provided by the

RING web interface. The color codes are defined as follows: red = inhibition, green = activation, black = undirected interaction, blue = TF coregulation,

orange = disease–gene relation. Dotted lines represent weaker association, while solid lines represent more reliable (possibly causal) interactions.

In particular, double-headed arrows represent undirected relations to account for interactions that rely on the concept of ‘association’ instead of

‘causality/targeting’ (like snp/gene–drug relations). To the best of our knowledge, this would be a safer approach to avoid interpretation error.
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Figure 3. Interactions among entities—meaning and unified symbols. In order to provide a normalized dictionary of high-level interaction types,

the RING provides a set of symbols hereby defined as direction. The figure reports all the dictionary symbols organized as a table in which rows

represent source entities and columns represent target entities. Empty cells represent interactions that are not currently available in the RING because

no reliable data sources of that type have been identified. For available interactions, instead, the table reports its normalized set of directions and

their overall meaning.

Accessing the RING

The RING database can be accessed through a user-
friendly web interface available at https://precious.polito.
it/theringdb.

The biggest challenge in creating the web interface to
access the data of such a large database has been to trade
off between performances and data granularity. Queries
returning too much data are useless because they may
require too much time to complete or result in networks
that are too large to be of any realistic use. For this
reason, the web interface provides a wide set of filters that
allow the user to precisely select the type of interactions
that should be targeted in each query. Queries that would
possibly return too many interactions are not allowed. All
the available data are nevertheless available, giving the user
the ability to individually analyze all information of each
single interaction present in the network (see the Omics
layer section). This does not mean we are not available to
provide more extensive bulk ‘custom’ interaction data to
researchers who may request it.

Nevertheless, we believe that the available web inter-
face will allow, with a short learning curve, life science
researchers to have an unprecedented user-friendly access
to a huge data set of regulatory interactions.

Filtering data sources and interaction types

Before querying the database, it is necessary to select the
desired data sources. The source filtering panel (Figure 4)
is made of a set of basic filters and an ‘Advanced Filters’
section. The basic filters, include a set of buttons (‘Vali-
dated,’ ‘Manually Curated’ or ‘Directional,’ ‘Gene,’ ‘TF,’
‘miRNA,’ ‘SNP,’ ‘Drug,’ ‘Disease’) that allow the user to
activate/deactivate different sets of predefined data sources.

The advanced panel is divided in two sections, each with
an increasing level of detail. The first column allows the user
to further refine the selection/deselection of the individual
data sources. When a network is loaded into the system,
the number of interactions originating from each individual
database is reported in parenthesis next to each database
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Figure 4. Data sources filtering panel. Available basic filters are divided into two groups: (i) Validated, Manually curated and Directional that filter

the list of data sources to query according to their overall reliability level and (ii) the set of entity-related filters (i.e. GENE, TF, MIRNA, . . .) to choose

what types of entity should be included in results. With the first group, the user can select the desired confidence level, trading-off between minimal

but reliable data (i.e. only curated interaction for reducing the cost of an experimental setup) or larger but possibly unreliable results (i.e. to identify

possible unexpected regulator not yet confirmed experimentally). The second group allows the user to include all the entity types available or

possibly remove unwanted entities in order to reduce the result complexity (i.e. by excluding from queries all the drugs). Furthermore, a set of

progressively more detailed filters is available in the Advanced Filters section. This helps in further fine tuning the DB interrogation and helps users

to select (i) specific databases listed in the Data Sources section, to limit results to only a subset of the available sources, and (ii) specific regulatory

directions available in the Interactions list, to filter results according to the type of interaction [e.g. a user may be interested only in antagonist TFs

targeting a given entity; thus, selecting only ‘TF-GENE (inhibition)’ should be the best option to only retrieve those information largely reducing the

amount of unwanted information].

name. The second column allows the user an even more
detailed filtering of the types of interactions present in the
selected databases. To avoid the selection of incompatible
filters, the filtering buttons are linked together so that a click
on a filter button possibly enables/disables other buttons in
the other columns.

Data input, network validation and basic network

operations

Each of the two available ‘Search By’ buttons opens one of
the panels shown in Figure 5. In the ‘Entity Names’ panel,
it is possible to start with a simple comma-separated list of
interactors. The ‘Custom Networks’ panel instead allows to
load a network described in SIF format (http://www.cbmc.
it/fastcent/doc/SifFormat.htm). In both cases, it is possible
to populate the input fields with the names of the interactors
of a KEGG pathway.

When the network is generated starting from the enti-
ties names only, the RING database is queried for all the
available interactions (filtered according to the selected data

sources) between the selected nodes. Interactions of the
input entities with other entities present in the database
(but not in the list of queried nodes) are excluded because
they would otherwise result in an unmanageable number of
results.

When the network is generated starting from a custom
or predefined SIF file, the network validation button allows
the user to validate each node and each edge of the network
against all the available data sources (Figure 6). This can
be done using the ‘Strict’ option, where only the edges
in the original network are validated or ‘Loose,’ where
all possible connections between the network nodes are
evaluated (and added, if missing) in order to possibly dis-
cover new interactions. New interactions are colored in
blue, whereas interactions not present in any database are
colored in red and annotated as ‘not in DB.’ By clicking on
an edge, it is possible to retrieve all its existing information.
In this way, researchers can easily verify if the interactions
in their network are supported by data. To the best of our
knowledge, this functionality is not available in any other
publicly available resource.
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Figure 5. Data input option. The ring has two main search procedures: (i) by comma separated entity names, (ii) by loading a SIF network. Both the

procedures may use precompiled set of interactors taken from KEGG pathways. Regardless of the selected input method, the names of the input

interactors are validated against the interactors present in the RING database. Each interactor is colored and shaped according to its type (gene, TF,

miRNA, SNP, drug, disease or unknown).

Figure 6. SIF and interactors validation. This panel offers a text area to insert a SIF network description, which is particularly useful to rapidly design

or import custom networks in the web interface. The SIF description is in the form of <SOURCE_ENTITY>< ACTION_TYPE> < TARGET_ENTITY>.

When the SIF network is loaded, all the valid entities, provided with accepted names, aliases or accessions, are automatically recognized, and their

naming is normalized according to the RING naming conventions. Unrecognized entities are highlighted in yellow color. The loaded network loaded

may be further validated in terms of interactions, thanks to the Validate Network procedure, which exploits the RING knowledge in order to also

confirm if the interactions described in SIF belong to the current knowledge and possibly if some connections are missing.
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Figure 7. Multiple interactions. When multiple interactions between two entities are present in the same or another database, they are represented in

the RING as a multi edge colored in yellow. To better understand the overall meaning of such edges, it is possible to click on them to retrieve a detailed

table, displayed below the network, which reports all the details on the interaction of interest. This annotation becomes particularly important when

different databases report different interaction directions; e.g. a TF may be reported as enhancer and silencer of the same target in different DBs.

Figure 8. Network export interface. The interface provides several ways to download the network created in the RING. The export menu allows

users to save current results as a PNG image, in network formats like SIF and XML that provide easy data exchange with other network analysis

tools (custom python script, Cytoscape, Gephy, etc.), and both the node list and the edge list as csv files. Those latter files also contain all the extra

attributes, usually not included in the network representation but currently available in the RING, to maximize the informative content returned.

Figure 9. RING graph interface: the Utils panel. The text area allows users to insert a regulatory entity or a list of entities separated by comma, which

may be new or already included in the network. On top of them, different procedures may be applied according to the select box choice. The ‘ADD

new Entity(s)’ procedure simply includes the new entity(es) in the network as nodes, if they are not present already; the ‘LINK entity to Network’

searches for the specified entity’s interactors already present in the network and links it to them, and finally, the ‘EXPAND entity 1-level’ searches for

all the interactors of the new entity and provides a dialogue window (Fig. 10) to further refine the expansion procedure.

After the network is loaded and visualized, three sets of
buttons allow the user to choose the network layout, to
hide/show nodes’ groups and to cluster nodes according to
different criteria.

When multiple interactions are present between two
interactors, the connecting edge is labeled as ‘multi’
(Figure 7). By clicking on it, a table is displayed below the
network detailing all interactions available in the complete
collection of databases (in this case, the data sources filter
is not applied).

Below the network area, an Export panel (Figure 8)
allows the user to export the current network information
in different formats for further elaboration.

Network expansion After loading the initial network, it is possi-
ble tostartexpandingitusingtheUtilspanel (Figure 9).Three
main functionalities are provided: ‘ADD new Entity(s),’
‘LINK entity to Network’ and ‘EXPAND entity 1-level.’

To add a new interactor, it is enough to write the name
(or comma-separated names) of the interactors to be added,
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Figure 10. Expand mode panel. It provides predefined buttons that provide filtering capabilities at entity level and curation level. More detailed filters,

available for each data source, allow to discriminate at source database level. They also provide an estimate of possible interactions belonging to

the selected entity and possibly added to the network. The Expand Method radio buttons make it possible to select one of three expansion methods.

‘ALL INTERACTORS only’ method will only add the interactions between the selected node and its interactors (Figure 10a); the second will allow to

also add the interactions between the node interactors and any other node present in the network (Figure 10b). The last option will run an additional

routine that will keep only those interactors that have at least two interactions with any other node of the network (Figure 10c).

and after they are validated against the database available
interactors, they are added to the network as isolated nodes.
The LINK and EXPAND functions are applied to any node
of the network that is selected (by clicking on it). The LINK
functionality searches for all possible interactions between
the selected node and all the other nodes already in the
network. The EXPAND option is more complex because it
attempts to find interactions with other entities not already

present in the network, and this search could potentially
return a very high number of results. For this reason, after
launching the EXPAND procedure, a new panel is dis-
played (Figure 10), which shows, for each data source, the
forecasted (max) number of possible interactions from the
selected entity. Moreover, it is possible to select one of three
expansion methods. The first will only add the interactions
between the selected node and its interactors (Figure 10a);
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the second will allow to also add the interactions between
the node interactors and any other node present in the
network (Figure 10b). The last option will run an additional
routine that will keep only those interactors that have at
least two interactions with any other node of the network
(Figure 10c).

Conclusion and future work

In this article, we presented the RING database, a complex
data aggregation framework that was designed to organize,
standardize and integrate omics data from several available
public data repositories. The RING can be accessed through
a web application that allows researchers to explore poten-
tially millions of regulatory interactions through a user-
friendly interface.

The RING project is only the beginning of the longer-
term objective of being able to efficiently explore the whole
human genome. In future releases we plan to

• add the possibility to overlay the network with other
information like expression data, tissue types or phylo-
genetic conservation data;

• run basic dynamic simulations of the network behavior,
for example to investigate the expression profiles of all
the nodes of the network starting from the expression of
a subset of nodes;

• add batch execution capabilities to allow for more data-
intensive queries;

• add the possibility to calculate basic graph metrics like
nodes degree and betweenness, centrality, as well as short-
est paths between pairs of nodes to better investigate
possible indirect regulations between nodes; this last step
requires to work with a graph representation of the data
and not from directly with the SQL database.

Conflict of interest. None declared.
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