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Abstract

To generate a parsimonious gene set for understanding the mechanisms underlying

complex diseases, we reasoned it was necessary to combine the curation of public liter-

ature, review of experimental databases and interpolation of pathway-associated genes.

Using this strategy, we previously built the following two databases for reproductive

disorders: The Database for Preterm Birth (dbPTB) and The Database for Preeclampsia

(dbPEC). The completeness and accuracy of these databases is essential for supporting

our understanding of these complex conditions. Given the exponential increase in

biomedical literature, it is becoming increasingly difficult to manually maintain these

databases. Using our curated databases as reference data sets, we implemented a

machine learning-based approach to optimize article selection for manual curation.

We used logistic regression, random forests and neural networks as our machine

learning algorithms to classify articles. We examined features derived from abstract

text, annotations and metadata that we hypothesized would best classify articles with

genetically relevant content associated to the disorder of interest. Combinations of these

features were used build the classifiers and the performance of these feature sets were

compared to a standard ‘Bag-of-Words’. Several combinations of these genetic based

feature sets outperformed ‘Bag-of-Words’ at a threshold such that 95% of the curated

gene set obtained from the original manual curation of all articles were extracted from

the articles classified by machine learning as ‘considered’. The performance was superior

in terms of the reduction of required manual curation and two measures of the harmonic

mean of precision and recall. The reduction in workload ranged from 0.814 to 0.846 for

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baz124/5641109 by guest on 17 M

ay 2024

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/


Page 2 of 12 Database, Vol. 2019, Article ID baz124

the dbPTB and 0.301 to 0.371 for the dbPEC. Additionally, a database of metadata and

annotations is generated which allows for rapid query of individual features. Our results

demonstrate that machine learning algorithms can identify articles with relevant data for

databases of genes associated with complex diseases.

Introduction

To better understand the genetic mechanisms of complex
diseases, we generated a manageable set of biologically val-
idated genes that incorporates the elements of the discovery
in genome-wide investigations. Our strategy was to iden-
tify relevant, phenotype-specific gene sets that combined
the curation of public literature, review of experimental
databases and interpolation of pathway-associated genes.
We used web-based semantic data mining of published
literature to recover articles that contained genes or genetic
variants potentially related to diseases of interest. To add a
discovery-based approach to our strategy, we also screened
publicly available, genome-wide databases for additional
information. Curators read each article and identified the
genes supported by experimentally validated biological rel-
evance for the conditions of interest. Using this strategy,
we built publicly available databases for two complex
reproductive disorders: (i) the Database for Preterm birth
(dbPTB) and (ii) The Database for Preeclampsia (dbPEC)
(1, 2).

The completeness and accuracy of genetic databases is
essential for our understanding of complex disease pheno-
types. These databases serve not only as a concise collection
of past genetic findings, but also the foundation upon
which many new gene-disease discoveries are made (3,
4). Unfortunately, given exponential increases in biomed-
ical literature, it is increasingly difficult to maintain such
databases manually (5–8). Manual curation is inevitably
outpaced by literature production (6, 9). Even so, man-
ually verified data remain the gold standard for genetic
databases. This demand has motivated the development
and implementation of computational tools to automate or
semi-automate various steps of the biocuration workflow
including literature screening or ‘triage’, bioentity identifi-
cation, relationship annotation and data normalization, all
with the goal of minimize the curator workload without
sacrificing accuracy (10–16).

The first step in the curation workflow once literature is
queried is often referred to as ‘triage.’ Triage involves iden-
tifying abstracts as candidates for full curation and further
data extraction (14, 17). It is of great interest to support
this process using automated means, as it often one of the
largest bottlenecks and subject to human error (14, 17, 18).

The first step in automating screening involves text mining
the title and abstract. Many text-mining tools have helped
automate some of the more basic tasks of curation, such
as identifying mentions of biological entities in free text.
PubTator is one example. This ensemble program combines
the functionality of several other entity recognition tools,
including GeneTUKit (28) for gene mentions, SR4GN (29)
for species, DNorm (30) for diseases and tmVar (31) for
mutations, thereby allowing curators and other text-mining
tools to extract these entities more efficiently. Another com-
monly used entity recognition tool, MetaMap, recognizes
mentions of a wide variety of entities and maps them
to Unified Medical Language System (UMLS) concepts.
SemRep further extends the functionality of MetaMap by
using these UMLS concepts to identify subject-predicate-
object triples. Texpresso is another popular text-mining
tool, which utilizes ontology bases categories for informa-
tion retrieval and data extraction, developed for the model
organism Caenorhabditis elegans and currently expanding
to other models (19).

These text-mining tools can be used in conjunction with
classification, ranking or active learning to reduce the num-
ber of documents that must be manually screened. The num-
ber of studies devoted to this endeavor is increasing; how-
ever, there is little consensus as to best approach. As noted,
many are not fully documented, have limited evaluation of
performance, and are not freely accessible (20). Addition-
ally, results are difficult to reproduce as they are dependent
on the complexity of research question being studied, the
heterogeneity of the literature, the size of literature base,
and the consistency of the curation team. Wormbase, one
of the most comprehensive gene-centric database about C.

elegans implements support vector machine classifiers and
Textpresso for flagging data types within documents (19);
however, the first step of screening papers for further cura-
tion and data flagging and extraction is preformed manu-
ally (21). Other tools, such as AbstrackR were designed for
semi-automating systematic reviews using machine learning
in the absence of any entity recognition or literature anno-
tating bag-of-words (unigrams and bigrams) as features of
support vector machine classifiers (13). This tool has been
shown to have high recall, with mixed results for precision
and other evaluation metrics (20, 22).
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In this extension of prior work, we designed a method
that allows curators to partially automate the literature
review for identifying articles related with genetic data
associated to the phenotype of interest for subsequent man-
ual curation and data extraction. We used the previously
developed databases as reference sets for testing different
models of machine learning. The machine learning algo-
rithms evaluated for this study were logistic regression, ran-
dom forests and neural networks. Logistic regression seeks
to identify a linear combination of variable coefficients
that best estimates the probability that an article should
be considered (23). Random forests uses a collection of
individual decision trees and the mean outcome generates
a probabilistic estimation that an article should be consid-
ered (24). Artificial neural networks uses an interconnected
group of computing nodes that ‘fire’ when the weighted
sum of inputs to the node is sufficiently large. Weights are
learned so that features of an article produce output with
signal intensity that represents the probability that the arti-
cle should be considered (25). The standard features used
for machine learning are ‘Bag-of-Words’ or variations of
such. We built the classifiers with multiple features, which
we hypothesized would better identify genetic relevance. We
compared how these individual features, as well as com-
bination, performed when compared to a standard ‘Bag-
of-Words’ feature set. Our approach relied on automated
text-mining tools to extract rich features from titles and
abstracts, supervised machine learning to predict article
relevance and human expertise to identify relevant genetic
data.

Methods

dbPTB and dbPEC

In building these two databases, SciMinerTm (26) was
used to identify articles from PubMed using a number of
queries to extract published articles specific to preterm birth
and preeclampsia and their gene and protein information
(1, 2). The queries used for each database are listed in
Supplementary Table S1. The filtered articles putatively
contained information on genes, gene–gene interactions, or
single-nucleotide polymorphism (SNP) information related
to preterm birth or preeclampsia. A curation team member
then read each publication, with attention devoted to
study design, relevance of the article to the phenotype
of interest, and documentation of statistical relationship
between a gene and either preterm birth or preeclampsia.
Articles with at least one relevant gene were labeled as
‘considered’ for curation; those with no relevant genes were
labeled as ‘not considered.’ The genes, genetic variants,
SNPs, Reference SNP (rs) numbers (when available) and

annotations describing gene–gene interactions shown to be
statistically significant from each considered article were
entered into the databases.

Training and test sets

We accessed all articles and the genes that had been
reviewed by manual curation for the development of dbPEC
and dbPTB (1, 2). The records included 2667 articles
curated for dbPEC and 1530 articles curated for dbPTB. We
created training and tests sets for both dbPTB and dbPEC
independently. For the training sets, 80% of the PubMed
Identifiers (PMIDs) were randomly selected from both the
set of considered and not considered articles for dbPEC and
dbPTB. Samples were randomly selected using a program
written in the Julia programming language (https://
epubs.siam.org/doi/10.1137/141000671), leveraging the
Mersenne Twister library to create a random number
generator and using it to sample from the set articles. This
random selection was carried out to mimic the accepted and
rejected rates of the dbPEC and dbPTB. The remaining 20%
of the considered and not considered articles were used
to validate our model. PMIDs and manual classifications
for articles were used as input into our computational
pipeline, which was designed to retrieve article metadata
and annotations, generate features for each article, and
train predictive models in order to prioritize unseen articles
for curation (Figure 1).

Data retrieval

For each PMID in our training set, data were retrieved
from four sources: PubMed/MEDLINE, PubTator (27),
MetaMap (28) and SemRep (29) . PubMed was used to
retrieve the title, abstract and metadata for each article.
PubTator, MetaMap, and SemRep were used as sources
for annotating titles and abstracts. PubTator was used to
annotate genes, diseases, species and mutations. MetaMap
was used to identify UMLS mappings, while SemRep was
used to identify relationships between different biological
concepts in our articles. The information from these data
sources were processed and stored in a local MySQL
database. Details for querying and processing data from
each of these data sources are detailed in the Supplemental
Materials.

Feature generation

Document data stored in the local MySQL database was
used to generate features for input into a machine learning
algorithm. Many of the features generated utilized UMLS
concepts grouped by similar semantic type (‘semtype’).
The features used in the predictive models were generated
according to the specifications below.
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Figure 1. Overview of semi-automated pipeline used to predict articles to consider for manual curation. The pipeline takes a set of PMIDs (here shown

as PMID_ID##) as input along with manual classifications (class) of 1 or 0, where 1 signifies that an article was ‘considered’ for curation and 0 signifies

that an article was ‘not considered’. With these PMIDs, the computational pipeline queries various public data repositories to retrieve article-specific

data. Data are converted to features useful for predictive modeling. Using this feature set, predictive models were trained using logistic regression,

random forests and neural networks. These predictive models were used to predict the relevance of unread articles.

Bag-of-Words

‘Bag-of-Words’ was used as a baseline method to compare
the performance of feature sets. Words in the title and
abstract were tokenized and the frequency of the unigrams
was recorded. The corpus was stripped of indefinite articles,
definite articles, prepositions, pronouns and stop words.
Words were also appended to have either the TITLE or
ABSTRACT suffix.

Medical subject headings

Medical Subject Headings (MeSH) heading-subheading-
major triplets were generated as a feature set. For example,
an article with the MeSH descriptor ‘Premature Birth’ may
have the associated descriptor ‘Genetics’, where ‘Genetics’
is labeled as a major focus of the article but ‘Premature
Birth’ is not. One feature is generated for each heading
and subheading. The heading-subheading-major feature for
‘Premature Birth’ is Premature Birth-No. The heading-
subheading-major feature for ‘Genetics’ is Premature Birth-
Genetics-Yes.

Gene-subject-predicate

SemRep annotations were used to create the subject-
relation-object feature set. Features were generated for each
sentence for which the subject was in the semantic group
‘GENE’ (genes and molecular sequences) and the object
was in the semantic group ‘DISO’ (disorders). In addition
features were generated for sentences where the subject
was in the semantic group ‘DISO’ and the object was in the
semantic group ‘GENE’.

Gene and statistical significance co-occurrence

UMLS concepts were used to identify sentences with Quan-
titative Concepts (‘qnco’) to generate the (Quantitative
CUI)-(Gene Presence) feature set. A feature was generated
for a sequence which contained a unique Quantitative Con-
cept with an indicator for co-occurrence with the semantic
group ‘GENE’.

In addition, UMLS concepts were used to identify sen-
tences in which there was an occurrence of the concepts
related to statistical significance. The UMLS Terminology
Services (UTS) Metathesaurus Browser was used to search
for concepts related to statistical significance, P value, and
z-score; these concepts were called ‘significant Concept
Unique Identifiers (CUIs)’. In addition, sentences in which
there was a co-occurrence between concepts in the ‘GENE’
semantic group and ‘significant CUIs’ were identified and
features were appended with either having a gene present or
not. With each occurrence of ‘significant CUIs’, the presence
of the UMLS concept ‘Negative’, ‘Negation’ or ‘Unchanged’
was also identified. This was done to handle cases where
genetic data were described as not statistically significant.
Features were generated as triples: (significant cui)-(GENE
presence)-(Negation).

Gene counts

PubTator was used to identify and create the gene count
feature set for both the title and the abstract. Features were
generated for the number of unique gene names referenced
in the title and the abstract. Features were also generated
for the maximum number of references to a single gene in
the abstract and title respectively.
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Species check

In the two reference databases, articles were only considered
if human tissues or cells were being studied. UMLS Con-
cepts were used to identify the species present in the abstract
and create the (Species CUI)-(GENE Presence) feature set.
Features were generated for the sentences with semantic
types in the ‘LIVB’ semantic group with an indicator for
co-occurrence with the semantic group ‘GENE’.

Semtype count

To reduce feature size and allow for generalizability, UMLS
concepts were used to identify generic groups of similar con-
cepts and create the (semantic type)-(GENE-Present) fea-
ture set. Features were created for each semantic type with
an indicator for co-occurrence with the ‘GENE’ semantic
group.

Machine learning

Predictive models

We employed three machine learning algorithms to com-
pare their ability to predict which articles should be consid-
ered for manual curation: (i) logistic regression, (ii) random
forests and (iii) neural networks. For each of the machine
learning algorithms, articles are assigned a predictive prob-
ability between 0 and 1 where an article close to a predictive
probability of 1 is likely to be considered for curation
and an article closer to 0 is unlikely to be considered for
curation.

Parameter optimization

The logistic regression, random forest, and neural net-
work classifiers were implemented using Scikit-learn (30).
The hyper-parameters for the classifiers were optimized
using randomized search cross-validation (31). The Sem-
type Count feature set was used to optimize the hyper-
parameters for the various classifiers.

Studies have shown (32) that when tuning hyper-
parameters for random forest that the max_features,
min_sample_split, and min_sample_leaf, hyper-parameters
have the largest effect on prediction accuracy. When
tuning for Logistic Regression hyper-parameters, three
hyper-parameters were optimized for max_iter, C and
solver (33). Neural Networks were optimized for hid-
den_layer_sizes, learning_rate (learning rate schedule),
alpha and learning_rate_init (31). A more in-depth explana-
tion of the different hyper-parameters that were optimized
for each of the classifiers is given in the Supplemental
Materials.

Class imbalance

In both data sets, there was an imbalance in accepted and
rejected papers. Of the 2667 articles related to preeclamp-
sia, 898 articles (33.7%) were considered to contain rele-
vant information following manual curation. Of the 1530
articles related to preterm birth, only 204 articles (13.3%)
were considered to contain relevant information follow-
ing manual curation. To address class imbalance, under-
sampling, oversampling and a combination of the two were
evaluated, as well as assigning class weights inversely pro-
portional to class frequencies. This was done for all three
predictive models. These predictive models were trained
against training set articles and evaluated for accuracy
against model-naïve test sets.

Model testing

The three predictive models were trained with full training
sets (i.e. 80% of full set of articles) using the parameters
previously described. These models were evaluated for their
performance against the remaining 20% of articles in the
test set. The accepted and rejected article ratios in the
training set and test set reflect that of the dbPEC and
dbPTB.

Model evaluation

The predictive models were evaluated based on their ‘gene
recall.’ Gene recall is defined as the percentage of curator-
accepted genes found in the original articles that were
extracted from articles correctly labeled as ‘considered’ by
the classifier. We estimated that a reasonable threshold
for our purposes is a gene recall of 95%. To achieve this
threshold, articles are classified as ‘considered’ if they have
predictive probability greater than or equal to a predicative
probability for which 95% of the genes associated with the
disease from the test set are recovered. This is sufficient for
classifying the vast majority of genes related to a condition
of interest using published literature. We used ‘F-gene score’
as an additional metric for classifier performance. ‘F-gene
score’ is defined as the harmonic average of gene recall
and precision, and can take on values between 0 and 1. ‘F-
gene score’ was used to weigh the percentage of curator-
accepted genes captured with the percentage of correctly
labeled positive papers.

The performance of our predictive models was assessed
using recall, precision, gene recall, workload saving, F1

score and F-gene score (Table 1). Workload saving is
the proportion of articles that our model labeled ‘not
considered’ out of the total number of articles. As such, it
measures the amount of work that can be saved for future
curators (22). A desirable workload saving approaches the
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Table 1. Metrics used to assess performance of predictive models. ∗GTP is the number of unique curator-accepted genes in

true positive articles. G(TP+FN) is the number of unique curator-accepted genes in true positive (TP) or false negative (FN)

articles

Metric Equation

Recall TP/(TP + FN)
Precision TP/(TP + FP)
Gene Recall ∗GTP/G(TP+FN)

Workload Saving (TN + FN)/(TP + FP + TN + FN)
F-gene Score 2 (Gene-Recall ∗Precision) / (Precision + Gene-Recall)
F 1 Score 2 (Recall ∗Precision) / (precision + recall)

percentage of articles ‘not considered’ by manual curation.
As a metric for evaluating the accuracy of our model, Area
Under the Receiver Operator Characteristic (AUROC) was
calculated. AUROC are widely used and packages exist
which compare ROC curves and generate P values. Model
performance between ‘Bag-of-Words’ and the other feature
sets was compared using pROC. pROC is a package written
in R that compares the AUC for ROC curves (34) with the
DeLong method, which utilizes U-statistics and asymptotic
normality in order to compare ROC curves without the use
of bootstrapping. In addition, the area under the precision-
recall curve (AUCPR) was calculated using the R package
PRROC (35). Precision-recall curves do not take into
account true negatives; therefore, AUCPR is not skewed
by an imbalance in the number of positive and negative
articles and is typically used for evaluating imbalanced test
sets. P values could not be calculated for AUCPR and so
5-fold cross-validation was utilized to provide confidence
intervals for the AUCs.

Code availability

The methods described in this study were implemented
largely using the Julia Programming Language, including
for building feature sets, training and testing the classi-
fiers. The programs are available from Zenodo (https://
doi.org/10.5281/zenodo.3376769) and freely available for
public use.

Results

Class imbalance

We found no significant differences (pROC, P > 0.05)
in the AUROC curves for all methods addressing class
imbalances for dbPEC. Training and testing on dbPTB
showed a significant increase (pROC, P < 0.05) in
the AUROC of the Neural Network classifier between
models with class imbalances addressed by weights when

compared to oversampling shown in Supplementary Table S2
and Supplementary Table S3. Across all classifiers trained
and tested on dbPEC, the methods for dealing with class
imbalances were shown to have similar AUCPRs shown in
Supplementary Table S2 and Supplementary Table S3. In
addition, for all classifiers trained and tested on dbPTB,
all methods for dealing with class imbalances were shown
to have similar AUCPRs. For all subsequent analysis, class
imbalances were managed by assigning class weights.

Parameter optimization

Hyper-parameters for the Logistic Regression classifier
were optimized using random search 3-fold cross-validation
over 1000 iterations. The optimized value for max_iter was
determined to be 155 and the optimized value for C was
determined to be 1.0 using ‘sag’ as the optimization algo-
rithm. After optimization for the Random Forest classifier,
max_features was determined to be 0.8, min_sample_split
was determined to be 3, min_impurity_decrease was deter-
mined to be 0.0066423, min_sample_leaf was determined
to be 4, and criterion was determined to be ‘entropy.’
Optimization for Neural Networks was determined
for the four hyper-parameters alpha, learning_rate_init,
hidden_layers_sizes, and learning_rate and optimized to
be 0.0029, 0.0139, (60160), and ‘invscaling’ respectively.
Hyperparamaters and their optimized value are shown in
Supplementary Table S4.

Model testing

To test relative contributions of each of the features, fea-
tures were tested individually, as well in combination. The
feature sets used and the size of each of the feature sets are
shown in Table 2. Groupings of feature sets were chosen
based on feature size and individual feature performance.
S1 contains all features except for ‘Bag-of-Words’, testing
how the all the features work in conjunction. S2 contains
all the features in S1 except for MeSH, since MeSH is
the largest feature set and is the most computationally
expensive feature to run. S3 contains all the features in S2

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baz124/5641109 by guest on 17 M

ay 2024

https://doi.org/10.5281/zenodo.3376769
https://doi.org/10.5281/zenodo.3376769


Database, Vol. 2019, Article ID baz124 Page 7 of 12

Table 2. Feature set names. A ‘–‘in the Features in Set column denotes that the Features in Set is the same as the set name.

The size of the feature set for both dbPEC and dbPTB are listed

Set Name Features in Set dbPEC dbPTB

MeSH – 11 467 11 157
Gene- Significance – 1462 1498
Gene-Subject-Predicate – 56 52
Semtype Count – 390 375
Species Check – 1177 1413
Gene Count – 6 6
Bag-of-Words – 34 494 31 926
S1 MeSH + Gene Significance + Semtype Count + Gene-Subject-Predicate

+ Species Check + Gene Count
14 558 14 501

S2 Gene Significance + Semtype Count + Gene-Subject-Predicate + Species
Check + Gene Count

3091 3344

S3 Gene Significance + Semtype Count + Gene-Subject-Predicate + Species
Check

3085 338

S4 MeSH + Gene Significance + Semtype Count + Species Check + Gene
Count

14 502 14 449

S5 MeSH + Gene Significance + Semtype Count + Gene-Subject-Predicate
+ Species Check

14 552 14 495

S6 MeSH + Gene Significance + Semtype Count + Species Check 14 496 14 443

except Gene Count, as gene count was one of the worst
performing individual feature sets. S4 contains all features
in S1 except for Gene-Subject-Predicate. S5 contains all
features in S1 except for Gene Count. S6 contains all the
features in S1 except for both Gene-Subject-Predicate and
Gene Count.

The AUROC ranged from 0.901 to 0.920 using logistic
regression, from 0.857 to 0.922 using random forests and
from 0.869 to 0.894 using the neural network for the
dbPTB data set (Table 3). S1 showed a significant increase
(pROC, P < 0.005) in AUC for the Random Forests classi-
fier trained and tested on dbPTB when compared to ‘Bag-
of-Words’. For the dbPEC data set, the AUROC for the
different predictive models ranged from 0.743 to 0.805

using logistic regression, from 0.761 to 0.837 using random
forests and from 0.689 to 0.782 using neural networks
(Table 4). S1 showed no significant (pROC, P > 0.05) differ-
ences compared to ‘Bag-of-Words’ for any of the classifiers.
AUCPR ranged from 0.572 to 0.646 using logistic regres-
sion, from 0.616 to 0.680 using random forests and from
0.509 to 0.643 using the neural network for the dbPTB
data set (Table 3). For the dbPEC data set, the AUCPR
for the different predictive models ranged from 0.597 to
0.653 using logistic regression, from 0.623 to 0.678 using
random forests and from 0.531 to 0.619 using neural
networks (Table 4). When using the random forests and
neural network classifiers trained and tested on both PTB
and PEC, S1 showed a greater AUCPR when compared to
the other feature sets; however, this difference is within the
95% confidence interval.

Model evaluation

The performance of the models using the three classifiers
and various feature sets is shown in Tables 5 and 6. For
dbPTB, workload savings at a 95% gene recall threshold
ranged from 0.797 with Random Forest to 0.814 with
Neural Networks, compared to the actual manual rejection
rate 0.846. For dbPEC, workload savings at a 95% gene
recall threshold for dbPEC ranged from 0.283 with Neural
Networks to 0.371 with Random Forests, compared to
the actual manual rejection rate for of 0.492. In addition,
all features sets, except S3 and S4, outperformed ‘Bag-of-
Words’ in terms of workload savings on every classifier for
both dbPTB and dbPEC. Notably S1, S5 and S6 showed the
best performance at a 95% gene recall. In addition, S1, S5
and S6 outperformed ‘Bag-of-Words’ on every classifier in
terms of both F1 score and F-gene score, for both dbPEC
and dbPTB.

Discussion

This study explored the potential of using machine learn-
ing approaches to identify scientific articles with genes or
genetic information relevant to complex diseases. We used
logistic regression, random forests, and neural networks
to classify articles relevant to the diseases of interest that
should be considered for further formal analysis. Random
search cross-validation was used to optimize for the hyper-
parameters of the various classifiers. This method was used
instead of grid search cross-validation due to the former
being less computationally demanding (31). Our previously
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Table 3. AUC of the ROC curve for all features trained and tested on dbPTB. 5-fold cross-validation was used to determine

average AUCPR with a 95% confidence interval. P-values are listed for each feature set comparing ROC curves to the bag-of-

words ROC curves using pROC. A ‘–‘was used to denote bag-of-words being compared to itself

Feature Set AUCPR ROC

AUC P-value

Logistic Regression BOW 0.646 ± 0.031 0.906 -
S1 0.622 ± 0.063 0.908 0.918
S2 0.572 ± 0.078 0.919 0.572
S3 0.572 ± 0.066 0.920 0.505
S4 0.619 ± 0.064 0.919 0.526
S5 0.630 ± 0.048 0.901 0.825
S6 0.626 ± 0.045 0.907 0.974

Random Forests BOW 0.621 ± 0.040 0.826 –
S1 0.680 ± 0.077 0.922 0.002
S2 0.628 ± 0.070 0.872 0.137
S3 0.616 ± 0.069 0.862 0.251
S4 0.678 ± 0.093 0.865 0.221
S5 0.673 ± 0.077 0.857 0.331
S6 0.667 ± 0.083 0.870 0.155

Neural Networks BOW 0.631 ± 0.045 0.894 –
S1 0.643 ± 0.022 0.893 0.979
S2 0.530 ± 0.059 0.872 0.488
S3 0.509 ± 0.075 0.884 0.755
S4 0.599 ± 0.031 0.869 0.393
S5 0.580 ± 0.048 0.891 0.892
S6 0.607 ± 0.098 0.892 0.923

published and publicly accessible, curated databases for two
complex diseases, preterm birth and preeclampsia, served
as our reference data sets. To test the models, articles were
separated into a training and test set. Given the complexity
of this classification task, 80% of the articles were selected
for the training set to ensure that we had a sufficient
number of training examples to develop a reliable predictive
model. This 80% training set approach comports with the
training set size used in an example evaluation of the Scikit-
learn’s liblinear logistic regression (36). Class imbalances
can adversely influence classifier performance due to pre-
dictive bias in favor of the majority class (17). Since the
majority class is more heavily represented in the dataset,
it tends to have more influence on cases of uncertainty,
which can lead to over prediction of majority cases (17).
Using pROC, ROC curves for the various methods for deal-
ing with class imbalances were compared. No significant
differences (pROC, P > 0.05) were found between various
methods for dealing with class imbalances in dbPEC. In
dbPTB, weights were determined to significantly increase
AUROC for the neural network classifier. For both dbPTB
and dbPEC, AUCPR was found to be similar across all
classifiers, for all methods of dealing with class imbalances.
As such, class imbalances were managed by assigning class
weights.

We compared the performance of each of the machine
learning classifiers trained with combinations of different
feature sets. The purpose of our approach was primarily
to reduce the total number of articles that we needed to
review manually in order to identify the genes associated
with a condition of interest. This meant that prioritizing a
predictive model that classifies articles with high recall was
important. However, recall alone is not entirely adequate
for evaluating the ability of a classifier to help curators
identify the genes associated with pathogenesis. Instead, we
defined two new measures (gene recall and F-gene score) for
evaluation of the classifiers. In addition, we defined novel
feature sets to identify species, gene mentions, gene-subject
interactions, and gene-quantitative concept co-occurrences
in the titles and abstracts. These feature sets were tested
independently and in various combinations. The combined
feature sets S1, S2, S5 and S6 showed greater degrees of
workload savings across all classifiers when compared to
‘Bag-of-Words.’ In addition, these feature sets were much
smaller than ‘Bag-of-Words’, making them more computa-
tionally inexpensive and better for curating large quanti-
ties of articles. Our results suggest that machine learning
algorithms can identify articles of interest for creation or
maintenance of a database or gene set for complex diseases.
Given the enormity of the manual classifications of articles
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Table 4. AUC of the ROC curve and AUC of the precision-recall curve for all features trained and tested on dbPEC. 5-fold cross-

validation was used to determine average AUCPR with a 95% confidence interval. P-values are listed for each feature set

comparing ROC curves to the bag-of-words ROC curves using pROC. A ‘–‘was used to denote bag-of-words being compared

to itself

Feature Set AUCPR ROC

AUC P-value

Logistic Regression BOW 0.653 ± 0.043 0.802 –
S1 0.652 ± 0.028 0.805 0.875
S2 0.600 ± 0.027 0.746 0.007
S3 0.597 ± 0.027 0.743 0.005
S4 0.642 ± 0.027 0.805 0.854
S5 0.639 ± 0.028 0.801 0.991
S6 0.633 ± 0.066 0.802 0.985

Random Forests BOW 0.651 ± 0.041 0.837 –
S1 0.678 ± 0.023 0.805 0.064
S2 0.636 ± 0.033 0.777 0.001
S3 0.623 ± 0.043 0.761 0
S4 0.673 ± 0.031 0.802 0.043
S5 0.664 ± 0.038 0.806 0.065
S6 0.641 ± 0.090 0.804 0.053

Neural Networks BOW 0.613 ± 0.027 0.763 –
S1 0.619 ± 0.052 0.782 0.372
S2 0.531 ± 0.037 0.689 0.007
S3 0.554 ± 0.038 0.691 0.009
S4 0.595 ± 0.051 0.764 0.946
S5 0.598 ± 0.048 0.771 0.696
S6 0.610 ± 0.003 0.743 0.417

reviewed for the reference databases, we conclude that our
pipeline performed well for its ability to both prioritize arti-
cles with relevant genetic information and decrease curator
workload. Taken together, our analysis shows that automa-
tion can help curators more efficiently review literature for
genetic markers of human disease while still maintaining
accuracy comparable to strict manual curation.

In the developed pipeline, we used several text-mining
tools to annotate and extraction information from the title
and abstract of articles. The rich feature-set gathered from
annotated titles and abstracts using these tools allowed
us to develop a predictive model that met our standards
for gene recall and provided reasonable workload savings.
The workload savings, while markedly different between
our analysis of preterm birth and preeclampsia data sets,
were reasonably close to the percentage of papers that
were ‘not considered’ by manual curation. These savings
are sufficiently large to justify use of our pipeline in future
curation efforts and maintenance of these databases. Fur-
thermore, with a gene recall of 95%, our model captures
most relevant genes. Genes not captured are likely to be
identified by other means, such as the screening of publicly
available databases for genetic data or pathway-based gene
imputation (37).

When assessing the performance of our pipeline, we
acknowledge the abundance of similar tools that utilize
machine learning to classify articles as relevant or irrele-
vant for curation. Many such tools have been developed
to simplify systematic review. Notable examples include
AbstrackR (13) and Rayyan (12). These tools and others
have been shown to classify articles for inclusion in system-
atic review with recall that outperform our models (11, 22).
For our data sets, at a 95% gene recall threshold, AbstrackR
yielded a greater recall but lower workload savings and
precision, recovering more articles with less genetic rele-
vance [data not shown]. Although these tools may be useful
for automating triage for many Systematic Reviews, for a
more nuanced curation task, such as identifying articles
to maintain a phenotype-specific genetic database, it may
be helpful to utilize a more specialized machine learning
approach as our own.

Beyond what has already been described, a significant
advantage of our pipeline is that it allows for granular con-
trol over classification, with the added benefit of generating
a MySQL database that stores relevant article information
relevant to curation teams. This includes descriptive
metadata and the annotations previously described. Having
this easily accessible data enables curation teams to further
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Table 5. The values of the performance metrics for each feature set trained and tested on dbPTB. Performance metrics were

recorded for each classifier and values were recorded at a 95% gene Recall threshold

Feature Set Recall Gene Recall Precision F Score F-gene Score Workload
Savings

Logistic
Regression

BOW 0.805 0.956 0.379 0.516 0.543 0.716
S1 0.829 0.956 0.531 0.648 0.683 0.791
S2 0.756 0.956 0.544 0.633 0.693 0.814
S3 0.829 0.956 0.523 0.642 0.676 0.788
S4 0.756 0.956 0.534 0.626 0.686 0.810
S5 0.805 0.956 0.541 0.647 0.691 0.801
S6 0.854 0.956 0.556 0.673 0.703 0.794

Random
Forests

BOW 0.829 0.965 0.262 0.398 0.412 0.575
S1 0.878 0.956 0.379 0.529 0.543 0.690
S2 0.707 0.956 0.460 0.558 0.621 0.794
S3 0.683 0.956 0.406 0.509 0.570 0.775
S4 0.683 0.956 0.452 0.544 0.613 0.797
S5 0.659 0.956 0.435 0.524 0.598 0.797
S6 0.659 0.956 0.429 0.519 0.592 0.794

Neural
Networks

BOW 0.829 0.956 0.374 0.515 0.537 0.703
S1 0.707 0.956 0.617 0.659 0.750 0.846
S2 0.805 0.956 0.429 0.559 0.592 0.748
S3 0.756 0.956 0.443 0.559 0.605 0.771
S4 0.756 0.956 0.508 0.608 0.664 0.801
S5 0.756 0.956 0.544 0.633 0.693 0.814
S6 0.756 0.956 0.554 0.639 0.701 0.817

Table 6. The values of the performance metrics for each feature set trained and tested on dbPEC. Performance metrics were

recorded for each classifier and values were recorded at a 95% gene Recall threshold

Feature Set Recall Gene Recall Precision F Score F-gene Score Workload
Savings

Logistic
Regression

BOW 0.950 0.951 0.425 0.588 0.588 0.247
S1 0.967 0.956 0.439 0.604 0.602 0.258
S2 0.939 0.951 0.421 0.582 0.584 0.249
S3 0.944 0.966 0.413 0.574 0.578 0.228
S4 0.967 0.956 0.444 0.608 0.606 0.266
S5 0.961 0.951 0.458 0.620 0.618 0.292
S6 0.956 0.951 0.461 0.622 0.621 0.301

Random
Forests

BOW 0.939 0.956 0.448 0.607 0.610 0.294
S1 0.928 0.951 0.488 0.640 0.645 0.360
S2 0.922 0.956 0.445 0.600 0.607 0.301
S3 0.917 0.951 0.426 0.582 0.589 0.275
S4 0.950 0.951 0.491 0.648 0.648 0.348
S5 0.922 0.961 0.494 0.643 0.653 0.371
S6 0.922 0.956 0.484 0.635 0.643 0.358

Neural
Networks

BOW 0.967 0.956 0.407 0.572 0.570 0.199
S1 0.961 0.966 0.410 0.575 0.576 0.210
S2 0.922 0.951 0.400 0.558 0.563 0.223
S3 0.944 0.951 0.369 0.530 0.531 0.137
S4 0.967 0.966 0.371 0.536 0.536 0.122
S5 0.961 0.956 0.448 0.611 0.610 0.277
S6 0.922 0.956 0.433 0.590 0.596 0.283
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characterize the set of ‘considered’ articles and information
useful for future association testing. With our pipeline,
tasks such as the identification of all genes and mutations
mentioned in the titles and abstracts can be performed in a
single query. Given that our pipeline is specifically designed
to identify articles with relevant genetic information, it may
be the preferred approach for those curating literature for
the genetic study of complex diseases.

A possible limitation of our approach is that it is unclear
how well our pipeline will perform on other data sets. Our
separate evaluations of dbPTB and dbPEC reveal differ-
ent values for recall, specificity, gene recall and workload
reduction. This variance is likely multifactorial in origin.
The accuracy of our predictive model will be dependent on
how articles were originally selected for consideration, how
robust the collection of literature is on a given condition
of interest, the number of genes that have been shown
to contribute to the condition, and variations in how the
condition is characterized in biomedical literature. Using
this pipeline to curate articles relevant for the genetic study
of other conditions will be necessary for further evaluation.

Additional features and classifiers were evaluated that
were not used in our final pipeline. Other classifiers that
were considered included a support vector machine and a
second neural network. The support vector machine was
omitted due to inferior performance as well as known but
minor inaccuracies in its probabilistic output (4). A second
multilayer perceptron was also developed using Mocha.jl
(https://github.com/pluskid/Mocha.jl), but it was omitted
due to poor performance using Mocha.jl. Additional fea-
tures that were considered included the journal ISSN and
publication year. The journal ISSN associated with each
article was not used because it did not improve prediction
accuracy. Publication year was not used due to bias in the
training set, as the preeclampsia data set only included arti-
cles published in 2014 and 2015 that were rejected during
manual curation. Accepted papers published in 2014 and
2015 had not been updated in the preeclampsia database at
the time of data access.

Conclusions

We have developed a machine learning-based computa-
tional pipeline that can identify of articles that meet criteria
for formal curation. This approach allows for a signifi-
cant reduction in curation workload for those seeking a
comprehensive collection of literature that documents the
genes related to a phenotype of interest. This approach may
prove to be generalizable to other phenotypes or diseases
of interest with a robust base of publications. Furthermore,
comparative evaluation of the machine learning models
demonstrated that the combined feature sets S1, S2, S5 and

S6 performed better in terms of workload savings than
bag-of-words. In addition, S1, S5 and S6 were shown to
outperform bag-of-words in F1 score and F-gene score.
Moreover, our feature sets are less than half the size of bag-
of-words and as such are less computationally expensive.
This is notable particularly when curating large quantities
of articles. Use of these predictive models can potentially
improve the efficiency of future curation efforts.
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